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Cooperative Distributed Optimisation
@-—-—@

@.‘
@‘

Assumption: neighbours cooperate to find minimizer of network

cost:
1 N
=N Z fi(x), x* = argmin,f(x)

@ Global estimation: x € R”, each node wants
Xi=x*Vi=1,...,N. Typically n independent of N: support
vector machine, robotic map building.

@ Local estimation: fi(x) = fi(xi, {xj}jen;), each nodes just
wants X; = x;. Typically n > N: smart grid state estimation,
robotic localization



Global estimation: Robotic Map Building

Parametric
Model:

g(l‘) — Zﬁ;[:] g'mg'm(m)

-2

Noisy data:
{(@s,9:) 1L,

yi = g(x;) + v

N &~ O 0

02 04 06 08

Cost function

f(r) = |r]

OFNWHM
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Global estimation: SVM Classification

D. Varagnolo, F. Zanella, A. Cenedese, G. Pillonetto, L. Schenato. “Newton-Raphson Consensus for Distributed Convex

Optimization”. IEEE Transactions on Automatic Control (submitted)

x € R*: frequency of specific words,

y € {spam, non-spam}

(x,x0) € R: separating hyperplane parameters
Connected graphs with 30 nodes

Local cost functions:

Spam Filters:

fi (x) = Z log <1+exp (—y; (ijx +x0)) )+’y lIx]5.

j=1
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Global estimation: Robust Regression

D. Varagnolo, F. Zanella, A. Cenedese, G. Pillonetto, L. Schenato. “Newton-Raphson Consensus for Distributed Convex

Optimization”. IEEE Transactions on Automatic Control (submitted)

x € R*: size, distance from downtown

y € R, house price

(x,x0) € R®: parameters to be computed
Connected graphs with 30 nodes

Local cost functions:

Housing Price
Predictors:

30 ( Ty 2
, Yi—xj x—x) )
fi(x) =Y .
:(X) |}/j—XJTX—X0|+ﬂ +7||X||2
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Local estimation: Localization

A. Carron, M. Todescato, R. Carli, L. Schenato. “An asynchronous consensus-based algorithm for estimation from noisy relative

measurements”. |IEEE Transactions on Control of Network Systems (submitted)

x; € R2: robot position

( ) o Range-bearing
x=(xg,...,xy) ER

measurements:
z; € R?, vector noisy distance of node i and T
Jj, i.e. z; = x; — xj + noise o B ml
Local cost functions: Eﬁ Q l".‘ )
: 4 .-
: :: o 2. Rb-.i J‘*Rx -\
109:= 3 =~ e E L
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Local estimation: Smart Grid Estimation from noisy PMUs

S. Bolognani, R. Carli, M. Todescato, “State estimation in power distribution networks with poorly synchronized measurements”

IEEE Transactions on Smart Grids (submitted)

x; € C: node voltage
x=(xi,...,xy) €CN o
m{ € C, noisy measured voltage at bus i Macro-area monitoring:
m¢ € C, noisy measured current at bus i
L: weighted Laplacian of the network

m=Hx+n, R,=E[nm’]

Re[m"] / 0

| Im[m"] _ 0 l
M= Reme] |77 | Re[t] —im[1)
Im[m€] Im[L]  Re[l]

Local cost functions:
S
min  (m— HX)TRgl(m — Hx) = min ZJh(xAh, {xa, }eens,)
X XA 5+ XAg 1

Jp, are quadratic functions .



|deal algorithm features

@ Distributed: only local communication

@ Asynchronous: no global communication nor updates
synchronization

@ Robust to (random) time-delays

@ Robust to packet losses

@ Broadcast communication: no ACK/NACK or full duplex
@ Asymptotically optimal

@ Anonymous

@ Suitable for time-varying graphs

14
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State-of-the-art

Distributed optimization methods: 3 main categories

@ Primal decompositions methods
(e.g. distributed subgradients)

@ Dual decompositions methods
(e.g. alternating direction method of multipliers)

@ Heuristic methods
(e.g. swarm optimization, genetic algorithms)

16



Primal decomposition methods (centralized)

Subgradient methods [Shor, 1985]
Xk+1 = Xk — ok - 8 (Xk)
with

@ g (xx) := subgradient of f(-) at x

@ «y = stepsize

Convergence properties
@ «y typically needs to be diminishing for non-smooth f

@ g(-) may be required to be bounded

17



Primal decomposition methods (distributed)

Distributed subgradient methods [Nedic Ozdaglar, 2009]

xi(k)* = x(k) — agi(xi(k))
xi(k+1) = ZJN:1 aij(k)’fr(k)
Ri(k) = % Xho1xi(h)

with
o gi(xi(k)) := local subgradient of local cost fi(-) at x;(k)
@ « local stepsize

° Zszl ajj(k)x;j(k) := aver. consensus step on local estimates
xj(k)

Convergence properties [Nedic Ozdaglar, 2009]
E.g., for bounded subgradients and «j(k) = « then

lim inf f(%(k))<F +6

k—4o00
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Dual decomposition methods (centralized)

Method of Multipliers [Bertsekas, 1982]

Primal reformulation:

yelds to dual Lagrangian

minimize  f(x)
subjectto Ax=0b

0

minimize  f(x) + £ ||Ax — b|3
subjectto Ax=0b

@ xici1 = argmin, (£(x) + A (Ax — b) + § || Ax — b]3 )

Q M1 = A+ p(Axk — b)

10



Dual decomposition methods (distributed)

Alternating Direction Method of Multipliers [Bertsekas
Tsitsiklis, 1997]

minimize  fi(x) + f(z)
subject to Aix+ Axz—b=0
Augmented Lagrangian:

Ly(x,x,A) == A(x)+ h(2) + AT (Aix + Axz — b) +
+5 |Arx + Axz — b|3

Algorithm
Q@ x(k+ 1) = argmin, L,(x, z(k), A(k))
Q z(k+1) =argminy, L,(x(k + 1), z, A(k))
Q Mk +1)=Ak)+p(Ax(k + 1)+ Axz(k + 1) — b)

20



ADMM for distributed optimization
@-—-—@
@ C

Global estimation

N , N r(o
min Y fi(x) = o 2= filxi)

pat subject to xp = zy,¥(i,j) € €

zjj: Bridge variables. Constraints written as A;x + Az — b = 0.
Lagrangian:

Lo({xi}, {21 = S i)+ X jyee Af (i—2zi) +5 X1 jyeellxi—zi1?

21



Drawbacks of the considered algorithms

Primal based strategies
@ may be slow (sublinear convergence 1/k)

@ may not converge to the minimizer

Dual based strategies
@ may be computationally expensive
@ require topological knowledge

@ implementation to handle time-varying graphs, time delays,
packet losses, etc. may require effort

Related recent work
@ Primal: Gharesifard and Cortes 2014, Lu and Tang 2012,
Wang and Elia 2010, Kia et al. 2014

@ Dual: Boyd et al. 2010, Duchi et al. 2012, Zhu and Martinez,
2012, Johansson et al. 2009, Wei and Ozdaglar 2013
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Newton-Raphson: scalar case

Goal: find minimum of

convex f(x)

Idea: approximate function [ \\\

f(x) with a parabola e

~ 1 Xir1 X
f(x) = Ea(x — b2 +c

Match slope and curvature at point x,:

f(xi) = f(x) = 3a(xk — b)* + ¢ a=f"(x)
a(xx — b) = b=xy — o)

~ £ (k)
f”(Xk) = f”(Xk) =a C =%

24



Gradient Descent: scalar case

Idea: approximate function

f(x) with a parabola with
curvature equal to one [ \x/
Xk+1Xk

Jump to the minimum:

X1 = xk — (%)

75



Newton-Raphson: multivariable case

Idea: approximate function f(x) with a

parabola
@

f(x) = 3(x — b)TA(x — b) +c,
beR"A>0¢eR™" e

Match slope and curvature at point x:

V(xe) = v?(fk) = Al —b) _ A= V2£(xi)
sz(Xk) = v2f”(Xk) =A b= xx— (sz(xk))_1Vf(xk)

Jump to the minimum:

X1 = xk — (V2F(x¢)) TV F (%)

26



Gradient Descent: multivariable

Idea: approximate function f(x) with a
parabola with unitary curvature

Fx) = Lx— b2 + b
(A=1) "

Match slope at x:
VF(xk) = VF(xc) = xx — b

Jump to the minimum:

Xkt1 = Xk — VF(xk)

27



Jacobi: multivariable
Idea: approximate function f(x) with a

parabola with parallel axes

f(x) = 3(x — b)TA(x — b) + c,
A = diag{ay,...,an} Y

Match slope and axis curvature at x:

Vi (xe) = VF(xc) = A(x — b)
[v2f(Xk)} i = a;

Jump to the minimum:

Xier1 = X — (diag(V2F(x))) T VF (%)

4025_

78



Centralized Newton-Raphson (NR): properties

e if f is quadratic, then minimization is performed in 1 step
@ Newton step is invariant w.r.t. affine changes of coordinates

e if f € C?, strongly convex, and Hessian is uniformly Lipschitz,
ie.,

|V2f(x1) = V2F(x2) |, < Llxa = ol
then for x =~ x* convergence rate is quadratic (super-linear,
doubly exponential)

A

# iterations

S
>

1’}

Log(error)

sublinear

Superlinea

(quadratic) linear

20



Centralized NR in practice

X1 = Xk — e(V2F(xk)) TV F(xk)
@ practical implementations perform line search, e.g.
e = min, f(xk4+1). For e =1 could diverge if xo far away.

e convergence follows two phases: first damped (linear
convergence) then quadratic (optimal € ~ 1)

@ computational burden to obtain V2f(x) can be alleviated
using quasi-Newton methods:

Ax = —B 'V f(xy)

where B, ! is an estimate of the Hessian using Vf(xx_1)

20
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Average Consensus algorithm

Linear Distributed algorithm to compute averages:

JORNNNG|

X1 1 K=1 // \8 cender of mass

o 1 & ----0

xi € R)x = 1=
X.N 1 K=2 d@%jof mass
Matrix P doubly stochastic, nonnegative,
associated graph strongly connected @@@terofmass
K=3 @y

x(k + 1) = Px(k)

K=4 @ center of mass

1"P=1",P1=1,P>0,P" >0
1 1 1
PEi g -
p_|a 3 7 7| . limeexi(k)=g2imxi(0), Vi
1110’ exponentially fast rate=esr(P)
0o ; 0 2

Center of mass preserved | Works also for time-varying P(k): e.g. gossip



Map-building in robotic networks

Parametric
Model: "
f(@) =3 Onfm(2)

Noisy data:
{(zi,y)}il, |8
yi = f(x;) +v;

= Issues:
= Each robot collects local data
= Local communication with robot
= Patrolled area dynamically change

213



Map building as distributed least squares

Estimate

M
f@ =Y Onfm()
m=1
with unknown parameters 61, ..., 6, from noisy Yi

measurements o /‘\/
M >
yi=Y Omfmla) +v, i=1.. N f(@)

m=1 FT kS

By stacking all measurements ¢
01
P+
O

y(zl)j| B __ filz1) .o faber) }

y(x2) —————
; | fiten) oo fu(en)

or equivalently:

y=F0+v
Goal:
- N
0 =argming Y v2 = argminy||Fo-b||? = (FTF)~1FTy

i=1
can be written as

N oy & 1Y 1 X
0= (> FFHNY. F) = (= Y, EFDTHE Y. Fa)
i=1 i=1 Nz Ni=

Least-squares as ratio of two averages of local quantities
(Xiao,Boyd,Lall, IPSN05), (Bolognani,Del Favero, Schenato, Varagnolo JRNC10)

24



Consensus based map-building

= Pros:
= Asynchronous

Si(wi(t))

Strategy for each robot i: l_ Falao()

1) Initialize statistics: Fo= :
Zi=0¢e RM*xM o) |
zi=0¢€ RM

2) Collect data and build local statistics:
Ziy =2+ FiF]T
zip = 2 + Fiy;
3) Choose neighbor j and do gossip consensus:
Zf“ = Zti+1 = %ZZ IZj
A=z =32+
4) Estimate map:
0i = (Z) 4
5) Repeat steps 2,3,4 (non necessarely in oder)

= Communication graph can change

= Cons:
= Exchange of O(M?) data

= Parametric model €< curse of dimensionality




Simulation: coverage with adaptive map-building

;
0.,
0
200 100 OPY:
— 400 200 100 200
1
0l
0%
200 100 o 200
o 100 o 100
| | - 1
|
ol,
I T 0~
100 N— 200
o 100
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How to deal with non-quadratic cost functions?

Estimate
M
flz) = Z Om fm(x)
m=1
with unknown parameters 64, ..., 6, from noisy
measurements

M
vi= 3 Omfm(z) +oi i= FiT'N

m=1
By stacking all measurements
y(z1) [ @) - Ju@1 01 v1
= T T P ()

y(z2) T T T
i | filen) - fu(an)
or equivalently:

O N

y=F0+v

Goal:

N
6 =argming 3 f(v;) #argming||F9—b||2 = (FTF)~1FTy

=1




Naive application of Consensus: the wrong way !

Centralized Gradient Descent ( to simplify notation
Xk = X, Xge1 = XT):

N N

1 1
N ) =T =x ey 3R

Some notation:

x;: local copies of estimated minimum,x = [x; - - - x,] "
yi: local copies of estimated global gradient,y = [y1---y,]"

Naive Distributed Gradient Descent Algorithm:

(1) yi="f(x) local gradient
(2) y" =Py estimated global gradient via communication

(3) x" =x —ey local descent step

NOT WORKING !!

28



Naive application of Consensus: the wrong way ! (cont'd)

(1) yi="f(x) local gradient
(2) yt=Py estimated global gradient via communication
(3) x" =x; —ey’ local descent step

Why it does not work:

o even if x; = x* Vi, unless P = 4117 (complete graph), then
the x,-+’s s will spread around = x* is not an asymptotic
equilibrium point

@ even if P= %IIT (complete graph), unless x; = x;Vi, j, then
x,-Jr #* xjJr = they agree on a direction not on a point

20



Back to Newton-Raphson approach

Approximate each f;(x) with a parabola

~ 1 ¥ — L1y (1, ,
) = L= by — (0 =W (Ba -8+ )
2 = 5a(x — x*)?
Match slope and curvature at point x;:
f/(xi) = /(%) = ai(x — b)) o ar=1(x)
/() = £'(x) = ai aibj = f'(xi)xi — f/(xi)
Jump to the minimum of f(x):
N L 1N
1! !
Zalbl Nzaibi Nz:f; (XI)XI f;(Xl)
X+ — x* = i — i=1 — i=1

40



Graphical interpretation

1 N
~ ) ' (xi)xi — £ (xi
e ajb; = f"(xi)xi — f/(x;) . N ; P ba)xi = 17 (xi)
- x= Sy
o a; = f/'(xi) N > (i)

T1

a1



Graphical interpretation

Ty

pilp,



Graphical interpretation

x2

A3



Centralized vs Distributed Newton-Raphson

Is the minimum of f(x) a good approximation of the true
minimum of f(x) ? Minimum of global f(x):

1N
2 17 (xi)xi = 17(x)
X+ — X* — i=1
1 1 N
~ > ()
N3
Not clear, but if all points are the same, i.e. x; = x Vi, then
1N
N Z f;'/(X:) ,
| 1 ()
N Z fiH(Xl)

Intuition: If x; are close to each other, then x* is a good estimate
of the true minimum, therefore x* — x; is a good direction for x;.



Towards a consensus-based Newton-Raphson

Algorithm

@ initialise local variables:
o ¥i(0) == £ (xi(0))xi(0) — £/(xi(0))
o z(0) := £ (xi(0))
@ run 2 average consensus (P doubly stochastic):
o y(k+1) = Py(k),
o z(k+ 1) = Pz(k)

yilk+1)
© locally compute xj(k +1) = 70—~

AR



Towards a consensus-based Newton-Raphson

Algorithm

@ initialise local variables:
o ¥i(0) == £ (xi(0))xi(0) — £/(xi(0))
o z(0) := £"(xi(0))
@ run 2 average consensus (P doubly stochastic):
o y(k+1) = Py(k),
o z(k+1) = Pz(k)

, _ yik+1)
@ locally compute xj(k +1) = zi(k+1)

£ (xi)xi — £/ (xi) = aibi

f;_//(XI_) —a VX, Vi

If f;'(X,') = %a,-(x,- — b,‘)2 — {

(Xiao,Boyd,Lall, IPSNO5), (Bolognani,Del Favero, Schenato, Varagnolo JRNC10)
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Towards a consensus-based Newton-Raphson

Algorithm

@ initialise local variables:
o yi(0) := £(xi(0))xi(0) — /(xi(0)) = a;b;
o z(0) := f"(x(0)) = aj

@ run 2 average consensus (P doubly stochastic):
o y(k+1) = Py(k),
o z(k+1) = Pz(k)

, _ yik+1)
@ locally compute xj(k +1) = zi(k+1)

£ (xi)xi — f/(x;) = aibi

f;_//(XI_) —a VX, Vi

If f;'(X,') = %a,-(x,- — b,‘)2 — {

(Xiao,Boyd,Lall, IPSNO5), (Bolognani,Del Favero, Schenato, Varagnolo JRNC10)

AR



Towards a consensus-based Newton-Raphson

Algorithm
@ initialise local variables:
o ¥i(0) == £ (xi(0))xi(0) — £/(xi(0))
o z(0) := £ (xi(0))
@ run 2 average consensus (P doubly stochastic):
o y(k+1) = Py(k),
o z(k+1) = Pz(k)

, _yik+1)
© locally compute x;j(k + 1) = zi(k+1)

Problem:

All local estimate converge to consensus y;(k) — ¥(0), zi(k) — z(0)
therefore also x;(k) — x*(0), but x*(0) depends on initial condition. One
could run K steps and then restart algorithm with

yi(0)  £"((K))xi(K) — £(x(K)). 2(0) « £(K): too slow

A6



The (synchronous) consensus-based Newton-Raphson

Fixes:
@ change initial condition of consensus step to track the
changing x;

@ move x; slowly to let consensus variable (y;, z;) to converge

v

Algorithm

@ define local variables:

o gi(k) = £ Calk)x(k) — F0a(k), &i(~1)=0, y(0)=0
o hi(k) = '(qk)), h(~1) =0, z(0)

@ run 2 average consensus (P doubly stochastic):

o y(k+1) = Py(k) + g(k) —g(k — 1),
o z(k+1) = Pz(k) + h(k) — h(k — 1)

i 1
@ locally compute x;(k + 1) = (1 — e)x;(k) + ST

A7



Tracking of the current average

Plain average consensus would lead to integration, differently:

z(k + 1) = Pz(k)+h(k) — h(k — 1)
z(0) =0, h(-1)=0
a3
LM zi(k+1) = £ SN, hi(xi(k)), Wk

Therefore, if zi(k) — zj(k) K230, then

N
Z(k+1) — % > h(k) = 5 3 Ca(k), Vi

A8



Block diagram representation

distributed

local local
computations averaging updates
e N
5 By
any
- -
. average H
- -

consensus
C gl? hl HP”

y(k +1) = Py(k)

z(k + 1) = Pz(k)

(o) -,
. J

& c

hi(k) = £ (xi(k)) z(k+1)

gi(k) = £ Calk)x(k) = £ (k) xi(k+1) = (1—e)x(k) + LD

A0
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Singul

Coupled dynamics:

ey
(v

ar Perturbation Theory: an example

= —xy? slow dynamics
= —y+x? fast dynamics
=~y +x%))

Idea: decouple time scales

freeze slow dynamics, i.e. x = constant

find equilibrium points for fast dynamics, i.e. y = x?
verify if fast dynamics is asymptotically stable: y = —y (OK)

substitute equilibrium into slow dynamics and verify is systems is
asymptotically stable, x = —x>

plus some other technical conditions = coupled system is
asymptotically stable if < sufficiently small

51



Convergence based on Singular Perturbation Theory

Algorithm
x(0) = y(0) = z(0) = g(x(—1)) = h(x(—1)) = 0 initialization
y(k +1) = Py(k) + g(x(k)) — g(x(k — 1)) fast dynamics
z(k +1) = Pz(k) + h(x(k)) — h(x(k — 1))
xi(k+1) = (1 —e)xi(k) + 52%21:3 slow dynamici
Proof sketch:

Fast dynamics

If e = 0, then x(k + 1) ~ x(k) = x (constant)

= yilk+1) = § XL gi(x) = § Tty £/ (xi)xi — {(x) =
g(x), Vi

= zi(k+1) = &SN, hi(x) = § SN, (x) = h(x), Vi

) —
g(x),h(x) :R" = R

52



Convergence based on Singular Perturbation Theory

Fast dynamics

If e =0, then x(k + 1) ~ x(k) = x (constant)

— yi(k+1) = v v ey ' (xi)xi — £ (x) = &(x), Vi
= zi(k+1) =~ SN, f'(x;) = h(x), Vi

Slow dynamics: perturbed system

Insert equilibrium point of fast dynamics into slow dynamics:

, —(1—2)x 8(x(k))
xi(k+1)=(1—-¢e)xi(k) +¢ Fix (k)),v

Same forcing term, therefore limy_,o Xi(k) — xj(k) = 0.

53



Convergence based on Singular Perturbation Theory

Slow dynamics: perturbed system

Insert equilibrium point of fast dynamics into slow dynamics:
xi(k+1)=(1—e)x(k)+e EXEB;’V

Same forcing term, therefore limy_, o xj(k) — xj(k) = 0.

Slow dynamics: unperturbed system

Assume x; = Xj = X:
st 2(x1)
Xt =(1-¢)x+¢t D),
NZI 1 IN(X X— f,(X)

1—¢)x+¢
= ) NZ:lZ:N(X)
_ ! (x)
= 1—€x—|—s<x—"’ L )
( ), _ N Z::l f'(x)

Centralized Newton-Raphson !!

54



Formal results

e If f; are quadratic —> Global exponential convergence
with rate sr(P) for ¢ = 1 for any connected graph

o If graph is complete —> Centralized Newton-Raphson

@ Under mild conditions (f; € C® and convex) = Local
Exponential Stability for 0 < ¢ < e,

@ Under more restrictive conditions (uniformly Lipschitz,
strongly convex, bounded interconnection perturbations) =—>-
Global Exponential Stability for 0 < € < e,

e Convergence is “only” linear due to consensus: it needs
time to pass information around

# iterations

>

Sublinear (DSM)

—

Log(error)

55



The Multivariable consensus-based Newton-Raphson

Derivation of the algorithm

Algorithm

@ define local variables:
o gi(k):=V2fi(xi(k))xi(k)=Vfi(xi(k)),gi(—1) = yi(0) = 0, R”
o Hi(k) := V?f(xi(k)), Hi(—1)= Z(0)=0, €R™"

@ run 2 average consensus (P doubly stochastic):

o y(k+1)= Py(k) +g(k) —g(k—1)
o Z(k+1) = PZ(k) + h(k) — h(k — 1)

@ locally compute x;(k +1) = (1 — &)x;(k) + eZi(k + 1) tyi(k + 1)

v

Need to compute averages and inversions of matrices:

@ O(n?) communication complexity & memory requirements

e O(n3) computational complexity
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Distributed Gradient Descent Revised

Approximate each f;(x) with a parabola with unitary curvature:

f, f —lsn (Lo p\2 4
ﬁ(X) = } X — bi)2 +¢ = (X) 1NZ/_]_ (2 (X b) =+ C)
2 — §(X _X*)Z +c

Match slope x;:
fl(xi)=F(xi) = (xi — b)) = bi=x—f(x)

Jump to the minimum of 7(x):
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The (synchronous) consensus-based Gradient Descent

Derivation of the algorithm

The correct algorithm

@ define local variables:

o gi(k) = xi(k) — f/(xi(k)), &(-1)=0, yi(0)=0
@ run 1 average consensus (P doubly stochastic):

o y(k+1) = Py(k) + g(k) — g(k 1),
© locally compute

xi(k+1) =(1—¢e)xi(k)+eyi(k+1)
= xi(k) + e (yi(k + 1) — xi(k))

The Naive Gradient Descent algorithm

(1) yi=f(x) local gradient
(2) yt =Py estimated global gradient via communication

(3) x" =x —ey’ local descent step
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Simulations: SVM Classification with synchronous NR

http://archive.ics.uci.edu/ml/datasets/Spambase

x € R*: frequency of specific words, Spam Filters:
y € {spam, non-spam}

(x,x0) € R5: separating hyperplane parameters
Connected graphs with 30 nodes

Local cost functions:

30
fi (x) = Z log (1+exp (—y; (3] x + x0)) )—|—fy l1x|[3 .
=1

00 05 10 15 20 25 30
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Simulations: SVM Classification with synchronous NR

Consensus-based algorithms:

k (for e =¢*)

NRC=Newton-Raphson Consensus

JC= Jacobi Consensus

GDC = Gradient Descent Consensus

Comparison with other algorithms

T T T
1072 P i
— 10_4 B : \\ - |
= 1076 :
€2 NN
wn 10—8 [ 2 |
= P ADMM “+ |
— NRC
1071 - FNRC "l
10—14 | | |

ADMM=AIlternating Direction
Multipliers Method
NRC=Newton-Raphson Consensus
FNRC= Newton-Raphson with Fast
Consensus (diffusive)



Simulations: Robust Regression with synchronous NR
http://archive.ics.uci.edu/ml/datasets/Housing

x € R*: size, distance from downtown

y € R, house price

(x,x0) € R5: parameters to be computed
Connected graphs with 30 nodes

Local cost functions:

fi (x) := i (v = x]x =)’
s j=1 i = X x = x| + 8

Housing Price
Predictors:

2
+ x5 -
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Simulations: Robust Regression with synchronous NR

Consensus-based algorithms:

40

100 . T T
1072 | 2
S
CL;J) 1074
= CNRONL e
...... ile
107° I —GDC
| | |
0 10 20 30
k (for e =¢*)

NRC=Newton-Raphson Consensus

JC= Jacobi Consensus

GDC = Gradient Descent Consensus

Comparison with other algorithms

T e

A A
1074 !

<106

2 108 |

21010 | eeene ADMM ™ i
10-12 | — NRC ]

s | =--FNRC
10~ |- \ ‘ : -
; 10 20 30 40
k

ADMM=AIlternating Direction
Multipliers Method
NRC=Newton-Raphson Consensus
FNRC= Newton-Raphson with Fast
Consensus (diffusive)
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Simulations: synthetic data

@ circulant graph, N = 30
o fi(x) =exp ((x— b)T A (x — by))

of —NR
T —1fNR
T? ADMM
= 5
8
3]
2
=~ -10
o
2
-15
0 100 200 300

k (time steps)
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Convergence speed: ADMM vs NRC

Quadratic function with unit curvature:

Distributed computation via consensus (same as Newton-Raphson

consensus):
x(t+1) = Px(t), P~gG
%(0) = 6

Rate of convergence:
rate: pp=1—o0p

where pp is essential spectral gap and op is spectral gap of P.

A



Convergence speed: ADMM vs NRC

Average consensus with memory (diffusive methods):

R(t+1) = BPR(t)+ (1—B)R(t—1)
%(0) = %(-1)=40

If B chosen optimally:

2
B=p""=——F——=—rate:x=1—+20p

1+4/1—p3
Interpretation:
@ Standard consensus: P feedback

@ Consensus with memory: PD feedback and heavy-ball
methods
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Convergence speed: ADMM vs NRC

Equivalent optimization problem:

N . N 1 2
, 1 min S s(xi—6))
min Z(x —6: 2 = X100 sXN32Z15-44,2ZN i=1 2\ J
x 22( ) sit. xi=z, Yi=1...,N,VjeN"

ADMM approach

N
L(x,z,7m) fo,+zz ni(xi — z ZZCU(XI'_ZJ‘)2
=ljeNt i=1 jeNt
to get:
x(t+1) = 0i + 2 jen Cizi(t) = 2jenr mi(t)
L+ jen Gi
z(t+1) = 2jeny: G+ 1) + 2 e milt)
Zje,/\/l_+ Gji

mi(t+1) = my(t) + cila(t + 1) — z(t + 1))
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Convergence speed: ADMM vs NRC

Previous dynamics can be written as:
C=nP= x(t+1) = Mx(t)— Nx(t—1)
where
2 1
=2y =y N=_—T p2
1417 1+n 1+n

and 7 is a free parameter. If n chosen optimally :

n=n"=rate: =~ 1—+20p
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Asynchronous implementation

T 1074 |{ — NRC —DSM

92500 5000

7500

k
10000
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Presentation outline

@ Motivations

State-of-the-art

Centralized Newton-Raphson: a quick overview

Consensus-based Newton-Raphson
@ convergence properties (theory + simulations)

@ Future directions
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Comparisons

[ | bpsM | ADMM | NRC |
|  diff. functions | NO | NO | YES |
H rate (diff. functions) H sublinear ‘ linear ‘ linear H
H comm. complexity H ‘ O(N) ‘ O(N?) H
H comp. complexity H small ‘ medium-high ‘ medium-high H
H glob. stable H yes ‘ yes ‘ no H
| nchonous | yes | mabe | ye |
H time var. graph H yes ‘ maybe ‘ yes H

70



Extensions

@ Simplified Multivariable:

o Distributed Gradient Descent: O(n) complexity, only V£
needed
o Distributed Jacobi: O(n) complexity, only V£, [V2f]; needed

@ Asynchronous: straightforward implementation. Some uniform
persistency requirements for global convergence

@ Flexible: by changing the consensus block can be adapted to
different scenarios:

@ Accelerated: diffusion-based consensus ‘ -

any )

@ Broadcast communication: no need @ e O
. . . (" g"h' “pr L hY

for symmetric gossip (ratio consensus) = o )

@ Directed Graphs \\@ - O;

@ Packet loss



Conclusions

Takeaway messages
@ new distributed optimisation method
@ it takes advantage of standard consensus algorithms
(plug-and-play)

@ its potentials are still mainly unexplored

Future work
@ adaptive local stepsize ¢;(k)
@ non-differentiable cost functions
@ quasi-Newton methods

constraints

distributed interior point methods

@ extensive comparisons based on real data with ADMM&co
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Questions ?

THANK YOU
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