Networked Control Systems subject to packet loss and random delay.

Part II: Random delay and distributed estimation

Luca Schenato

University of Padova

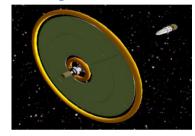
Necsys'09, Tutorial day, 26 September 2009, Venice

Networked Control Systems

Drive-by-wire systems

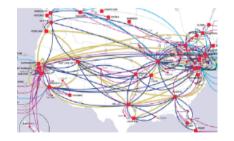
Swarm robotics

Smart structures: adaptive space telescope

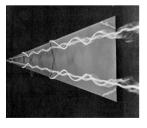


Wireless Sensor Networks

Traffic Control: Internet and transportation

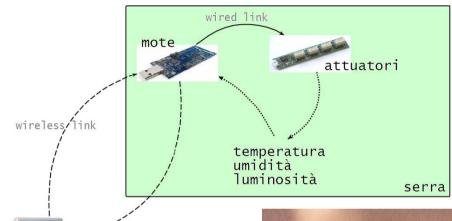


Smart materials: sheets of MEMS sensors and actuators



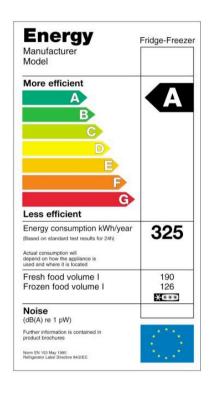
NCSs: physically distributed dynamical systems interconnected by a communication network

Smart greenhouses and building climate control



- Distributed estimation
- Distributed control
- Control under packet loss & random delay
- Sensor fusion
- Distributed time synchronization

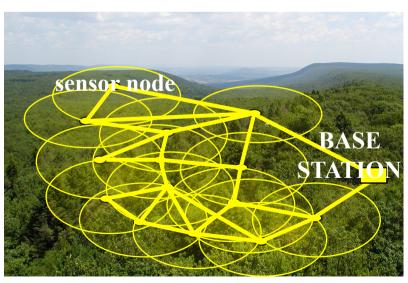
ThermoEfficiency Labeling



- Building thermodynamics model identification
- Sensor selection for identification
- Optimal sensor placement

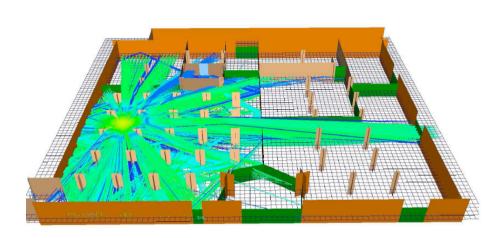
Wireless Sensor Actuator Networks (WSANs)

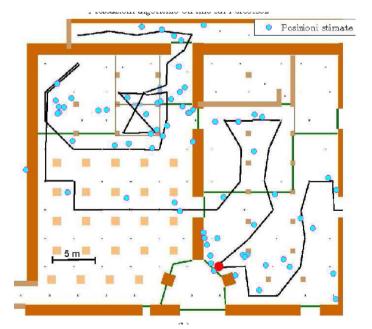
- Small devices
 - Controller, Memory
 - Wireless radio
 - Sensors & Actuators
 - Batteries
- Inexpensive
- Multi-hop communcation
- Programmable (micro-PC)



Necsys09, Tutorial Day on NCS, 26rd Sept 2009, Venice, Italy

Distributed Localization and Tracking with WSNs



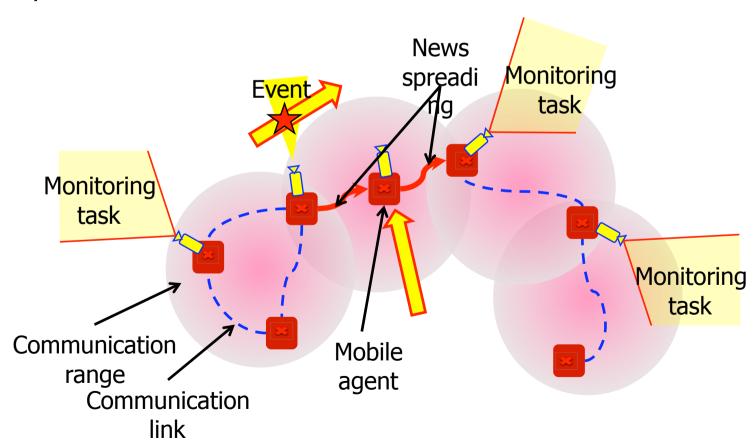


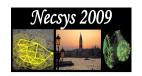
- Indoor radio signal modeling
- Real-time localization
- Distributed tracking
- Coordination

Multi-camera surveillance systems

Rationale

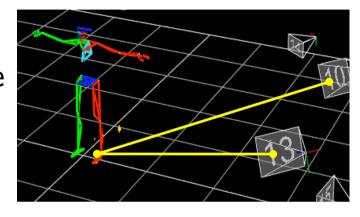
■ The Sensor Actor Network is a multi-agent multi-task finite-resource system

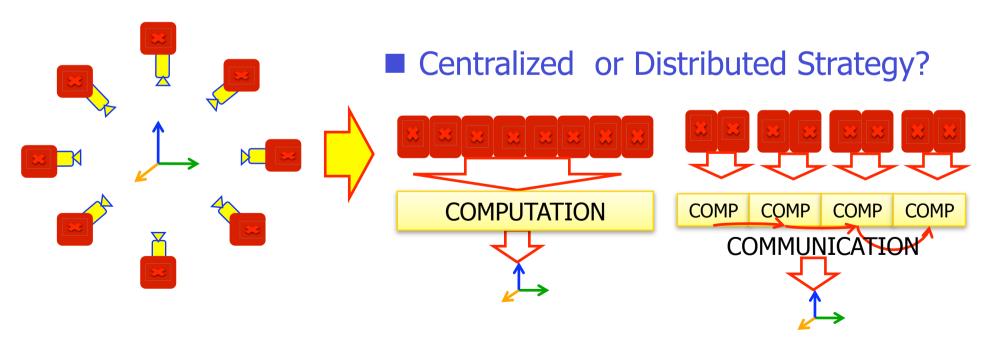




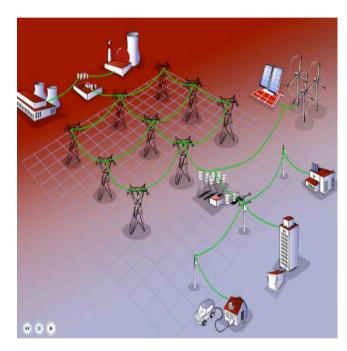
Multi-camera real-time tracking

- Reconstruction Procedure
 - 2D feature point on the i-th image plane mapped to ray in 3D space
 - 3D rays mapped to 3D feature point





Smart Power Grids

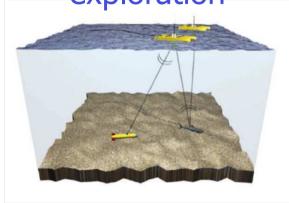


Foreseeable future

- Many consumers & producers
- Cooperation vs greedy behavior
- Network topology not known and dynamic
- Need for distributed estimation and control

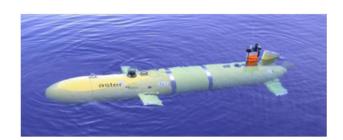
Coordinated robotics for exploration

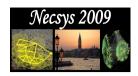
Underwater exploration



Planetary exploration

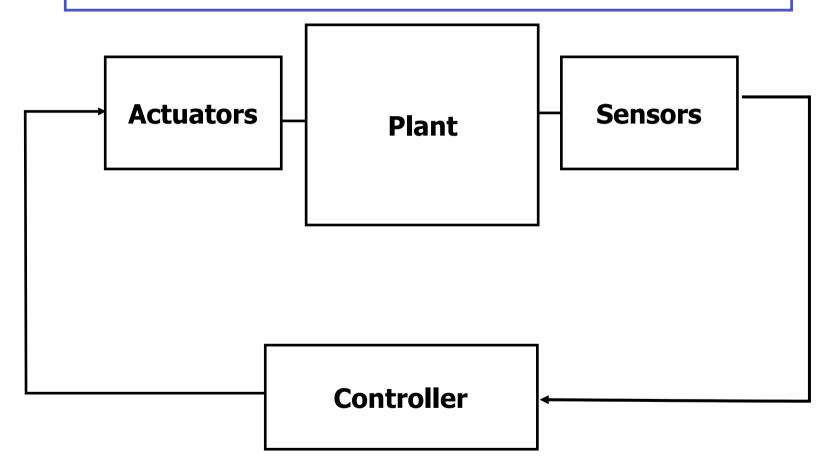
Search & rescue missions

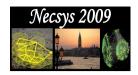




NCSs: what's new for control?

Classical architecture: Centralized structure





NCSs: what's new for control?

NCSs: Large scale distributed structure **Plant Interference Packet loss Connectivity** Random delay COMMUNICATION **Limited capacity NETWORK** Quantization **Congestion** Necsys09, Tutorial Day on NCS, 26rd Sept 2009, Venice, Italy



Interdisciplinary research needed

COMMUNICATIONS ENGINEERING

- •Comm. protocols for RT apps
- Packet loss and random delay
- Wireless Sensor Networks
- •Bit rate and Inf. Theory

NETWORKED CONTROL SYSTEMS

SOFTWARE ENGINEERING

- Embedded software design
- Middleware for NCS
- •RT Operating Systems
- Layering abstraction for interoperability

COMPUTER SCIENCE

- Graph theory
- Distributed computation
- Complexity theory
- Consensus algorithms

Interdisciplinary research needed

COMMUNICATIONS ENGINEERING

- •Comm. protocols for RT apps
- Packet loss and random delay
- Wireless Sensor Networks
- •Bit rate and Inf. Theory

NETWORKED CONTROL SYSTEMS

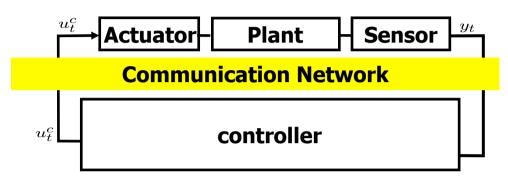
SOFTWARE ENGINEERING

- Embedded software design
- Middleware for NCS
- •RT Operating Systems
- Layering abstraction for interoperability

COMPUTER SCIENCE

- Graph theory
- Distributed computation
- Complexity theory
- Consensus algorithms

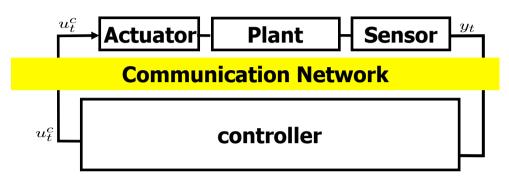
Communication and Control: Modeling with single link



- Problems:
 - Time-varying delay
 - Random packet loss
 - Quantization

- Infinite bandwidth:
 - Deterministic (worst case)
 - Delay and packet loss is time-varying but measurable to receiver
 - Delay and packet loss is NOT known to receiver
 - Stochastic (mean square)
 - Delay and packet loss are random, but measurable and known stats
- Finite bandwidth
 - Quantization
 - Power limited transmission

Communication and Control: Modeling with single link



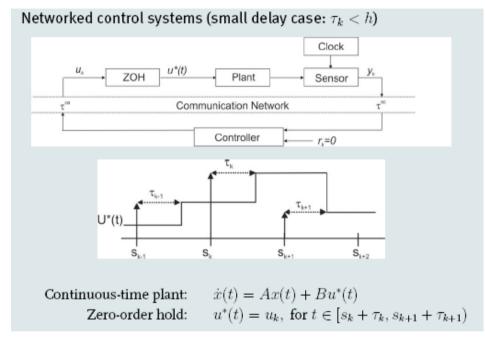
- Problems:
 - Time-varying delay
 - Random packet loss
 - Quantization

- Infinite bandwidth:
 - Deterministic (worst case)
 - Delay and packet loss is time-varying but measurable to receiver
 - Delay and packet loss is NOT known to receiver
 - Stochastic (mean square)
 - Delay and packet loss are random, but measurable and known stats
- Finite bandwidth

Core of this tutorial

- Quantization
- Power limited transmission

Modeling: deterministic with infinite bandwidth



Networked control systems: Model $x_{k+1} \ = \ e^{Ah}x_k + \int_0^{h-\tau_k} e^{As}dsBu_k + \int_{h-\tau_k}^h e^{As}dsBu_{k-1}$ Using the augmented state vector $\xi_k = \begin{pmatrix} x_k \\ u_{k-1} \end{pmatrix}$ we obtain $\xi_{k+1} = \begin{pmatrix} x_{k+1} \\ u_k \end{pmatrix} = \begin{pmatrix} e^{Ah} & \int_{h-\tau_k}^h e^{As}dsB \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_k \\ u_{k-1} \end{pmatrix} + \begin{pmatrix} \int_0^{h-\tau_k} e^{As}dsB \\ 1 \end{pmatrix} u_k$

Model with delay:

$$\xi_{k+1} = F(\tau_k)\xi_k + G(\tau_k)u_k$$

time-varing system with parametric uncertaintly

 $au_k \in [au_{\mathsf{min}} au_{\mathsf{max}}]$

Modeling: deterministic with infinite bandwidth

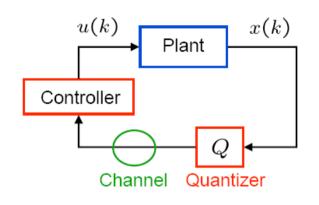
Model with delay:

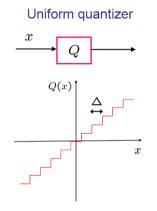
$$\xi_{k+1} = F(\tau_k)\xi_k + G(\tau_k)u_k$$

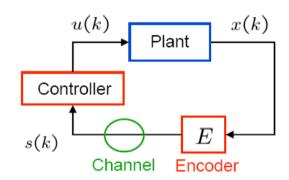
time-varing system with parametric uncertaintly $au_k \in [au_{ ext{min}} au_{ ext{max}}]$

- If \downarrow_{κ} is known, then LQG-like approach: optimal time-varying control $u_k = K(\downarrow_{\kappa}) \approx_{\kappa} Nilson$ (1998)
- If \sqsubseteq_{κ} is unknown, then robust control approach: worst case analysis with constant control $u_k = K_{\kappa}$ Zhang (2001), Montestruque (2004), Naghshtabrizi (2006), Cloosterman (2009)
- Most results concern stability and not performance

Modeling of finite bandwidth: rate limited

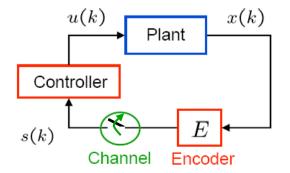






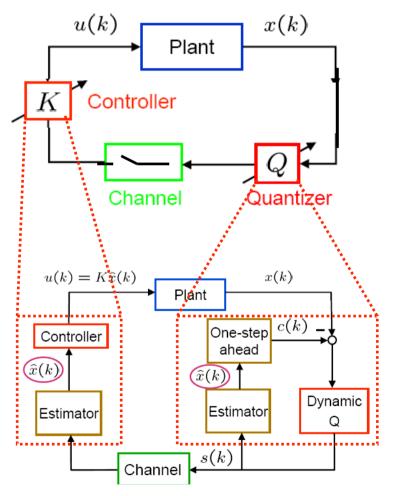
$$s(k) = E_k(x(k), \dots, x(0), s(k-1), \dots, s(0))$$

Encoder, i.e. a smart quantizer, can be designed (time-varying)



Packet loss = erasure channel

Modeling of finite bandwidth: rate limited



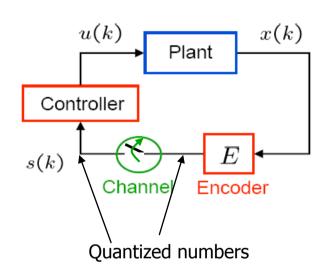
Problems:

- Coarseness of quantizer
- Bit rate
- Packet loss
- Approach:
 - Design (complex) timevarying encoder/controller
- Main results
 - Bit rate $R > \sum_i \log_2 |\lambda_i^u(A)|$
 - Packet loss \rightarrow $\bigcirc < \frac{1}{\prod_i (\lambda_i^u)^2}$
 - **Coarseness** χ $\rho_c = \frac{\gamma_c + 1}{\gamma_c 1}$ $\gamma_c = \sqrt{\frac{1 \alpha}{\prod_i (\lambda_i^u)^2} \alpha}$

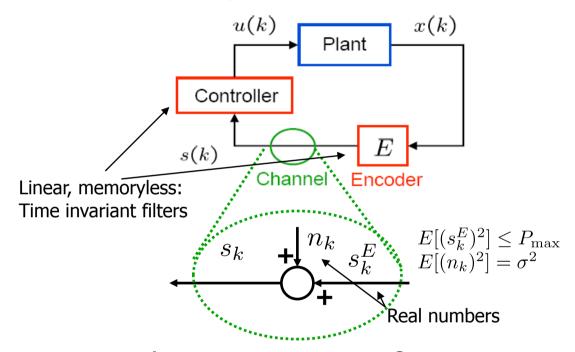
Nair & Evans (2004), Tatikonda et al (2004), Matveev & Savkin (2004), Yuksel & Basar (2006), Ishii et al. (2008), Elia & Mitter (2001), Fu & Xie (2005), Ishii & Francis (2002), Elia (2005)

Modeling of finite bandwidth: signal-to-noise limited

Bit Rate limited



Signal-to-noise limited



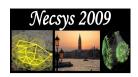
- Takes into account finite bandwidth
- Mathematically clean
- Provide performance bounds

Elia (2004), Martins & Dahleh (2008), Braslavsky at al 2006), Okano et al. (2009)

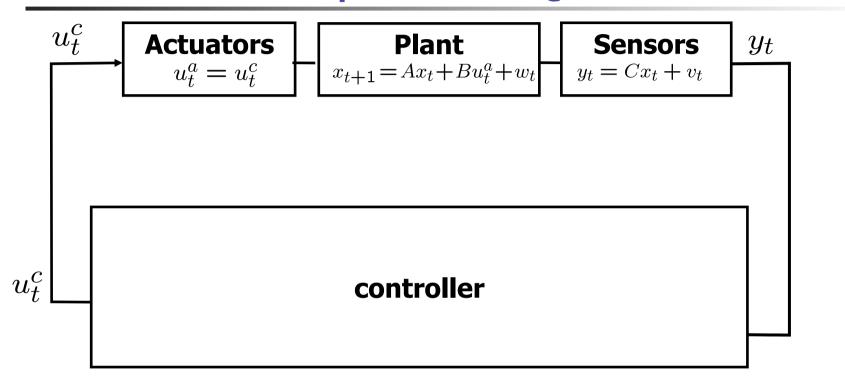
Communication and Control: Modeling with single link

Modeling	PROS	CONS
Deterministic + infinite bandwidth	easy to implementgood for delay	worst case packet lossno performance bounds
Stochastic + infinite bandwidth	performance boundsgood for packet loss	time synch required
Rate limited (quantization)	more realisticlinks with info theory	hard to implementno performancebounds
Signal-to-noise-ratio (SNR) limited	more realisticclean results	coder/decoder to be designed

Necsys09, Tutorial Day on NCS, 26rd Sept 2009, Venice, Italy



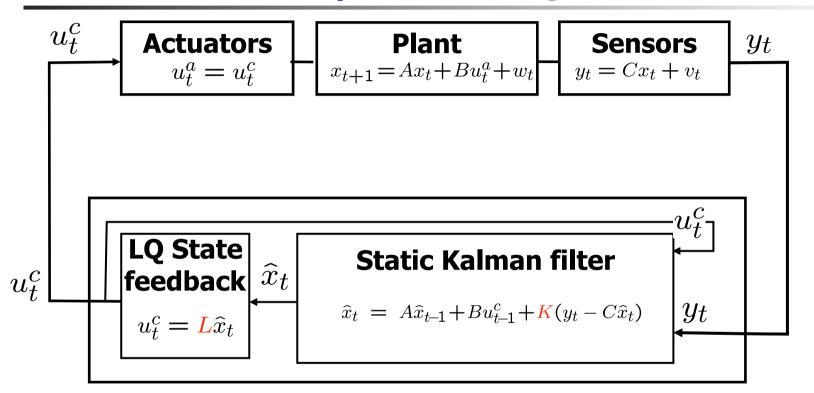
Optimal LQG



$$\min_{u_1^c,\dots u_T^c} J = \sum_{t=1}^T E[x_t^T W x_t + u_t^T U u_t], \quad T \to \infty$$

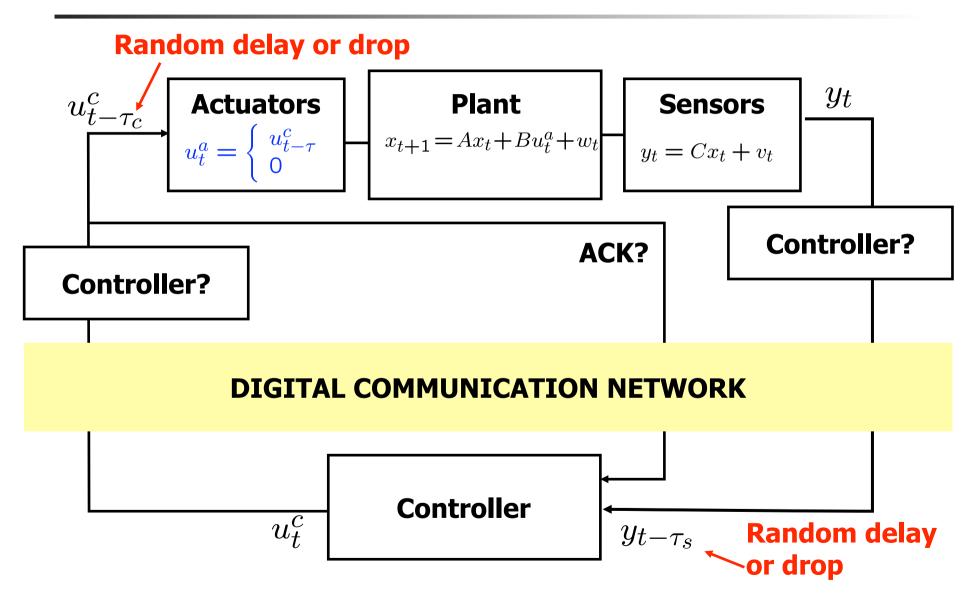
Sensors and actuators are co-located, i.e. no delay nor loss

Optimal LQG

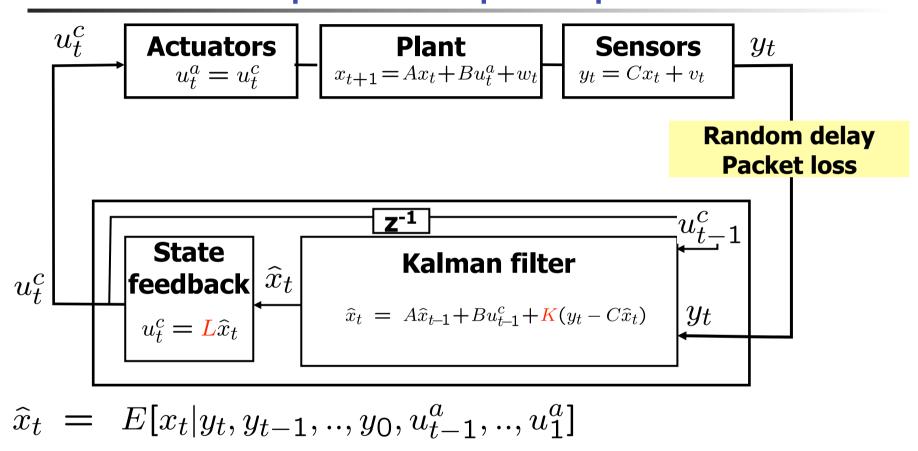


- 1. Separation principle holds: Optimal controller = Optimal estimator design + Optimal state feedback design
- 2. Closed Loop system always stable (under standard reach./det. hypotheses)
- 3. Gains K,L are constant solution of Algebraic Riccati Equations

Optimal LQG control over DCN

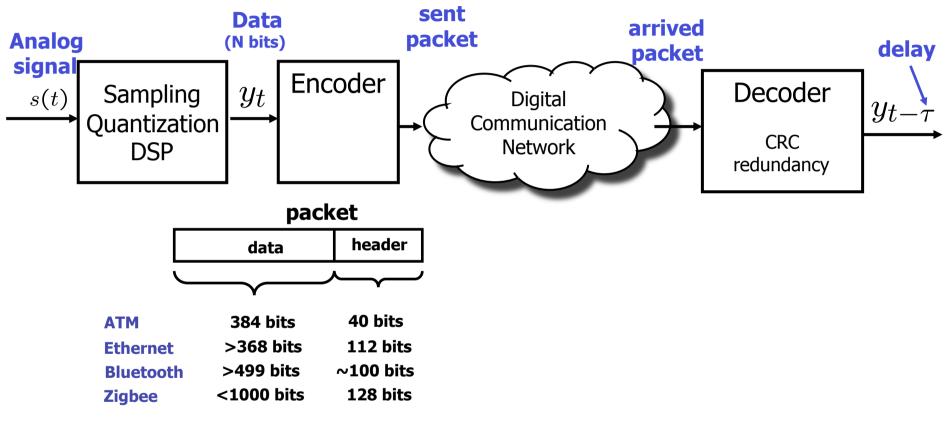


Some consideration on the separation principle



if
$$(u_{t-1}^a, ... u_1^a)$$
 known $\Longrightarrow e_t = x_t - \hat{x}_t = f(y_t, y_{1}, ..., y_1, y_0)$

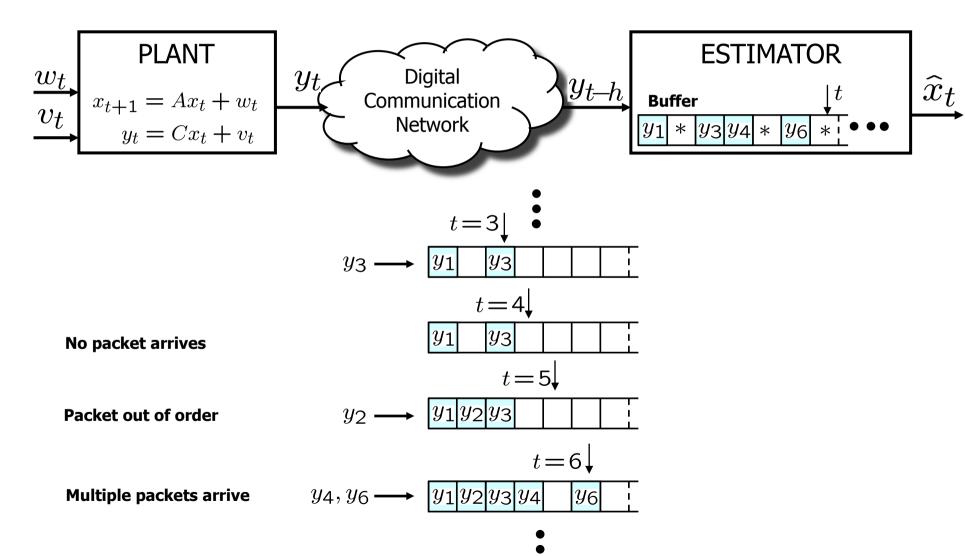
Modeling of Digital Communication Network (DCN)



Assumptions:

- (1) Quantization noise < sensor noise
- (2) Packet-rate limited (≠ bit-rate)
- (3) No transmission noise (data corrupted=dropped packet)
- (4) Packets are time-stamped

Estimation modeling



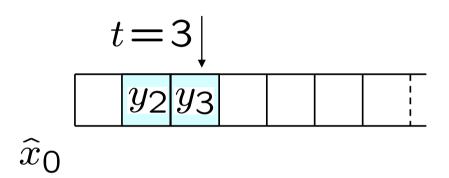
 $\hat{x}_t = \mathbb{E}[x_t | \{y_k\} \text{ available at estimator at time } t]$

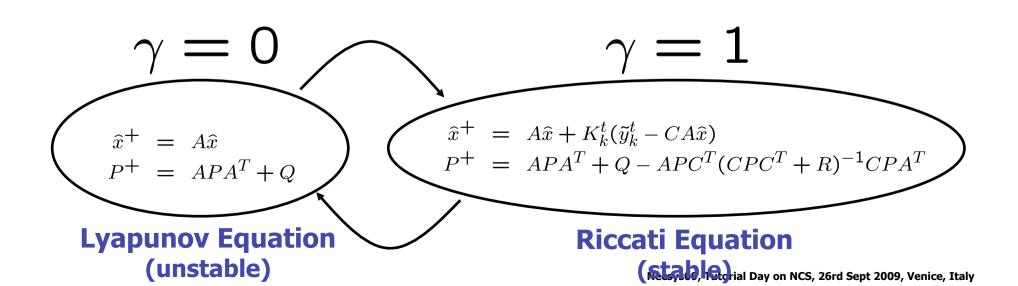
$$\gamma_k^t = \left\{ \begin{array}{ll} 1 & \textit{if } y_k \text{ arrived before or at time } t, \ t \geq k \\ 0 & \textit{otherwise} \end{array} \right.$$

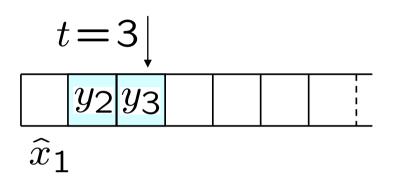
$$\tilde{y}_k = \gamma_k^t (Cx_k + v_k) = C_k^t x_k + u^t$$

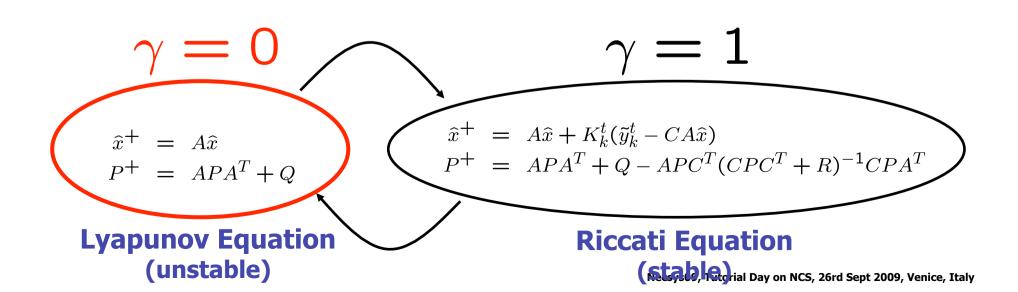
Kalman time-varying linear system

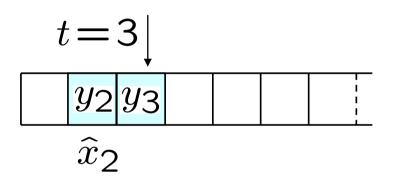
$$\widehat{x}_t = \mathbb{E}[x_t | \widetilde{y}_1, \dots, \widetilde{y}_t, \gamma_1^t, \dots, \gamma_t^t]$$

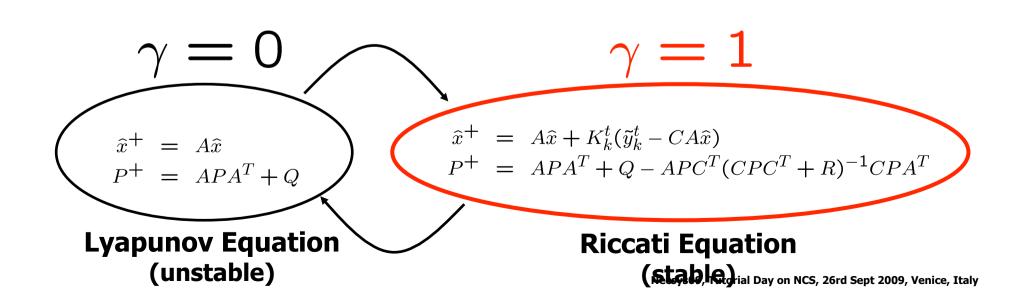


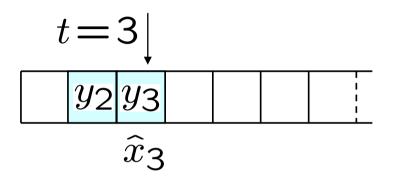


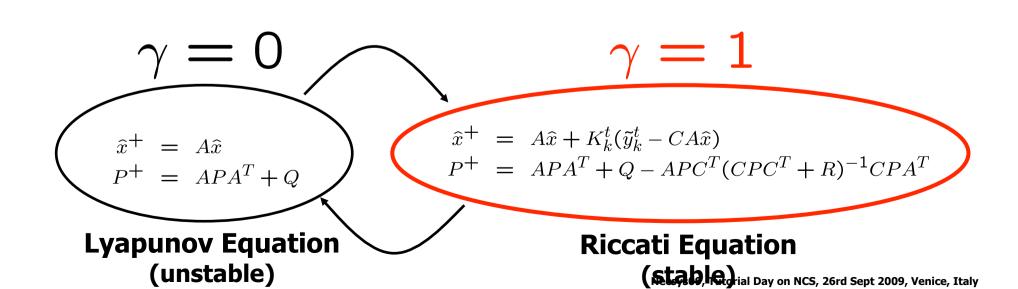


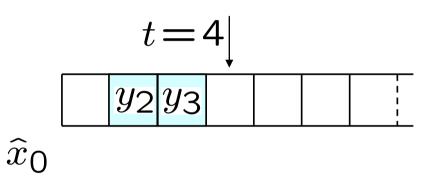


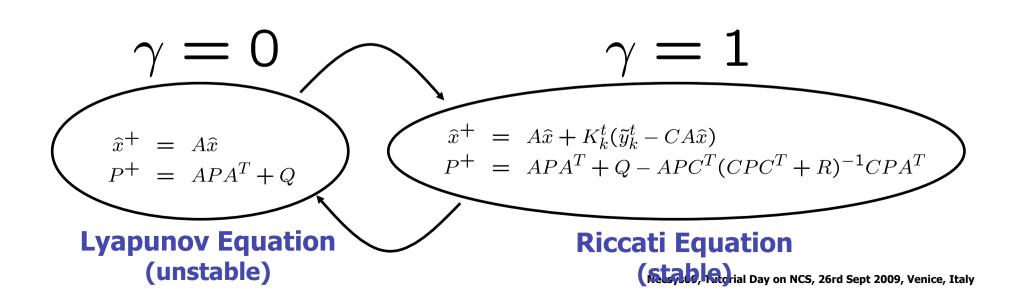


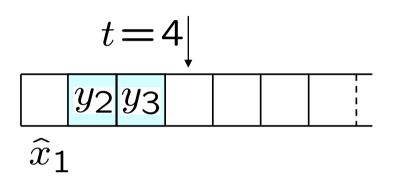


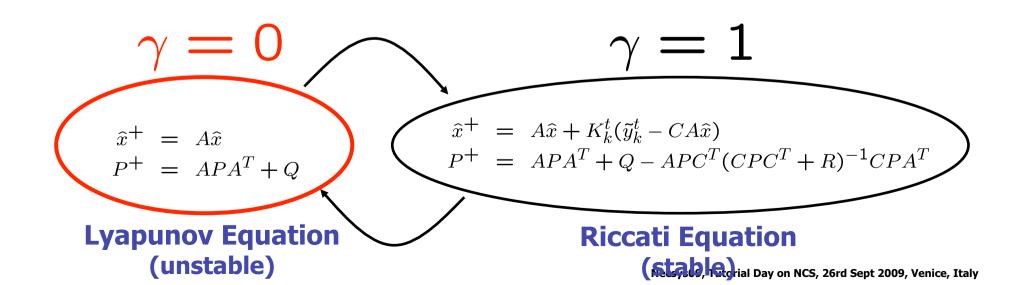


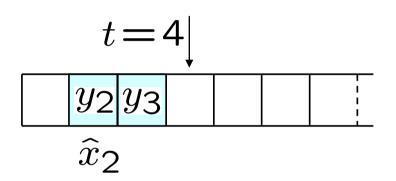


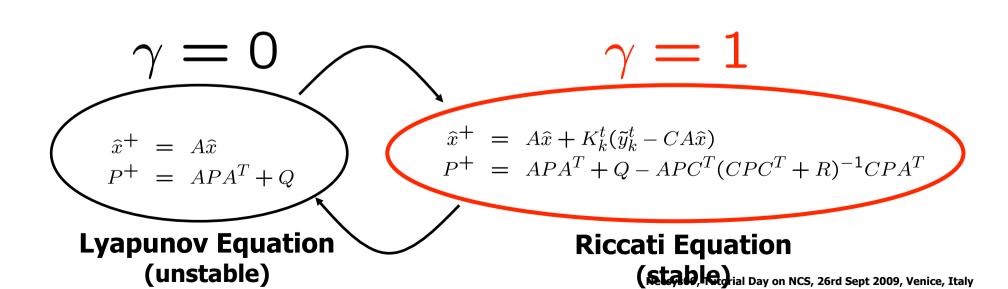


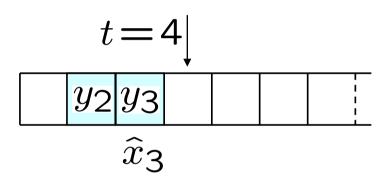


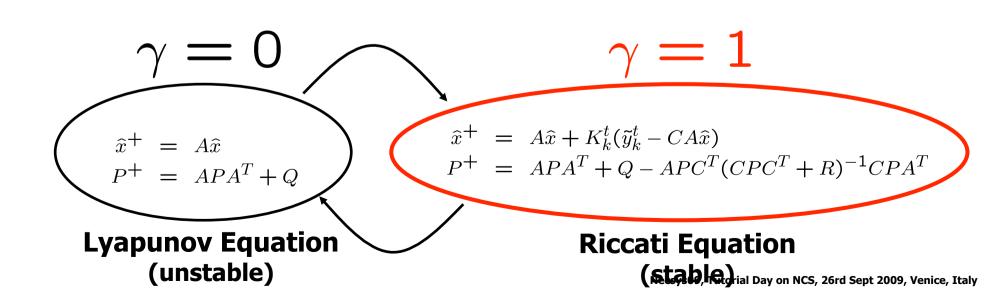


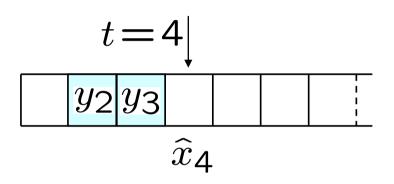


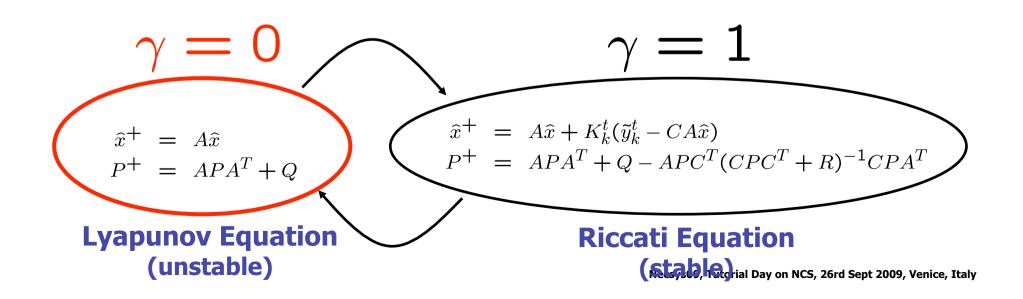


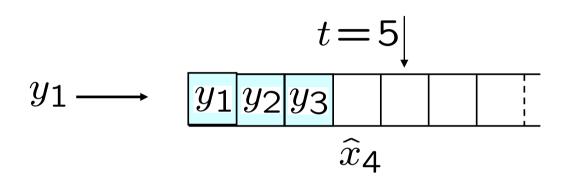


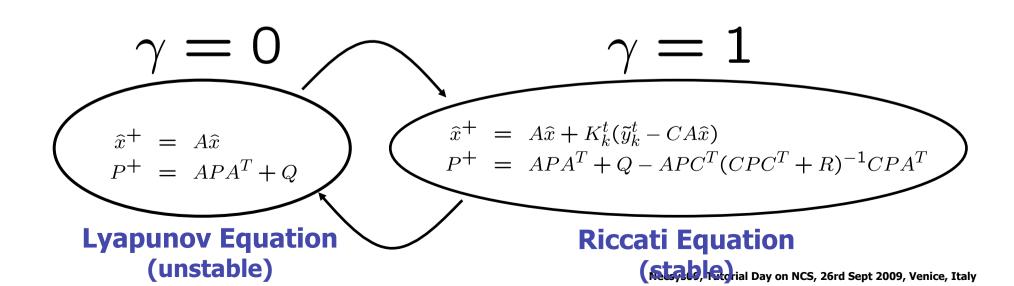




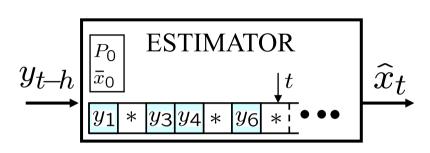




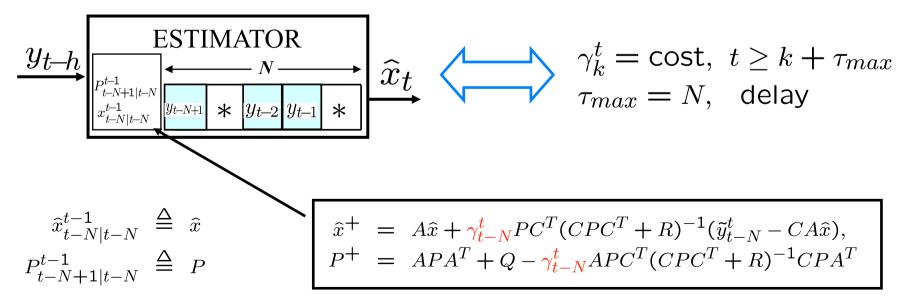


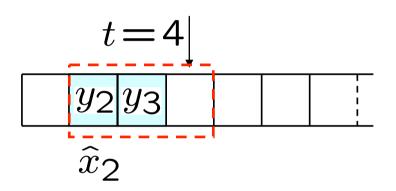


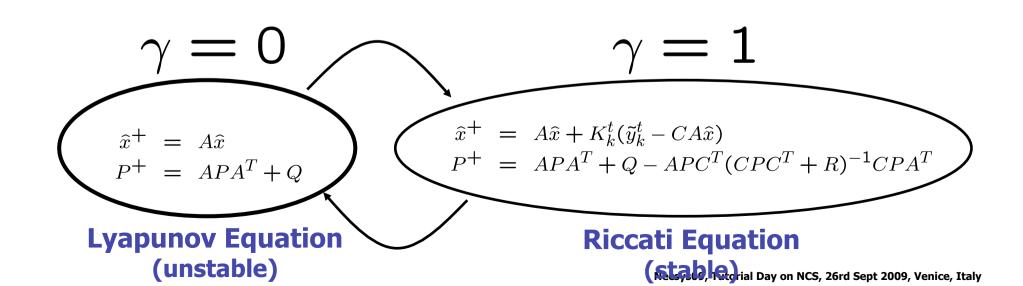
Properties of Optimal Estimator

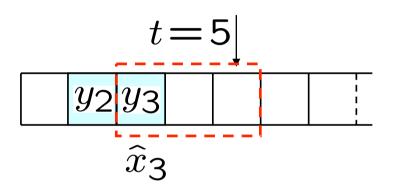


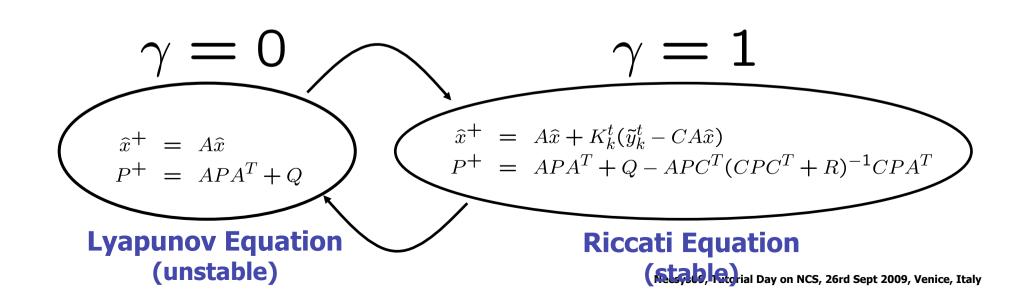
- Optimal for any arrival process
- Stochastic time-varying gain $K_t = K(\gamma_1,...,\gamma_t)$
- Stochastic error covariance $P_t = P(\gamma_1, ..., \gamma_t)$
- Possibly infinite memory buffer
- Inversion of up to t matrices at any time t









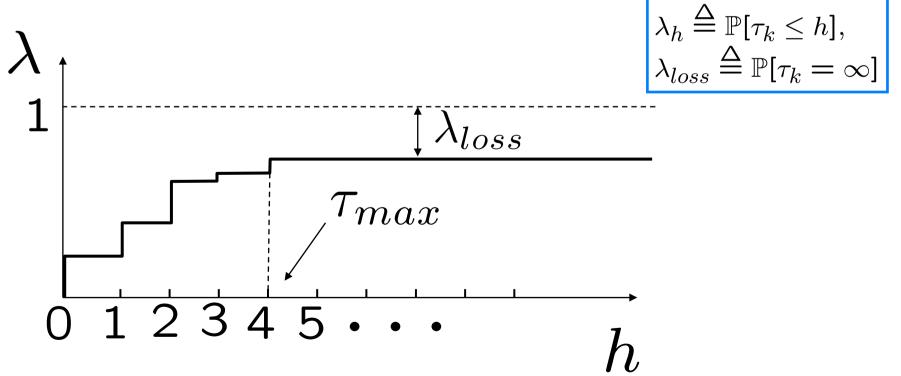


What about stability and performance?

Additional assumption on arrival sequence necessary:

i.i.d. arrival with stationary distribution

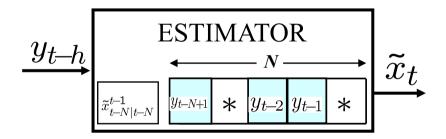
 τ_k : delay of packet $y_k, \quad \tau_k = \infty \text{ if } y_k \text{ never arrives}$



Optimal estimation with constant gains and buffer finite memory

$$\{K_h\}_{h=0}^{N-1}, \quad N \text{ static gains}$$

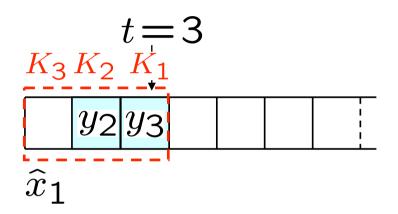
$$\tilde{x}^+ = A\tilde{x} + \gamma_{t-h}^t K_h(\tilde{y}_{t-h}^t - CA\tilde{x}), \quad h = N-1, \dots, 0$$

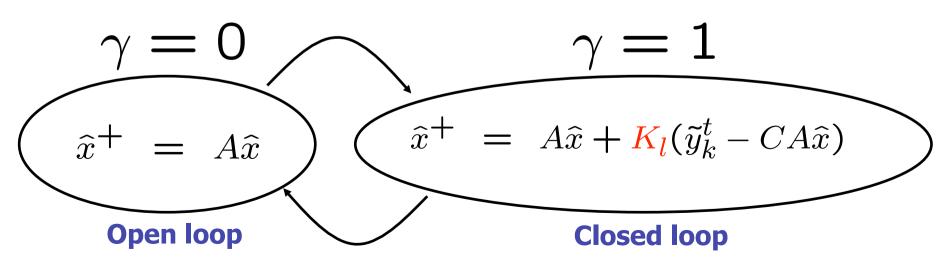


- Does not require any matrix inversion
- Simple to implement
- Upper bound for optimal estimator: $P_t \leq \tilde{P}_{t|t} \Longrightarrow \mathbb{E}_{\gamma}[P_{t|t}] \leq \mathbb{E}_{\gamma}[\tilde{P}_{t|t}] = \overline{P}_{t|t}$
- N is design parameter

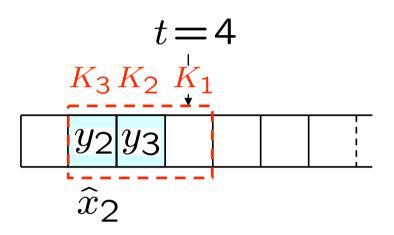
GOAL: compute $\ \overline{P}_{t|t}$

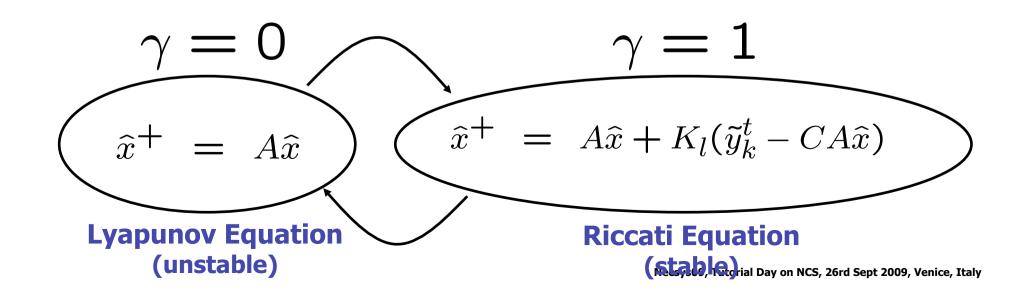
Suboptimal minimum variance estimation





Suboptimal minimum variance estimation





Steady state estimation error

Fixed gains:

$$\mathcal{L}_{\lambda}(K,P) = \lambda A(I - KC)P(I - KC)^{T}A^{T} + (1 - \lambda)APA^{T} + Q + \lambda AKRK^{T}A^{T}$$

$$\overline{P} = \mathcal{L}_{\lambda_{N-1}}(K_{N-1}, \overline{P})$$
 $\overline{P}^+ = \mathcal{L}_{\lambda_k}(K_k, \overline{P}), \quad k = N-2, \dots, 0$
 $\lim_{t \to \infty} \overline{P}_{t|t} = \overline{P}$

Optimal fixed gains:

$$\Phi_{\lambda}(P) = APA^T + Q - \lambda \, APC^T (CPC^T + R)^{-1} CPA^T \qquad \begin{tabular}{l} Modified Algebraic \\ Riccati Equation (MARE) \\ (\Phi_1(P) = ARE) \end{tabular}$$

$$\min_{K_0,...,K_{N-1}} \overline{P} \longrightarrow \overline{P}_{k-1} = \Phi_{\lambda_{N-1}}(\overline{P}_{N-1}) \\ \overline{P}_k = \Phi_{\lambda_k}(\overline{P}_{k+1}), \quad k = N-2,...,0 \\ K_k = \overline{P}_k C^T (C\overline{P}_k C^T + R)^{-1}$$

(Off-line computation) 3rd Sept 2009, Venice, Italy

Stability issues

Static estimator is stable iff there exists $P \geq 0$ such that:

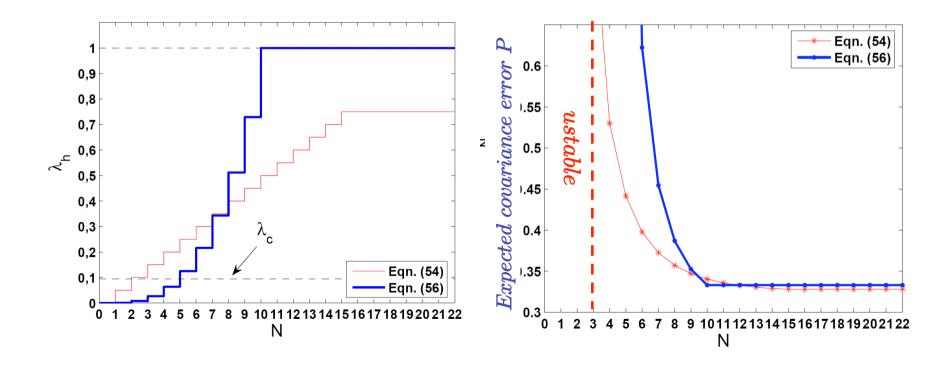
$$P = APA^{T} + Q - (1 - \lambda)APC^{T}(CPC^{T} + R)^{-1}CPA^{T}$$

- If $\lambda = 0$ then standard ARE
- Modified Riccati Algebraic Equation known since [Nahi TIF'69]
- If A is unstable then there exist critical probability: if $\lambda < \lambda_c$ stable, if $\lambda > \lambda_c$ unstable
- Upper bound $\lambda_c \leq \frac{1}{\max|\operatorname{eig}(A)|^2}$. Equality if C invertible [Katayama TAC" 76]
- Lower bounf $\lambda_c \ge \frac{1}{\prod_{unstable} |\operatorname{eig}(A)|^2}$. Equality if $\operatorname{rank}(C) = 1$ [Elia TAC'01, SCL'05]
- Closed form expression for λ_c not known for general (A, C)

Numerical example (I)

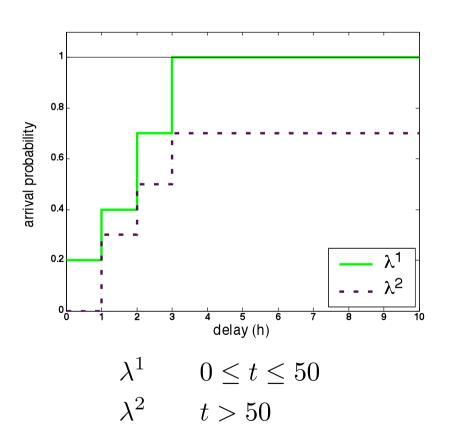
Discrete time linearized inverted pendulum:

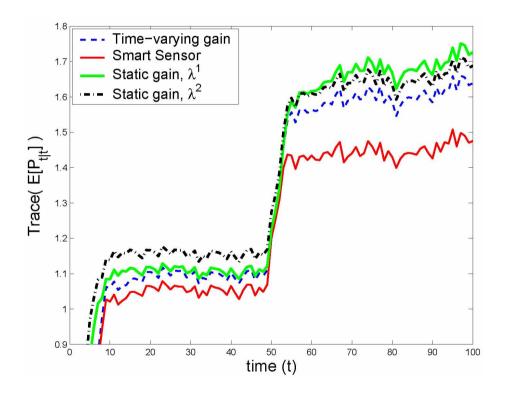
$$A = \begin{bmatrix} 1.01 & 0.05 \\ 0.05 & 1.01 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 \end{bmatrix}, R = 1, Q = \begin{bmatrix} 0.01 & 0.01 \\ 0.01 & 1 \end{bmatrix}$$



Numerical example (II)

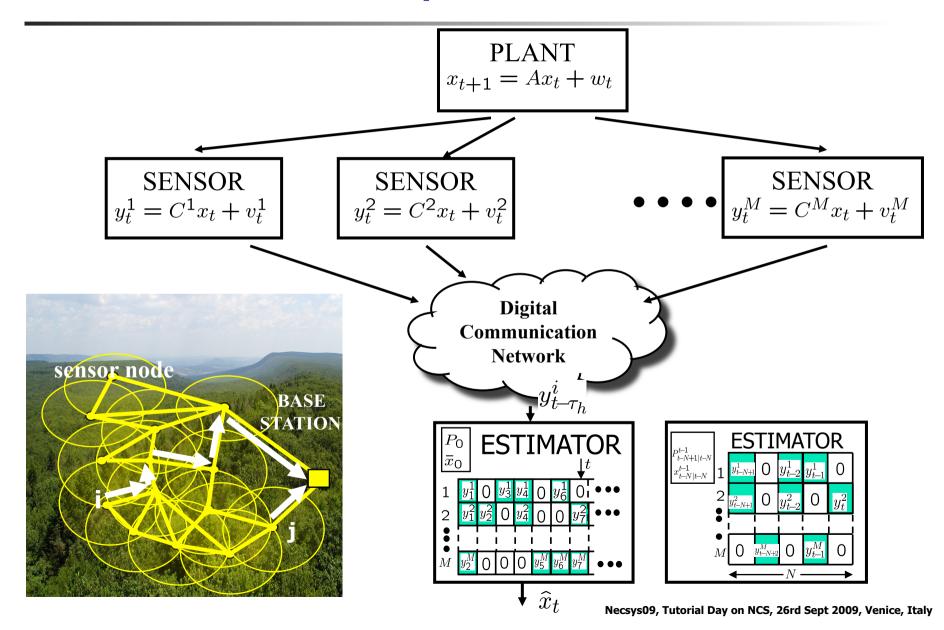
Time-varying arrival probability distribution

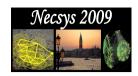




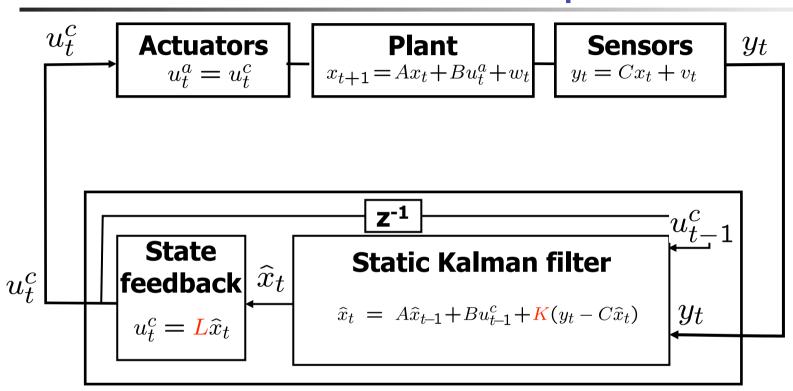


Multiple sensors

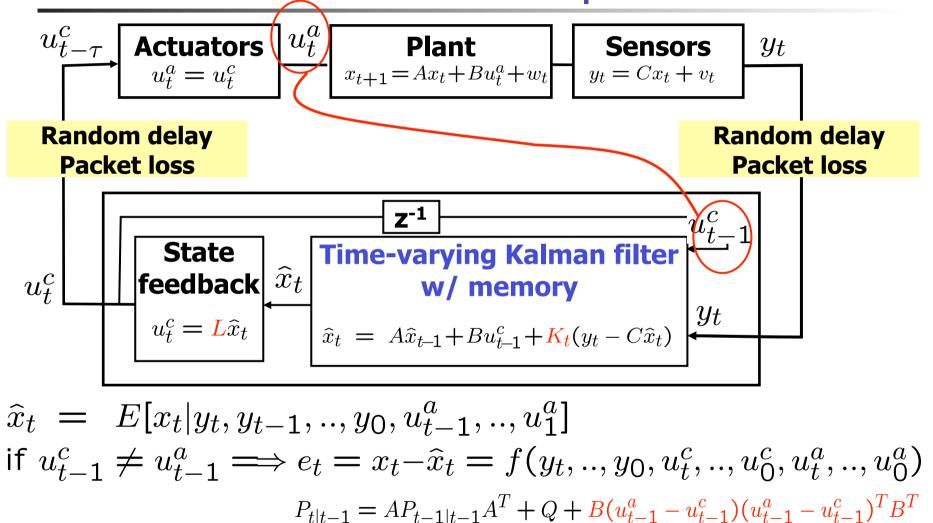




Back to the control problem

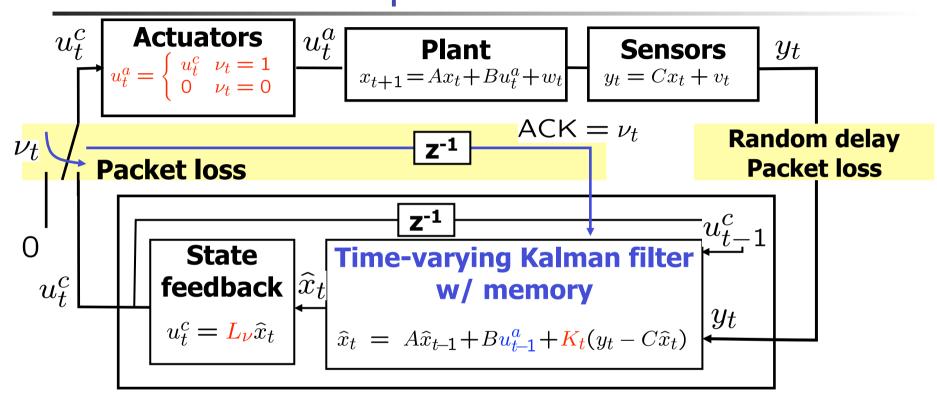


Back to the control problem



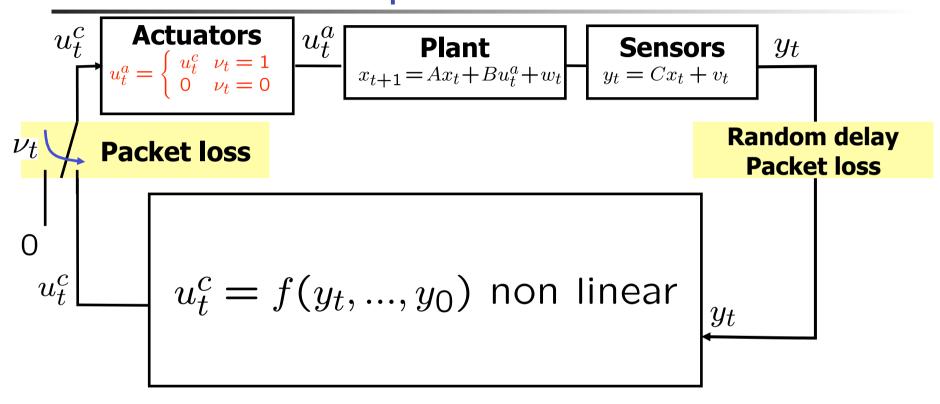
Estimation error coupled with control action → no separation principle

LQG over TCP-like (ACK-based) protocols



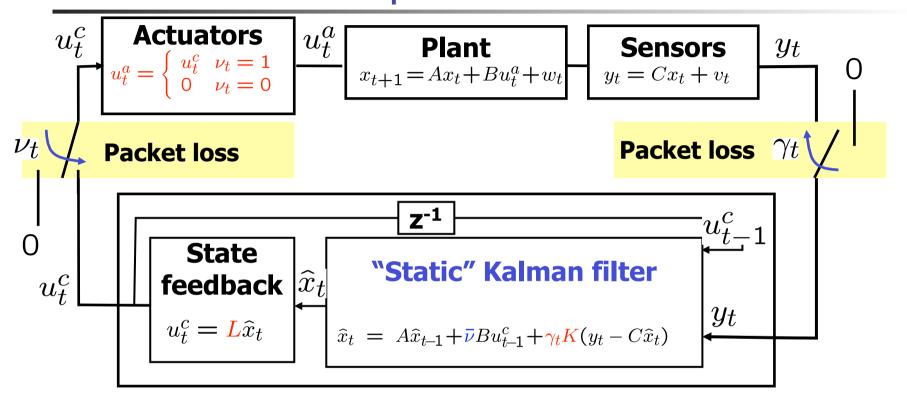
- Separation principle hold (I know exactly u^a_{t-1})
- \mathbf{v}_t Bernoulli rand. var and independent of observation arrival process
- Static state feedback, L, solution of dual MARE

LQG over UDP-like (no-ACK) protocols



- **LQG** problem still well defined: $\min_{u_t^c,...,u_1^c} E[\sum_{h=1}^t x_t^T W x_t + (u_t^a)^T U u_t^a]$
- No separation principle hold (u^a_{t-1} NOT known exactly)
- ... but still have some statistical information about u^at-1

LQG over UDP-like (no-ACK) protocols

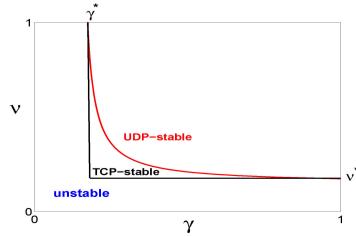


- Bernoulli arrival process $P[\nu_t = 1] = \bar{\nu}, P[\gamma_t = 1] = \bar{\gamma}$
- $\bar{\nu}u_{t-1}^c = E[u_{t-1}^a]$
- Sub-optimal controller forced to be state estimator+state feedback
- Optimal choice of K,L is unique solution of 4 coupled Riccati-like equations

LQG as optimization problem

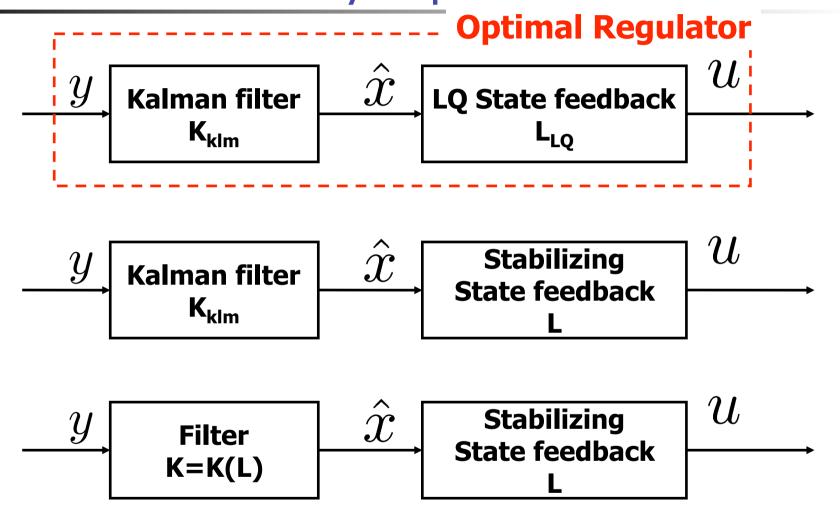
$$\begin{aligned} & \operatorname{Min}_{K,L} & \operatorname{Trace}\left(\left[\begin{array}{cc} W & 0 \\ 0 & \bar{\nu}L^TUL \end{array}\right]P\right) & \stackrel{P \stackrel{\triangle}{=}}{=} \mathbb{E}\left[\left[\begin{array}{cc} x \\ \hat{x} \end{array}\right] \left[x^T & \hat{x}^T\right]\right] = \left[\begin{array}{cc} P_{11} & P_{12} \\ P_{12}^T & P_{22} \end{array}\right] \\ & s.t. & P = \mathbb{E}\left[\left[\begin{array}{cc} A & -\nu_k BL \\ \gamma_k KC & A - \bar{\nu}BL - \gamma_k KC \end{array}\right]P\left[\begin{array}{cc} A & -\nu_k BL \\ \gamma_k KC & A - \bar{\nu}BL - \gamma_k KC \end{array}\right]^T\right] + \left[\begin{array}{cc} Q & 0 \\ 0 & \bar{\gamma}KRK^T \end{array}\right] \\ & P > 0 \end{aligned}$$

- Non convex problem even for $\nu=\gamma=1$, i.e. classic LQG
- Classic and TCP-based LQG become convex when exploiting optimality conditions like uncorralation between estimate and error estimate $\mathbb{E}[x(x-\hat{x})^T]=0$
- For UDP-like problem non convex but unique solution using Homotopy and Degree Theory (DeKoning, Athans, Bernstain) (maybe using Sum-of-Squares?)
- Stability on ν and γ is coupled



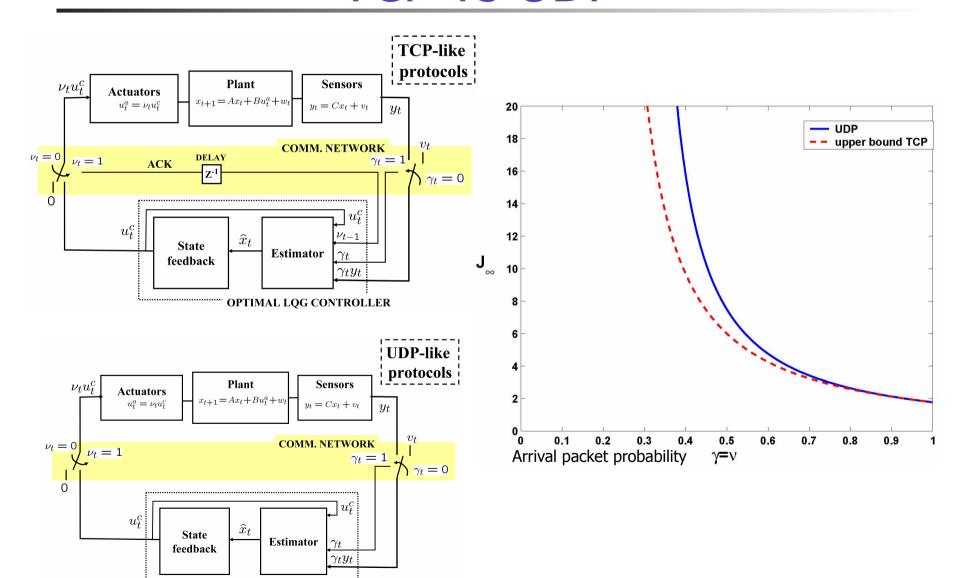


Paradox: Kalman filter is not always optimal!



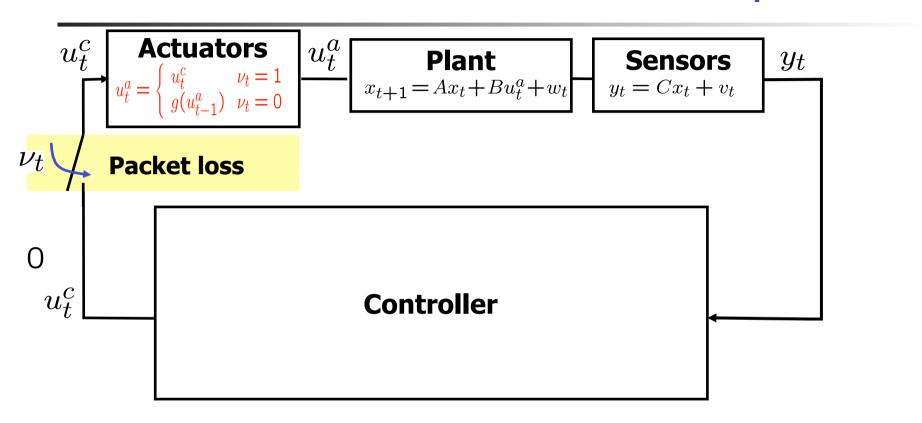
- Kalman filter always gives smallest estimate error regardless of controller L
- If controller $L_{\neq} L_{LQ}$, then performance improves if my estimate is "bad"!

Numerical example: TCP vs UDP



OPTIMAL LQG CONTROLLER

To hold or to zero control input?



Most common strategy:

$$g(u_{t-1}^a) = 0$$

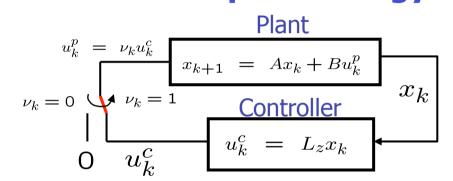
 $g(u_{t-1}^a) = u_{t-1}^a$

 $g(u_{t-1}^a) = u_{t-1}^a$ hold-input strategy (most natural)

 $g(u_{t-1}^a) = 0$ zero-input strategy (mathematically appealing)

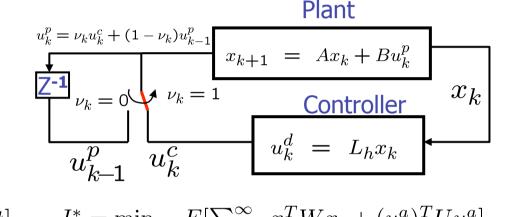
To hold or to zero control input: no noise (jump linear systems)

Zero-input Strategy



$$J_z^* = \min_{L_z} E[\sum_{t=1}^{\infty} x_t^T W x_t + (u_t^a)^T U u_t^a] \qquad J_h^* = \min_{L_h} E[\sum_{t=1}^{\infty} x_t^T W x_t + (u_t^a)^T U u_t^a]$$

Hold-input Strategy



$$J_h^* = \min_{L_h} E[\sum_{t=1}^{\infty} x_t^T W x_t + (u_t^a)^T U u_t^a]$$

Using cost-to-go function (dynamic programming)

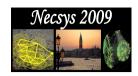
$$J_z^* = E[x_0^T S_z x_0]$$

$$J_h^* = E[x_0^T S_h x_0]$$

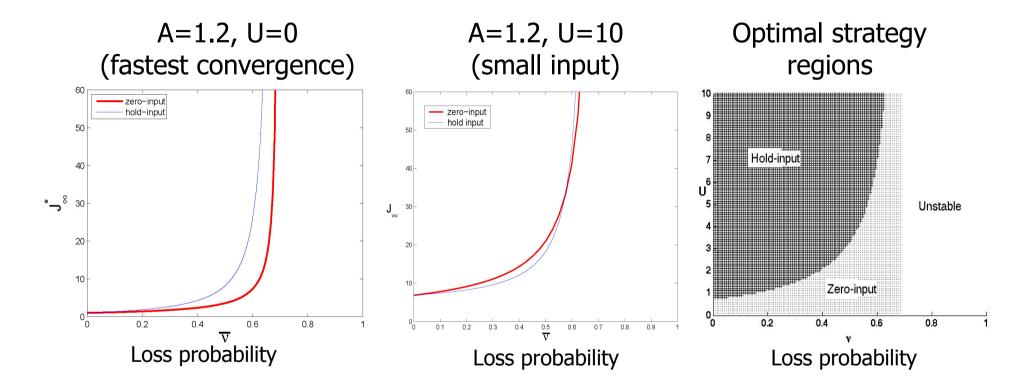
$$S_z = \Phi_z(S_z) \longleftarrow \text{Riccati-like equation} \longrightarrow S_h = \Phi_h(S_h)$$

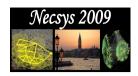
$$L_z^* = f_z(S_z)$$

$$L_h^* = f_h(S_h)$$

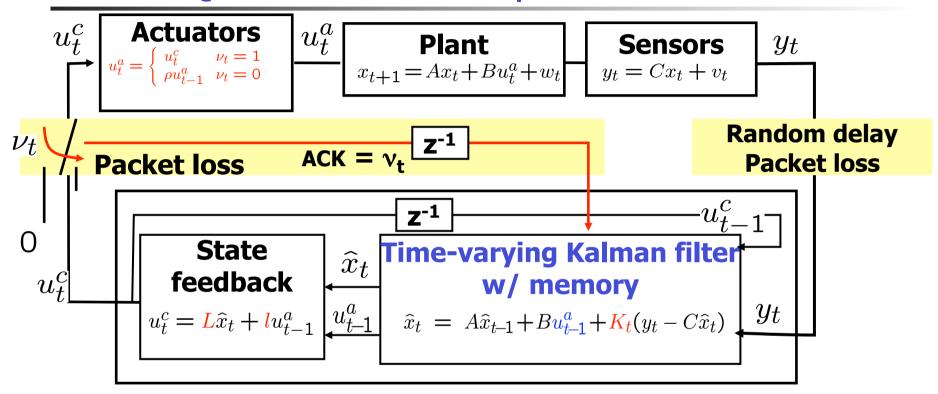


Example: unstable scalar system





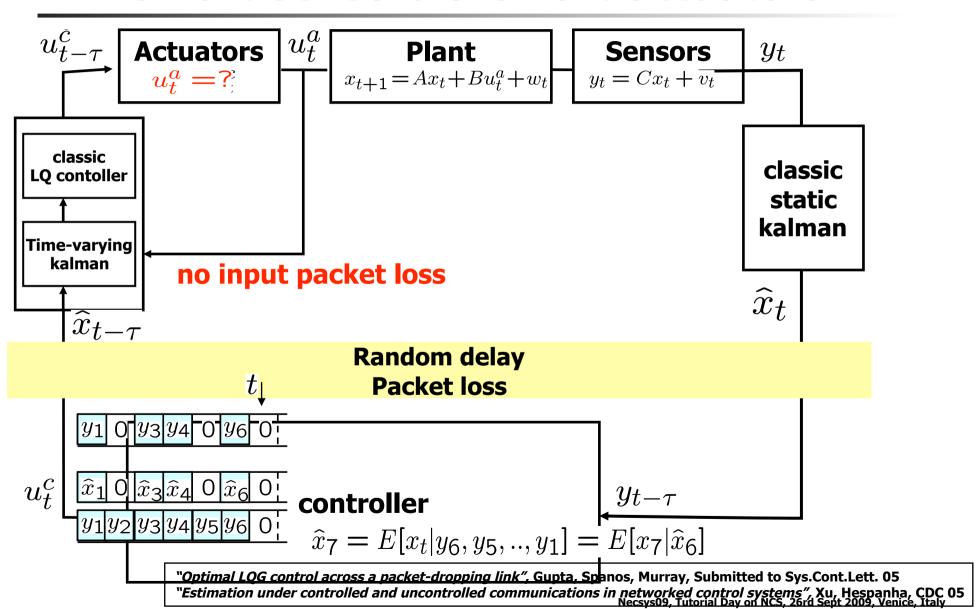
LQG over TCP-like protocols revised



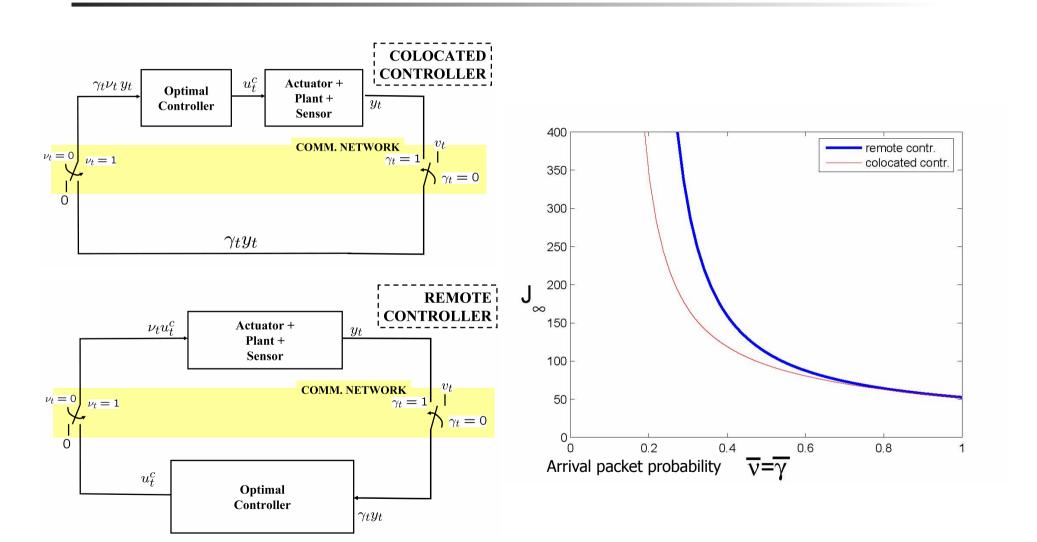
Conjecture:

- Separation principle hold
- Optimal function $g(u_{t-1}^a) = \rho u_{t-1}$
- Design parameter L, l, ρ obtained via LQ-like optimal state feedback

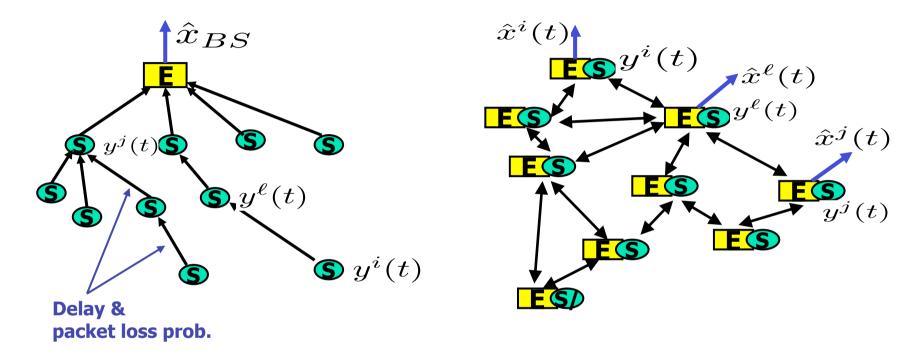
Smart sensors & smart actuators



Numerical example: remote vs co-located controller

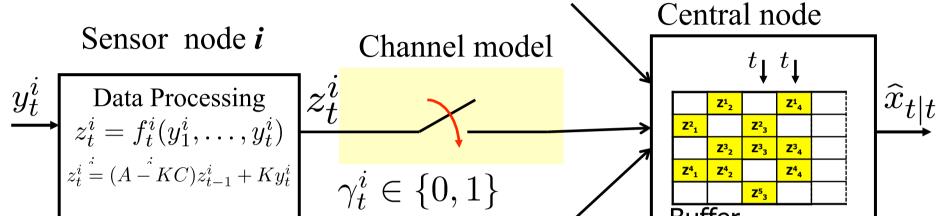


Distributed estimation: previous work



- Distributed estimation is old problem (see Levy, Willsky 80's, Bar-Shalom 90's)
- Consensus-based estimation (Olfati-Saber et al. 07, Carli et al. 08)
- Many results on optimal estimation under perfect communication
- Distributed estimation with packet loss still open problem

Modeling



$$\hat{z}_t = (A - KC)z_{t-1}^i + Ky_t^i$$
 $\gamma_t^i \in \mathcal{T}_t$

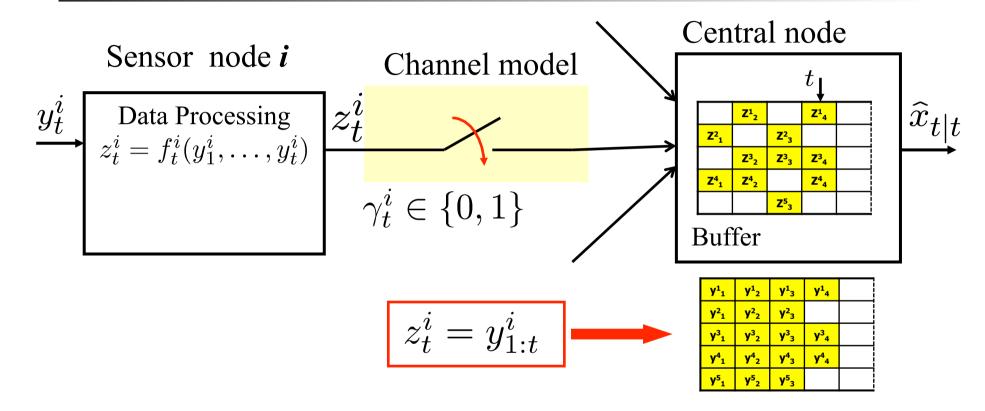
$$\begin{aligned} x_{t+1} &= Ax_t + w_t \\ y_t^i &= C^i x_t + v_t^i & i = 1, \dots, M \\ E[w_t] &= E[v_t^i] = 0, \ E[w_t w_t^T] = Q, \ E[v_t^i (v_t^j)^T] = R_{ij} \\ P[\gamma_t^i] &= \bar{\gamma} \end{aligned}$$

Objective:

 $\hat{x}_{t|t}^{BS} = E[x_t | \text{information } z_{1:t}^i \text{ available at base station}]$

Buffer

Optimal strategy: Infinite Bandwidth Filter



$$\hat{x}_{t|t}^{IBF}$$
, $P_{t|t}^{IBF} = \text{Var}(\hat{x}_{t|t}^{IBF} - x_t \mid \text{sequence})$

$$P_{t|t}^{IBF} \le P_{t|t}, \quad \forall \gamma_t^i, \forall f_t^i$$

A negative result

Theorem Let us consider the state estimate $\hat{x}_{t|t}$ and $\hat{x}_{t|t}^{IBF}$ defined as above.

Then there do not exist (possibly nonlinear) functions $z_t^i = f_t^i(y_{1:t}^i) \in \mathbb{R}^{\ell}$ with bounded size $\ell < \infty$ such that $P_{t|t}^{IBF} = P_{t|t}$ for any possible packet loss sequence,

$$\nexists f_t^i() \mid P_{t|t} = P_{t|t}^{IBF}, \ \forall \gamma_t^i$$

A negative result

Theorem Let us consider the state estimate $\hat{x}_{t|t}$ and $\hat{x}_{t|t}^{IBF}$ defined as above.

Then there do not exist (possibly nonlinear) functions $z_t^i = f_t^i(y_{1:t}^i) \in \mathbb{R}^{\ell}$ with bounded size $\ell < \infty$ such that $P_{t|t}^{IBF} = P_{t|t}$ for any possible packet loss sequence, i.e.

$$\nexists f_t^i() \mid P_{t|t} = P_{t|t}^{IBF}, \ \forall \gamma_t^i$$

Sketch of proof:

$$\begin{array}{rcl}
 x_{t+1} & = x_t + w_t \\
 y_t^1 & = x_t + v_t^1 \\
 y_t^2 & = x_t + v_t^2
 \end{array}$$

Scenario a

Z ₂ ¹

Scenario b

Z ₂ ¹
Z_2^1

$$z_2^1 = f_2^1(y_1^1, y_2^1) = \bar{\alpha}_1^1 y_1^1 + \bar{\alpha}_2^1 y_2^1 \qquad z_2^1 = \bar{\alpha}_1^1 y_1^1 + \bar{\alpha}_2^1 y_2^1$$

$$\ell \in \mathbb{R} \text{ and } f_t^i() \text{ linear, } \mathbb{E}[x_0] = 0$$

 $\sigma_x = \sigma_w = \sigma_{v_1} = \sigma_{v_2}$

$$\begin{bmatrix} \alpha_1^{1,a} \\ \alpha_2^{1,a} \end{bmatrix} \neq \beta \begin{bmatrix} \alpha_1^{1,b} \\ \alpha_2^{1,b} \end{bmatrix}$$

$$\hat{x}^{IBF,a} = \alpha_1^{1,a} y_1^1 + \alpha_2^{1,a} y_2^1$$

$$y_1^1 y_2^1 y_2^1 y_1^2 y_2^2$$

Suboptimal strategies

Measurement fusion:

- $z_t^i = y_t^i$ at sensor
- $\hat{x}_{t|t}^{MF} = E[x_t \mid \text{all } z_t^i \text{ arrived}]$: base station

Optimal Kalman Filter Fusion

- $z_t^i = \hat{x}_t^i = (A C^i K^{i,loc}) \hat{x}_{t-1}^i + K^{i,loc} y_t^i$
- $\hat{x}_{t|t}^{OKFF} = E[x_t \mid \text{latest } z_t^i \text{ arrived } \forall i] = \sum_i \Psi_t^i z_{t-\tau_t^i}^i$

Optimal Partial Estimate Fusion

- $z_t^i = \hat{x}_t^i = (A \sum_i C^i K^{i,cent}) \hat{x}_{t-1}^i + K^{i,cent} y_t^i$
- $\hat{x}_{t|t}^{OPEF} = E[x_t \mid \text{latest } z_t^i \text{ arrived } \forall i] = \sum_i \Phi_t^i z_{t-\tau_t^i}^i$

Open Loop Partial Estimate Fusion

$$z_t^i = \hat{x}_t^i = (A - C^i K^{i,cent}) \hat{x}_{t-1}^i + K^{i,cent} y_t^i$$

$$\hat{x}_{t|t}^{OLPEF} = \sum_{i} A^{\tau_t^i} z_{t-\tau_t^i}^i$$

Single sensor & packet loss

$$\int t = 6$$

$$\hat{x}_{6|6}^{MF} = E[x_6|y_1, y_4, y_5]$$

$$\hat{x}_{6|6}^{IBF} = E[x_6|y_{1:5}] = E[x_6|\hat{x}_{5|5}] = A\hat{x}_{5|5}$$

$$\hat{x}_{1|1}$$
 $\hat{x}_{4|4}$ $\hat{x}_{5|5}$

$$\hat{x}_{6|6}^{OKFF} = E[x_6|\hat{x}_{5|5}] = A\hat{x}_{5|5}$$

$$P_{t|t}^{IBF} = P_{t|t}^{OKFF} = P_{t|t}^{OLPEF} = P_{t|t}^{OPEF} < P_{t|t}^{MF}$$

Multi sensor & no packet loss

$$\downarrow t = 3$$

y ¹ ₁	y ¹ ₂	y ¹ ₃
y ² ₁	y ² ₂	y ² ₃
y ³ ₁	y ³ ₃	y ³ ₃

$$\hat{x}_{t|t}^{MF} = E[x_t|y_{1:t}^i \,\forall i] = \hat{x}_{t|t}^{IBF} = \hat{x}_{t|t}^{cent}$$

$$\int t = 3$$

$$\begin{array}{c} \hat{x}_{3|3}^{1,loc} \\ \hat{x}_{3|3}^{2,loc} \\ \hat{x}_{3|3}^{3,loc} \\ \hat{x}_{3|3}^{3} \end{array}$$

$$\hat{x}_{t}^{i,loc} = (A - K^{i,loc}C^{i})\hat{x}_{t-1}^{i,loc} + K^{i,loc}y_{t}^{i}$$

$$\hat{x}_{3|3}^{1,loc} \\
\hat{x}_{2,loc}^{2,loc} \\
\hat{x}_{3|3}^{2,loc} \\
\hat{x}_{t|t}^{OKFF} = E[x_t | \hat{x}_{t|t}^{i,loc} \forall i] \neq \hat{x}_{t|t}^{IBF} = \hat{x}_{t|t}^{cent}$$

Centralized Kalman Filter

$$egin{array}{ll} x_{t+1} &= Ax_t + w_t \ y_t^i &= C^i x_t + v_t^i \end{array} \ C = \left[egin{array}{c} C^1 \ C^2 \ dots \ C^M \end{array}
ight], \ y_t = \left[egin{array}{c} y_t^1 \ y_t^2 \ dots \ y_t^M \end{array}
ight], \ v_t = \left[egin{array}{c} v_t^1 \ v_t^2 \ dots \ v_t^M \end{array}
ight], \ E[v_t v_t^T] = R \end{array}$$

$$K^{cent} = [K^{1,cent} \ K^{2,cent} \ \dots \ K^{M,cent}]$$

$$\begin{split} \hat{x}_t^{cent} &= (A - K^{cent}C)\hat{x}_{t-1}^{cent} + K^{cent}y_t \\ &= \underbrace{(A - \sum_i K^{i,cent}C^i)}\hat{x}_{t-1}^{cent} + \sum_i K^{i,cent}y_t^i \\ \hat{x}_t^{i,cent} &= F\hat{x}_{t-1}^{i,cent} + K^{i,cent}y_t^i, \quad \text{local filter} \end{split}$$

$$\hat{x}_{t|t}^{cent} = \sum_{i} \hat{x}_{t|t}^{i,cent}$$

Multi sensor & no packet loss

$$\downarrow t = 3$$

y ¹ ₁	y ¹ ₂	y ¹ ₃
y ² ₁	y ² ₂	y ² ₃
y ³ ₁	y ³ ₃	y ³ ₃

$$\hat{x}_{t|t}^{MF} = E[x_t|y_{1:t}^i \,\forall i] = \hat{x}_{t|t}^{IBF} = \hat{x}_{t|t}^{cent}$$

$$\downarrow t = 3$$

$$\frac{\hat{x}_{3|3}^{1,cent}}{\hat{x}_{3|3}^{2,cent}}$$
 $\frac{\hat{x}_{3|3}^{2,cent}}{\hat{x}_{3|3}^{3,cent}}$

$$\hat{x}_{3|3}^{OKFF} = E[x_t | \hat{x}_{t|t}^{i,loc} \, \forall i] \neq \hat{x}_{t|t}^{IBF} = \hat{x}_{t|t}^{cent}$$

$$\hat{x}_{3|3}^{2,cent}$$
 $\hat{x}_{t}^{i,loc} = (A - K^{i,loc}C^{i})\hat{x}_{t-1}^{i,loc} + K^{i,loc}y_{t}^{i}$

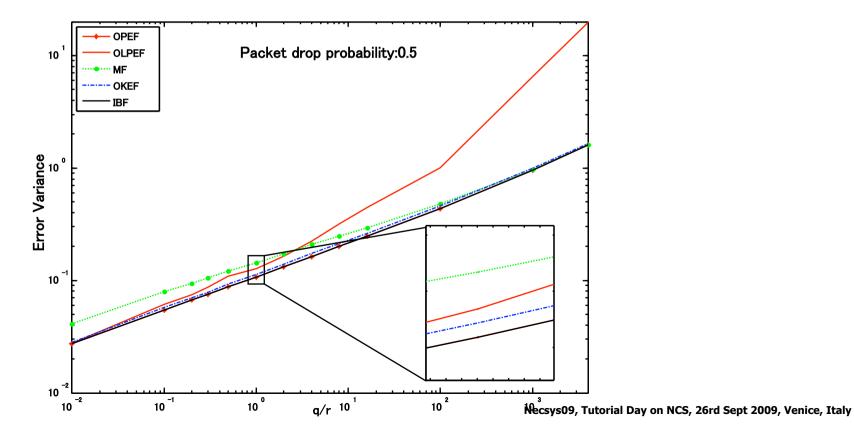
$$\hat{x}_{t}^{i,cent} = (A - \sum_{i} C^{i} K^{i,cent}) \hat{x}_{t-1}^{i,cent} + K^{i,cent} y_{t}^{i}$$

$$P_{t|t}^{IBF} = P_{t|t}^{MF} = P_{t|t}^{OLPEF} = P_{t|t}^{OPEF} < P_{t|t}^{OKFF}$$

Multi sensor & packet loss

$$Q = 0 = => P_{t|t}^{IBF} = P_{t|t}^{OLPEF} = P_{t|t}^{OPEF} < P_{t|t}^{OKFF}, P_{t|t}^{MF}$$

6 sensors, double integrator dynamics, uncorrelated noise



Strategy summary

	Estimation error	Sensor complex.	Base station complex
Measurement fusion	Almost optimal for R/Q small, Acceptable for R/Q large	none	Medium (inversion of n-dimensional matrix)
Optimal Kalman filter Fusion	Almost optimal always	Medium (local Kalman filter)	High (inversion of many matrices)
Optimal Partial Estimate Fusion	Optimal for Q/ R small, almost optimal elsewhere	Medium (local Kalman-like filter)	High (inversion of many matrices)
Open loop partial estimate fusion	Optimal for Q/ R small, very poor for R/Q small	Medium (local Kalman-like filter)	None

Necsys09, Tutorial Day on NCS, 26rd Sept 2009, Venice, Italy

Strategy summary (con'd)

- Distributed estimation is old problem (Willsky, Bar-Shalom)
- Packet loss makes distributed estimation hard: optimal sensor preprocessing depends on future loss sequence
- No optimal strategy for all scenarios
- Some results based on simulations only: no theoretical proofs
- A.S. Willsky, D. Castanon, B. Levy, and G. Verghese," Combining and updating of local estimates and regional maps along sets of one-dimensional tracks," IEEE Trans. on Aut. Cont.,1982
- J. Wolfe and J. Speyers,"A low-power filtering scheme for distributed sensor networks," CDC'03
- Alessandro Agnoli, Alessandro Chiuso, Pierdomenico D'Errico, Andrea Pegoraro, L. Schenato "Sensor fusion and estimation strategies for data traffic reduction in rooted wireless sensor networks", ISCCSP08,
- -A. Chiuso, L. Schenato, "Information fusion strategies from distributed filters in packet-drop networks," CDC'08
- -A. Chiuso, L. Schenato, "Performance bounds for information fusion strategies in packet-drop networks," to appear in ECC'09

Takeaway points

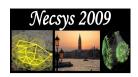
- Input packet loss more dangerous than measurement packet loss
- TCP-like protocols help controller design as compared to UDP-like (but harder for communication designer)
- If you can, place controller near actuator
- If you can, send estimate rather than raw measurement
- Zero-input control seems to give smaller closed loop state error ($||x_t||$) than hold-input (but higher input)
- Trade-off in terms of performance, buffer length, computational resources (matrix inversion) when random delay
- Can help comparing different communication protocols from a real-time application performance
- Packet loss makes problem extremely hard
- No good-for-all-scenarios strategy when packet loss sept 2009, Venice, Italy

General and survey papers on NCS

- M.S. Branicky W. Zhang and S.M. Phillips. Stability of networked control systems. IEEE Control Systems Magazine, 21(1):84–99, February 2001
- R. Murray, K.J. Astrom, S.P. Boyd, R.W. Brockett, and G. Stein. Control in an information rich world. IEEE Control Systems Magazine, 23(2):20–33, April 2003.
- J.P. Hespanha, P. Naghshtabrizi, and Y. Xu. A survey of recent results in networked control systems. Proceedings of the IEEE, 95(1):138–162, January 2007
- ----, Technology of networked control systems. Proceedings of the IEEE,
 Special issue, 95(1):5–312, January 2007
- James R. Moyne, Dawn M. Tilbury, "The Emergence of Industrial Control Networks for Manufacturing Control, Diagnostics, and Safety Data," Proceedings of IEEE, January 2007, 95(1), pp. 29-47

Related workshops and slides

- WIDE'09 Ph.D. School: http://ist-wide.dii.unisi.it/school09/school_program.htm
- Frontiers in Distributed Communication, Sensing and Control in
 http://www.eng.yale.edu/dcsc/schedule.html
 Necsys09, Tutorial Day on NCS, 26rd Sept 2009, Venice, Italy



Rate Limited Control

- Ishii et al. (2008), , Fu & Xie (2005), Ishii & Francis (2002),
- N. Elia. Remote stabilization over fading channels. Systems & Control Letters, 54:238–249, 2005.
- N. Elia and S. K. Mitter. Stabilization of linear systems with limited information, IEEE Trans. Autom. Control, 46:1384–1400, 2001.
- A. S. Matveev and A. V. Savkin. The problem of LQG optimal control via a limited capacity communicationchannel. Systems & Control Letters, 53:51–64, 2004
- G. N. Nair and R. J. Evans. Stabilizability of stochastic linear systems with finite feedback date rates. SIAM J. Contr. Optim., 43:413–436, 2004.
- S. Tatikonda and S. K. Mitter. Control under communication constraints. *IEEE Trans. Autom. Control*, 49:1056–1068, 2004.
- S. Tatikonda, A. Sahai, and S. K. Mitter. Stochastic linear control over a communication channel. *IEEE Trans. Autom. Control*, 49:1549–1561, 2004.
- W. S. Wong and R.W. Brockett. Systems with finite communication bandwidth constraints II: Stabilization with limited information feedback. *IEEE Trans. Autom. Control*, 44:1049–1053, 1999.
- S. Yuksel and T. Basar. Minimum rate coding for LTI systems over noiseless channels. IEEE Trans. Autom. Control, 51:1878–1887, 2006
- H. Ishii and B. A. Francis. Limited Data Rate in Control Systems with Networks, volume 275 of Lect. Notes Contr. Info. Sci. Springer, Berlin, 2002.
- H. Ishii, C. Ohyama, and K. Tsumura. Performance analysis of control systems under limited data rates. Trans. SICE, 44:396–404, 2008.
- M. Fu and L. Xie. The sector bound approach to quantized feedback control. *IEEE Trans. Autom. Control*, 50:1698–1711, 2005.
- G. Nair, F. Fagnani, S. Zampieri, J.R. Evans, Feedback control under data constraints: an overview, Proceedings of the IEEE, pp.108-137, 2007.

 Necsys09, Tutorial Day on NCS, 26rd Sept 2009, Venice, Italy

Signal-to-noise Limited Control

- Elia (2004), Martins & Dahleh (2008), Braslavsky at al 2006), Okano et al. (2009)
- N. C. Martins and M. A. Dahleh. "Feedback control in the presence of noisy channels: "Bode-like" fundamental limitations of performance". *IEEE Trans. Autom. Control*, 52:1604–1615, 2008.
- E.I. Silva. "A Unified Framework for the Analysis and Design of Networked Control Systems". PhD Thesis, Department of Electrical Engineering and Computer Science, The University of Newcastle, Australia, February 2009
- J. H. Braslavsky, R. H. Middleton and J. S. Freudenberg, "Feedback Stabilization over Signal-to-Noise Ratio Constrained Channels", to appear, IEEE Transactions on Automatic Control, October, 2007
- N. Elia, "When bode meets shannon: control-oriented feedback communication schemes", IEEE Trans. Automatic Control, 49(9), pages 1477-1488, 2004
- K. Okano, S. Hara, and H. Ishii. "Characterization of a complementary sensitivity property in feedback control: An information theoretic approach" Automatica, 45:504–509, 2009.

Estimation and control: unknown delay & packet loss

- D. Nešic and A.R. Teel. "Input-output stability properties of networked control systems". IEEE Trans. Autom. Control, 49(10):1650–1667, 2004.
- G.C. Walsh, O. Belidman, and L.G. Bushnell. "Stability analysis of networked control systems". IEEE Trans. Control Syst. Techn., 10:438–446, 2002
- P. Naghshtabrizi and J.P. Hespanha. "Stability of network control systems with variable sampling and delays". In Proc. Annual Allerton Conf. Communication, Control, and Computing, 2006.
- Heemels, A.R. Teel, N. van de Wouw and D. Nešic, "Networked control systems with communication constraints: Tradeoffs between transmission intervals and delays", European Control Conference 2009.
- M. Cloosterman, N. van de Wouw, W.P.M.H. Heemels, and H. Nijmeijer. "Robust stability of networked control systems with time-varying network-induced delays". In Proc. Conf. on Decision and Control, pages 4980–4985, San Diego, USA, 2006.
- L. Hetel, J. Daafouz, and C. Iung. "Stabilization of arbitrary switched linear systems with unknown time-varying delays". IEEE Trans. Autom. Control, 51(10):1668–1674, 2006.
- J. Skaf and S. Boyd, "Analysis and Synthesis of State-Feedback Controllers With Timing Jitter", IEEE Transactions on Automatic Control, Vol. 54, No. 3, p. 652-657, 2009
- M. Garcia-Rivera, A. Barreiro, "Analysis of networked control systems with drops and variable delays", Automatica 43 (2007) 2054–2059.

- (cont'd)
 - Johan Nilsson. Real-Time Control Systems with Delays. PhD thesis, Department of Automatic Control, Lund Institute of Technology, 1998.
 - L.A. Montestruque and P.J. Antsaklis. Stability of model-based networked control systems with time-varying transmission times. IEEE Transactions on Automatic Control, 49(9):1562–1572, 2004
 - Anton Cervin, Dan Henriksson, Bo Lincoln, Johan Eker, and Karl-Erik Arzen. How does control timing affect performance? IEEE Control Systems Magazine, 23(3):16–30, June 2003.
 - D. Giorgiev and D.M. Tilbury. Packet-based control. In Proc. of the 2004 Amer. Contr. Conf., pages 329–336, June 2004
 - A. V. Savkin and I. R. Petersen, "Robust filtering with missing data and a deterministic description of noise and uncertainty," *Int. J. Syst. Sci.*, vol. 28, no. 4, pp. 373–390, 1997.

Estimation and control with measurable random delay and packet loss

- Johan Nilsson. "Real-Time Control Systems with Delays". PhD thesis, Department of Automatic Control, Lund Institute of Technology, 1998.
- V. Gupta, D. Spanos, B. Hassibi, and R. M. Murray, "Optimal LQG control across a packet-dropping link," Systems and Control Letters, 2005.
- S. Smith and P. Seiler, "Estimation with lossy measuraments: jump estimators for jump systems," IEEE Transaction on Automatic Control, vol. 48, no. 12, pp. 1453–1464, 2003.
- N. Elia and J. Eisembeis, "Limitation of linear control over packet drop networks," in Proceedings of IEEE Conference on Decision and Control, vol. 5, Bahamas, December 2004, pp. 5152–5157.
- O. C. Imer, S. Yuksel, and T. Basar, "Optimal control of dynamical systems over unreliable communication links," To appear in Automatica, July 2006.
- B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. Jordan, S. Sastry, "Kalman filtering with intermittent observations," *IEEE Transactions on Automatic Control, vol.* 49, no. 9, pp. 1453–1464, September 2004.
- T. Katayama, "On the matrix Riccati equation for linear systems with a random gain," IEEE Transactions on Automatic Control, vol. 21, no. 2, pp. 770–771, October 1976.

... cont'd

- W. Koning, "Infinite horizon optimal control for linear discrete time systems with stochastic parameters," Automatica, vol. 18, no. 4, pp. 443–453, 1982.
- B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, and S. Sastry "Optimal Linear LQG Control Over Lossy Networks Without Packet Acknowledgment", Asian Journal of Control 2009
- Luca Schenato "To zero or to hold control inputs with lossy links?" IEEE Transactions on Automatic Control, 2009
- Luca Schenato "Optimal estimation in networked control systems subject to random delay and packet drop", IEEE Transactions on Automatic Control, 2009
- V. Gupta, S. Adlakha, B. Sinopoli, and A. Goldsmith, "Towards receding horizon networked control," The Forty-Fourth Annual Allerton Conference on Communication, Control and Computing. Monticello, IL, September 2006.
- M. Epstein, L. Shi, S. D. Cairano, and R. M. Murray, "Control over a network: Using actuation buffers and reducing transmission frequency," in 2007 European Control Conference (ECC'07), Kos, Greece, July 2007.
- N. Nahi, "Optimal recursive estimation with uncertain observation," IEEE Transaction on Information Theory, vol. 15, no. 4, pp. 457–462, 1969.
- Q. Ling and M. Lemmon, "Optimal dropout compensation in networked control systems," in *IEEE conference on decision and control*, Maui, HI, December 2003. Necsys09, Tutorial Day on NCS, 26rd Sept 2009, Venice, Italy

... cont'd

- S. Dey, A.S. Leong and J.S. Evans, ``Kalman Filtering with Faded Measurements," *Automatica*, vol. 45, no. 10, pp. 2223-2233, Oct. 2009
- M. Huang and S. Dey, `` Stability of Kalman Filtering with Markovian Packet Losses ", Automatica, vol. 43, no. 4, pp. 598-607, March 2007
- Michael Epstein, Ling Shi, Abhishek Tiwari and Richard M. Murray "Probabilistic Performance of State Estimation Across a Lossy Network", Automatica, 2008

Distributed Estimation with packet loss

- A.S. Willsky, D. Castanon, B. Levy, and G. Verghese," Combining and updating of local estimates and regional maps along sets of one-dimensional tracks," IEEE Trans. on Aut. Cont., 1982
- J. Wolfe and J. Speyers,"A low-power filtering scheme for distributed sensor networks," CDC'03
- S. Yuksel and T. Basar. Optimal signaling policies for decentralized multicontroller stabilizability over communication channels. *IEEE Trans. Autom. Control*, 52:1969–1974, 2007.
- Alessandro Agnoli, Alessandro Chiuso, Pierdomenico D'Errico, Andrea Pegoraro, L. Schenato "Sensor fusion and estimation strategies for data traffic reduction in rooted wireless sensor networks", ISCCSP08,
- Chiuso, L. Schenato, "Information fusion strategies from distributed filters in packet-drop networks," CDC'08
- Chiuso, L. Schenato, "Performance bounds for information fusion strategies in packet-drop networks," ECC'09
- B.C. Levy, D.A. Castanon, G.C. Verghese, and A.S. Willsky. "A scattering framework for decentralized estimation problems" Automatica, 19(4):373–384, 1983
- L. Shi, K. H. Johansson, and R.M. Murray. "Estimation over wireless sensor networks: Tradeoff between communication, computation and estimation qualities". In Proc. of IFAC World Congress, volume 17, Seoul, Korea, 2008
- Y. Bar-Shalom, X.R. Li, and T. Kirubarajan. "Estimation with Applications to Tracking and Navigation". John Wiley & Sons, Inc., 2001.
- Gupta, N. C. Martins, and J. S. Baras. "Stabilization over erasure channels using multiple sensors". IEEE Transactions on Automatic Control, 57(7):1463–1476, July 2009