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Networked Control Systems 

NCSs: physically distributed dynamical systems 
interconnected by a communication network  

Wireless Sensor  
Networks 

Drive-by-wire systems 
Swarm robotics 

Smart materials:  
sheets of MEMS  

sensors and actuators 

Smart structures:  
adaptive space telescope 

Traffic Control: 
Internet and transportation 
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Smart greenhouses and  
building climate control 

  Distributed estimation 
  Distributed control 
  Control under packet loss & 

random delay 
  Sensor fusion 
  Distributed time synchronization 
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ThermoEfficiency Labeling   

  Building thermodynamics model identification 
  Sensor selection for identification 
  Optimal sensor placement 
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Wireless Sensor Actuator  
Networks (WSANs) 

  Small devices 
 Controller, Memory 
  Wireless radio 
  Sensors & Actuators 
  Batteries  

  Inexpensive 
  Multi-hop communcation 
  Programmable (micro-PC) 

BASE 
STATION 

sensor node 
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Distributed Localization and 
Tracking with WSNs  

  Indoor radio signal modeling 
  Real-time localization 
  Distributed tracking 
  Coordination 
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Multi-camera surveillance 
systems   

Monitoring  
task 

Monitoring  
task 

Monitoring  
task 

Communication  
range 

Communication  
link 

Mobile  
agent 

Event 

News 
spreadi

ng 

  Rationale 
  The Sensor Actor Network is a multi-agent multi-task finite-resource 

system 
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Multi-camera real-time tracking   
  Reconstruction Procedure 

  2D feature point on the i-th image plane 
mapped to ray in 3D space 

  3D rays mapped to 3D feature point 

  Centralized  or Distributed Strategy? 

COMPUTATION COMP COMP COMP COMP 

COMMUNICATION 
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Smart Power Grids   

  Foreseeable future 
  Many consumers & producers 
  Cooperation vs greedy behavior 
  Network topology not known and dynamic 
  Need for distributed estimation and control  
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Coordinated robotics for 
exploration   

Underwater  
exploration 

Planetary  
exploration 

Search & rescue 
missions  
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NCSs: what’s new for control? 

Plant Actuators Sensors 

Controller 

Classical architecture: Centralized structure 
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NCSs: what’s new for control? 

Plant 

S 

NCSs: Large scale distributed structure 

S 

S 

A 

A 

A 

C C C C C 

COMMUNICATION  
NETWORK 

Packet loss 
Random delay 

Limited capacity 

Connectivity 
Interference 

Quantization 
Congestion 
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Interdisciplinary research needed 

COMMUNICATIONS 
ENGINEERING 

SOFTWARE 
ENGINEERING 

COMPUTER SCIENCE 

NETWORKED 
CONTROL  
SYSTEMS 

• Embedded software design 
• Middleware for NCS 
• RT Operating Systems 
• Layering abstraction for 
interoperability  

• Graph theory  
• Distributed computation 
• Complexity theory 
• Consensus algorithms 

• Comm. protocols for RT apps  
• Packet loss and random delay 
• Wireless Sensor Networks 
• Bit rate and Inf. Theory 
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Communication and Control: 
Modeling with single link 

Plant Actuator Sensor 

controller 

Communication Network 

  Infinite bandwidth: 
  Deterministic (worst case) 

  Delay and packet loss is time-varying but measurable to receiver 
  Delay and packet loss is NOT known to receiver 

  Stochastic (mean square) 
  Delay and packet loss are random, but measurable and known stats 

  Finite bandwidth 
  Quantization 
  Power limited transmission 

  Problems: 
  Time-varying delay 
  Random packet loss 
  Quantization 
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Communication and Control: 
Modeling with single link 

Plant Actuator Sensor 

controller 

Communication Network 

  Infinite bandwidth: 
  Deterministic (worst case) 

  Delay and packet loss is time-varying but measurable to receiver 
  Delay and packet loss is NOT known to receiver 

  Stochastic (mean square) 
  Delay and packet loss are random, but measurable and known stats 

  Finite bandwidth 
  Quantization 
  Power limited transmission 

  Problems: 
  Time-varying delay 
  Random packet loss 
  Quantization 

Core of this tutorial 
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Modeling: deterministic with 
infinite bandwidth 
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Modeling: deterministic with 
infinite bandwidth 

  If ↵κ is known, then LQG-like approach: optimal time-
varying control uk=K(↵κ)≈κ Nilson (1998) 

  If ↵κ is unknown, then robust control approach: worst 
case analysis with constant control uk=K≈κ Zhang (2001), 
Montestruque (2004), Naghshtabrizi (2006), Cloosterman (2009) 

  Most results concern stability and not performance  
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Modeling of finite bandwidth:  
rate limited 

Encoder, i.e. a smart quantizer, can be 
designed (time-varying) 

Packet loss = erasure channel 
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Modeling of finite bandwidth:  
rate limited 

  Problems: 
  Coarseness of quantizer 
  Bit rate 
  Packet loss  

  Approach: 
  Design (complex) time-

varying encoder/controller 

  Main results 
  Bit rate 
  Packet loss →


  Coarseness χ  
Nair & Evans (2004), Tatikonda et al (2004), Matveev & Savkin 
(2004), Yuksel & Basar (2006), Ishii et al. (2008), Elia & Mitter 
(2001), Fu & Xie (2005), Ishii & Francis (2002), Elia (2005) 
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Modeling of finite bandwidth: 
signal-to-noise limited 

Signal-to-noise limited 

+ 

+ 

Linear, memoryless: 
Time invariant filters 

  Takes into account finite 
bandwidth 

  Mathematically clean 
  Provide performance bounds 

Real numbers 

Bit Rate limited 

Quantized numbers 

Elia (2004), Martins & Dahleh (2008), Braslavsky at al 
2006), Okano et al. (2009)   
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Communication and Control: 
Modeling with single link 

Modeling PROS CONS 

Deterministic + 
infinite bandwidth 

  easy to implement 
  good for delay 

  worst case packet loss  
  no performance 
bounds 

Stochastic + infinite 
bandwidth 

  performance bounds 
  good for packet loss 

  time synch required 

Rate limited 
(quantization) 

  more realistic 
  links with info theory 

  hard to implement 
  no performance 
bounds 

Signal-to-noise-ratio 
(SNR) limited 

  more realistic 
  clean results 

  coder/decoder to be 
designed 
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Optimal LQG 
Plant Actuators Sensors 

controller 

Sensors and actuators are co-located, i.e. no delay nor loss 
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1.  Separation principle holds: Optimal controller = Optimal 
estimator design + Optimal state feedback design 

2.  Closed Loop system always stable (under standard reach./det. 
hypotheses) 

3.  Gains K,L are constant solution of Algebraic Riccati Equations  

Optimal LQG 
Plant Actuators Sensors 

Static Kalman filter LQ State 
feedback 
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Plant Actuators Sensors 

Controller 

Optimal LQG control over DCN 

Random delay 
or drop 

Random delay or drop 

Controller? 
Controller? 

DIGITAL COMMUNICATION NETWORK 

ACK? 
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Some consideration on the 
separation principle 

Plant Actuators Sensors 

Kalman filter State 
feedback 

x x 

Random delay 
Packet loss 

z-1 
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Modeling of Digital 
Communication Network (DCN) 

Sampling 
Quantization 

DSP 

Decoder 

CRC 
redundancy 

Digital  
Communication 

Network 

Analog  
signal 

sent 
packet 

Encoder 

 Data  
(N bits) 

packet 
header 

arrived 
packet delay 

384 bits 40 bits ATM 
112 bits >368 bits Ethernet 

~100 bits  >499 bits Bluetooth 
<1000 bits 128 bits Zigbee 

data 

Assumptions: 
(1)  Quantization noise<<sensor noise 
(2)  Packet-rate limited (≠ bit-rate) 
(3)  No transmission noise (data corrupted=dropped packet) 
(4)  Packets are time-stamped 

Random delay 
&  

Packet loss 
at receiver 
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Estimation modeling 

PLANT ESTIMATOR 
Digital  

Communication 
Network 

Buffer 

No packet arrives 

Packet out of order 

Multiple packets arrive 
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Minimum variance estimation 

PLANT ESTIMATOR 
Digital  

Communication 
Network 

Buffer 

Kalman  
time-varying  
linear system 
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Minimum variance estimation 

Lyapunov Equation  
(unstable) 

Riccati Equation 
(stable) 
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Minimum variance estimation 

Lyapunov Equation  
(unstable) 

Riccati Equation 
(stable) 
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Properties of Optimal Estimator  

ESTIMATOR 
  Optimal for any arrival process 
  Stochastic time-varying gain Kt=K(γ1,..,γt) 
  Stochastic error covariance Pt=P(γ1,..,γt) 
  Possibly infinite memory buffer 
  Inversion of up to t matrices at any time t 

ESTIMATOR 
N 
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Minimum variance estimation 

Lyapunov Equation  
(unstable) 

Riccati Equation 
(stable) 
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Minimum variance estimation 

Lyapunov Equation  
(unstable) 

Riccati Equation 
(stable) 
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What about stability and 
performance? 

Additional assumption on arrival sequence necessary:  
i.i.d. arrival with stationary distribution 
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Optimal estimation with constant 
gains and buffer finite memory 

ESTIMATOR 
N 

  Does not require any matrix inversion 
  Simple to implement  
  Upper bound for optimal estimator: 
  N is design parameter 

GOAL: compute 
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Suboptimal minimum variance 
estimation 

Open loop Closed loop 
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Suboptimal minimum variance 
estimation 

Lyapunov Equation  
(unstable) 

Riccati Equation 
(stable) 
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Steady state estimation error  

Modified Algebraic 
Riccati Equation (MARE) 
(Φ1(P)=ARE) 

Fixed gains: 

Optimal fixed gains: 

(off-line computation) 
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Stability issues 
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Numerical example (I) 
Discrete time linearized inverted pendulum: 

E
x
p
ec

te
d
 c

ov
a
ri

a
n
ce

 e
rr

or
 P

 

u
sta

ble 
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Numerical example (II) 
Time-varying arrival probability distribution 
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Multiple sensors 

SENSOR 

Digital  
Communication 

Network 

PLANT 

SENSOR SENSOR 

    ESTIMATOR 

BASE 
STATION 

sensor node 

i 
j 

      ESTIMATOR 
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Back to the control problem 

Plant Actuators Sensors 

Static Kalman filter State 
feedback 

z-1 
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Back to the control problem 

Plant Actuators Sensors 

Time-varying Kalman filter 
w/ memory 

State 
feedback 

Random delay 
Packet loss 

Random delay 
Packet loss 

z-1 

Estimation error coupled with control action  no separation principle 
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LQG over TCP-like (ACK-based) 
protocols 

Plant Actuators Sensors 

Time-varying Kalman filter 
w/ memory 

State 
feedback 

Random delay 
Packet loss 

z-1 

z-1 

Packet loss 

  Separation principle hold (I know exactly ua
t-1) 

   ºt Bernoulli rand. var and independent of observation arrival process  
  Static state feedback, Lº solution of dual MARE 
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LQG over UDP-like (no-ACK) 
protocols 

Plant Actuators Sensors 

Random delay 
Packet loss Packet loss 

  LQG problem still well defined: 
  No separation principle hold ( ua

t-1 NOT known exactly) 

  … but still have some statistical information about ua
t-1  
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LQG over UDP-like (no-ACK) 
protocols 

Plant Actuators Sensors 

“Static” Kalman filter 
State 

feedback 

z-1 

Packet loss 

  Bernoulli arrival process  
    
  Sub-optimal controller forced to be state estimator+state feedback  
  Optimal choice of K,L is unique solution of 4 coupled Riccati-like equations  

Packet loss 

“Compensability and Optimal Compensation of systems with white parameters”, De Koning, TAC’92 
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LQG as optimization problem 

Λ


Κ


  Non convex problem even for º=°=1, i.e. classic LQG 
  Classic and TCP-based LQG become convex when exploiting optimality conditions 

like uncorralation between estimate and error estimate 
  For UDP-like problem non convex but unique solution using Homotopy and Degree 

Theory (DeKoning,Athans,Bernstain) (maybe using Sum-of-Squares?) 
  Stability on º and ° is coupled  
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Paradox: Kalman filter is not 
always optimal ! 

Kalman filter 
Kklm 

Optimal Regulator 

LQ State feedback 
LLQ 

Kalman filter 
Kklm 

Stabilizing  
State feedback 

L 

Filter 
K=K(L) 

Stabilizing  
State feedback 

L 

  Kalman filter always gives smallest estimate error regardless of controller L 
  If controller L≠ LLQ , then performance improves if my estimate is “bad” ! 
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Numerical example: 
TCP vs UDP 

Arrival packet probability 
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To hold or to zero control input? 

Plant Actuators Sensors 

Controller 

Packet loss 

Most common strategy:  
(mathematically appealing) 
(most natural) 
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Zero-input Strategy 
Plant 

Controller 

Plant 

Controller 
Z-1 

Hold-input Strategy 

To hold or to zero control input: 
no noise (jump linear systems) 

Using cost-to-go function (dynamic programming)  

Riccati-like equation 
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A=1.2, U=0  
(fastest convergence) 

Example: unstable scalar system 

Loss probability  

A=1.2, U=10  
(small input) 

Loss probability  Loss probability  

Optimal strategy  
regions 
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LQG over TCP-like protocols revised 

Plant Actuators Sensors 

Time-varying Kalman filter 
w/ memory 

State 
feedback 

Random delay 
Packet loss 

z-1 

z-1 

Packet loss ACK = νt 

  Separation principle hold 
  Optimal function   
  Design parameter         obtained via LQ-like optimal state feedback  

Conjecture: 
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Smart sensors & smart actuators 

Plant Actuators Sensors 

Random delay 
Packet loss 

classic 
LQ contoller 

Time-varying 
kalman 

controller 

no input packet loss 

classic  
static  

kalman 

“Optimal LQG control across a packet-dropping link”, Gupta, Spanos, Murray, Submitted to Sys.Cont.Lett. 05 
“Estimation under controlled and uncontrolled communications in networked control systems”, Xu, Hespanha, CDC 05 
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Numerical example: 
remote vs co-located controller 

Arrival packet probability 
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Distributed estimation: 
previous work 

S 

S S S 

S 

E 

S 

S 

S 

S 

S 

Delay &  
packet loss prob. 

E S 

E S 

E S 
E S 

E S 

E S 

E S E S 

E S/ 

  Distributed estimation is old problem (see Levy, Willsky 80’s, Bar-
Shalom 90’s) 

  Consensus-based estimation (Olfati-Saber et al. 07, Carli et al. 08) 
  Many results on optimal estimation under perfect communication 
  Distributed estimation with packet loss still open problem   
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Modeling 

Data Processing 

Channel model Sensor  node i 
Central node 

Objective: 

Z1
2 

Z2
1 Z2

3 

Z3
2

 Z3
3 

Z4
1 Z4

2 

Z5
3 

Z1
2 Z1

4 

Z2
1 Z2

3 

Z3
2

 Z3
3 Z3

4 

Z4
1 Z4

2 Z4
4 

Z5
3 

Buffer 
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Optimal strategy:  
Infinite Bandwidth Filter 

Data Processing 

Channel model Sensor  node i 
Central node 

Z1
2 Z1

4 

Z2
1 Z2

3 

Z3
2

 Z3
3 Z3

4 

Z4
1 Z4

2 Z4
4 

Z5
3 

Buffer 

y1
1 y1

2 y1
3 y1

4 

y2
1 y2

2 y2
3 

y3
1 y3

2 y3
3 y3

4 

y4
1 y4

2 y4
3 y4

4 

y5
1 y5

2 y5
3 
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A negative result 
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A negative result 

Sketch of proof: 

z2
1 z2

1 

z2
1 

y1
1 y2

1 y1
1 y2

1 

y1
2 y2

2 

Scenario a Scenario b 
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Suboptimal strategies 
  Measurement fusion: 

      at sensor  
       at base station 

   Optimal Kalman Filter Fusion 
    
    

  Optimal Partial Estimate Fusion 
    
    

  Open Loop Partial Estimate Fusion 
    
    
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Single sensor & packet loss 

y1 y4 y5 

y1 y2 y3 y4 y5 
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Multi sensor & no packet loss 

y1
1 y1

2 y1
3 

y2
1 y2

2 y2
3 

y3
1 y3

3 y3
3 

A.S. Willsky, D. Castanon, B. Levy, and G. Verghese,“ Combining and updating of local estimates and regional maps along sets of 
one-dimensional track ” IEEE Trans. on Aut. Cont.,1982 
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Centralized Kalman Filter 

J. Wolfe and J. Speyers,“A low-power filtering scheme for distributed  sensor networks,” CDC’03 
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Multi sensor & no packet loss 

y1
1 y1

2 y1
3 

y2
1 y2

2 y2
3 

y3
1 y3

3 y3
3 
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Multi sensor & packet loss 

10 -2 10 -1 10 0 10 1 10 2 10 3 10 -2 

10 -1 

10 0 

10 1 Packet drop probability:0.5 

q/r 

E
rr
o
r 
V
ar
ia
n
c
e 

OPEF 
OLPEF 
MF 
OKEF 
IBF 
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Strategy summary 

Estimation 
error Sensor complex.  Base station 

complex 

Measurement fusion 

Almost optimal 
for R/Q small, 
Acceptable for 

R/Q large 

none Medium (inversion of 
n-dimensional matrix) 

Optimal Kalman filter 
Fusion 

Almost optimal 
always 

Medium (local 
Kalman filter) 

High (inversion of 
many matrices) 

Optimal Partial 
Estimate Fusion 

Optimal for Q/
R small, almost 

optimal 
elsewhere 

Medium (local 
Kalman-like filter)  

High (inversion of 
many matrices) 

Open loop partial 
estimate fusion 

Optimal for Q/
R small, very 
poor for R/Q 

small 

Medium (local 
Kalman-like filter) None 



Necsys09, Tutorial Day on NCS, 26rd Sept 2009, Venice, Italy  

Strategy summary (con’d) 

- A.S. Willsky, D. Castanon, B. Levy, and G. Verghese,“ Combining and updating of local estimates and regional maps along sets 
of one-dimensional tracks,” IEEE Trans. on Aut. Cont.,1982 
- J. Wolfe and J. Speyers,“A low-power filtering scheme for distributed  sensor networks,” CDC’03 
- Alessandro Agnoli, Alessandro Chiuso, Pierdomenico D’Errico, Andrea Pegoraro,L. Schenato “Sensor fusion and estimation 
strategies for data traffic reduction in rooted wireless sensor networks”, ISCCSP08,  
- A. Chiuso, L. Schenato, “Information fusion strategies from distributed filters in packet-drop networks,” CDC’08 
- A. Chiuso, L. Schenato, “Performance bounds for information fusion strategies in packet-drop networks,” to appear in ECC’09 

  Distributed estimation is old problem (Willsky, Bar-
Shalom) 

  Packet loss makes distributed estimation hard: 
optimal sensor preprocessing depends on future 
loss sequence 

  No optimal strategy for all scenarios 
  Some results based on simulations only: no 

theoretical proofs  



Necsys09, Tutorial Day on NCS, 26rd Sept 2009, Venice, Italy  

Takeaway points 
  Input packet loss more dangerous than measurement 

packet loss 
  TCP-like protocols help controller design as compared to 

UDP-like (but harder for communication designer) 
  If you can, place controller near actuator 
  If you can, send estimate rather than raw measurement 
  Zero-input control seems to give smaller closed loop state 

error (||xt||) than hold-input (but higher input) 
  Trade-off in terms of performance, buffer length, 

computational resources (matrix inversion) when random 
delay 

  Can help comparing different communication protocols 
from a real-time application performance 

  Packet loss makes problem extremely hard 
  No good-for-all-scenarios strategy when packet loss 
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