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15 years ago in Berkeley…. 
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384 bits 40 bits ATM 
112 bits >368 bits Ethernet 

~100 bits  >499 bits Bluetooth 
<1000 bits 128 bits Zigbee 

data 

Assumptions: 
(1)   Quantization noise<<sensor noise 
(2)   Packet-rate limited (≠ bit-rate) 
(3)   No transmission noise (data corrupted=dropped packet) 

Packet loss 
at receiver 

& 
Unit delay (τ=1) 
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15 years ago in Berkeley…. 

B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M.I. Jordan, and S. Sastry. Kalman 
filtering with intermittent observations. IEEE Transactions on Automatic Control, 
49(9):1453–1464, September 2004  

Modified Algebraic 
Riccati Equation (MARE) 
(Φ1(P)=ARE) 

!  Simple to understand but not trivial 
!  Critical packet loss probability function of eigenvalues of A 
!  Some new mathematical techniques 
!  Estimator designed for performance not only stability 
!  Many open questions remained unanswered 



One open question 
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V. Gupta, D. Spanos, B. Hassibi, and R. M. Murray. Optimal LQG control across a 
packet-dropping link. Systems and Control Letters, 56(6):439–446, 2007  
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If n=10000 is it better to send the quantized state rather than 
the quantized measurement? ==> need to include quantization 
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Proposed approach: 
1) Separate control/estimation 
design from communication 
design.  
2) Use of traditional coding with 
finite block-length  
(different from any-time coding of 
Sahai-Mitter 07 !!) 



About coding modeling 
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A naïve coding/decoding scheme: 
[10]: symbol to be sent 
[10|1]: add parity check bit 
at=[111|000|111]: add redundancy 
Noisy Channel: recovery via majority bits 

RECEIVED (bt)  RECOVERY  DECODED 
[101|100|011]  [10|1]  correct decoding: [10] (ht

q=st
q) 

[111|110|111]  [11|1]  erasure 
[100|110|111]  [01|1]  wrong decoding: [01] (ht

q≠st
q) 

Receiver knows Δ and therefore maps [10] into the real number ht  



About coding modeling 

Channel Chann COD Chann DEC Quantizer DAC 

Role of code lenght: 
st

q=[10]: 2-bits of information per period 
at=[111|000|111]: 9-bit word per period over the channel 
 
(st

q,st-1
q)=[11,10]->at=[xxx|xxx|xxx|xxx|xxx|xxx]  smarter coding 

18-bit blocklength over 2 period => 9-bits/period 
 
Longer block-length:  
•  Same channel rate (bits/period) 
•  Smaller erasure probability 
•  Larger delay 



About quantization modeling 

Quantizer 
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D. Marco and D. Neuhoff, “The validity of the additive noise model for uniform scalar 
quantizers,” IEEE Trans. Info. Theory, vol. 51, no. 5, pp.  1739–1755, 2005 
 
A. Leong, S. Dey, and G. Nair, “Quantized filtering schemes for multi- sensor linear 
state estimation: Stability and performance under high rate quantization,” IEEE 
Trans. Sig. Proc., vol. 61, no. 15, pp. 3852–3865, 2013. 
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“Analog”  
channel COD/DEC model 
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Problem formulation 
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1.  Scalar dynamics 
2.  No transmission pre-

processing 
3.  Estimator+ state 

feedback architecture 



Problem formulation (cont’d) 
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Augmented System dynamics 
Linear estimator + linear controller 

LQG performance optimization 



Problem solution 
Augmented System dynamics 

Linear estimator + linear controller 

LQG performance optimization 



Problem solution 

W.L. De Koning. Compensatability and optimal compensation of systems with white parameters. IEEE Transactions on 
Automatic Control, 37(5):579–588, 1992  

Solve via Lagrangian 

Necessary optimal conditions 

Coupled Riccati-like Equations 



Further simplification 

Coupled Riccati-like Equations 



Further simplification 

B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M.I. Jordan, and S. Sastry. Kalman 
filtering with intermittent observations. IEEE Transactions on Automatic Control, 
49(9):1453–1464, September 2004  

Necessary and sufficient stability for r≥0: 



Discussion w/ related works 

B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M.I. Jordan, and S. Sastry. 
Kalman filtering with intermittent observations. IEEE Transactions on 
Automatic Control, 49(9):1453–1464, September 2004  

1) Infinite resolution (α=0) and no delay (d=0): 

2) Infinite resolution (α=0) and with delay (d>0): 
L. Schenato. Kalman filtering for networked control systems with 
random delay and packet loss. IEEE Transactions on Automatic Control, 
53:1311–1317, 2008  

3) No packet loss (ε=0) and no delay (d>0): 
J.H. Braslavsky, R.H. Middleton, and J.S. Freudenberg. Feedback 
stabilization over signal-to-noise ratio constrained channels. 
IEEE Transactions on Automatic Control, 52(8), 2007  

S. Tatikonda and S. Mitter. Control under communication constraints. 
IEEE Transaction on Automatic Control, 49(7):1056–1068, July 2004.  



Discussion w/ related works 

4) No packet loss (ε=0) and delay (d=1): 

5) Infinite resolution (α=0), packet loss as SNR-limitation + delay 
E.I. Silva and S.A. Pulgar. Performance limitations for single-input LTI 
plants controlled over SNR constrained channels with feedback. 
Automatica, 49(2), 2013  

6) Rate-limited with delay (d=1): 

J.H. Braslavsky, R.H. Middleton, and J.S. Freudenberg. Feedback 
stabilization over signal-to-noise ratio constrained channels. 
IEEE Transactions on Automatic Control, 52(8), 2007  

Our condition less stringent  and independent of delay 

P. Minero, L. Coviello, and M. Franceschetti. Stabilization over Markov 
feedback channels: The general case. Transactions on Automatic Control, 
58(2):349–362, 2013  



Discussion w/ related works 

6) Relation with sequential coding (any-time capacity) 
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Anytime coding/decoding Fixed-length codes (our approach) 

Necessary for optimality: 
A. Sahai and S. Mitter. The necessity and sufficiency of anytime capacity for control 
over a noisy communication link: Part I. IEEE Transaction on Information Theory, 2006  



What is the role of capacity?  

Feasible set which depends on channel parameters 

Y. Polyanskiy, H.V. Poor, and S. Verdu. Channel coding rate in the finite blocklength 
regime. IEEE Transactions on Information Theory, 56(5):23072359, 2010  



Control over wireless:  
a retrospect 15 years later 

!  Scientific impact: one of the most active 
and cited area in control 

!  Industrial impact: marginal 
!  Why? 

!  The right tools (model-based control) for 
the wrong objective (stability)  

!  Legacy control systems: PIDs (modeless) 
!  No real need …. yet 



Control over wireless:  
an outlook for the future 

!  Industry 4.0 (reconfigurable factory) 
!  UAVs based applications (infrastructure 

maintenance)  
!  Theoretical challenges? 

!  Multi-agent cooperation over lossy nets: 
stability replaced by constraint satisfaction 

!  1Khz bandwidth range (manipulation) 
!  Adaptive communication for control (RT-

WiFi/5G) 



Proof-of-concept: 
UAV manipulation over wireless 
Cooperative UAV manipulation via 

wireless: closing the gap! 
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Manipulation bandwidth 
requirement: >1kHz 
using PID or classic 
control. Today only via 
wired communication. 

Reliable WI-FI for 
control (no packet loss, 
constant delay): 
<20Hz. Today only for 
formation control. 

WI-FI for control up to 
200Hz via 802.11 real-
time rate adaptation 

Cooperative manipulation 
at 200Hz via distributed 
MPC control 

26order)of))
magnitude)gap!!)



Questions ? 
URL: http://automatica.dei.unipd.it/people/schenato.html 
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the role of data losses, delays and SNR limitations. Automatica (submitted) 
 
A. Chiuso, N. Laurenti, L. Schenato, A. Zanella. Analysis of delay-throughput-reliability 
tradeoff in a multihop wireless channel for the control of unstable systems. 
Technical Report, 2013 
 
F. Parise, L. Dal Col, A. Chiuso, N. Laurenti, L. Schenato, A. Zanella. Impact of a realistic 
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A. Chiuso, N. Laurenti, L. Schenato, A. Zanella. LQG cheap control over SNR-limited 
lossy channels with delay. Conference on Decision and Control (CDC13), 2013  
 
A. Chiuso, N. Laurenti, L. Schenato, A. Zanella. LQG cheap control subject to packet 
loss and SNR limitations. European Control Conference ECC13, 2013    


