Distributed consensus protocols for clock synchronization in sensor networks

Luca Schenato

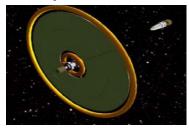
joint work with: A. Basso, G. Gamba

DEPARTMENT OF PADOVA Networked Control Systems Networked Control Systems

Drive-by-wire systems

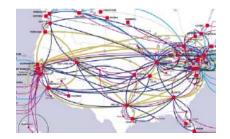
Swarm robotics

Smart structures: adaptive space telescope

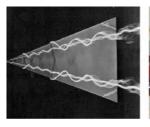


Wireless Sensor Networks

Traffic Control: Internet and transportation



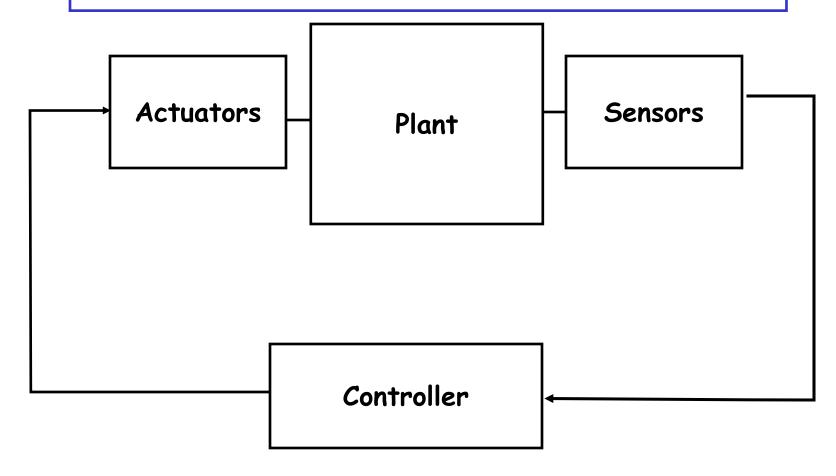
Smart materials: sheets of sensors and actuators



NCSs: physically distributed dynamical systems interconnected by a communication network

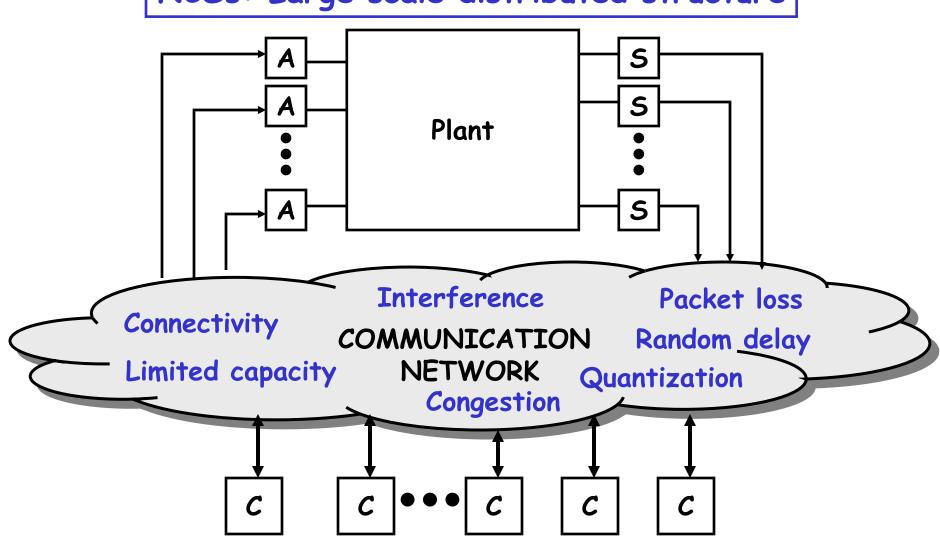
DEPARTMENT OF PINFORMATION PROGRAMMENT PROGRAMMENT

Classical architecture: Centralized structure



DEPARTMENT OF INFORMATION PROPERTY OF PROP

NCSs: Large scale distributed structure



ENGINEERING 2 Interdisciplinary research needed

COMMUNICATIONS ENGINEERING

- ·Comm. protocols for RT apps
- ·Packet loss and random delay
- ·Wireless Sensor Networks
- ·Bit rate and Inf. Theory

NETWORKED CONTROL **SYSTEMS**

SOFIIWARE ENGINEERING

- ·Embedded software design
- ·Middleware for NCS
- ·RT Operating Systems
- ·Layering abstraction for interoperability

COMPUTER SCIENCE

- ·Graph theory
- Distributed computation
- · Complexity theory
- ·Consensus algorithms

ENGINEERING 2 Interdisciplinary research needed

COMMUNICATIONS ENG NEERING

- ·Comm. protocols for RT apps
- ·Packet loss and random delay
- ·Wireless Sensor Networks
- ·Bit rate and Inf. Theory

NETWORKED CONTROL **SYSTEMS**

SOFTWARE **ENGINEERING**

- ·Embedded software design
- ·Middleware for NCS
- ·RT Operating Systems
- ·Layering abstraction for interoperability

COMPUTER SCIENCE

- ·Graph theory
- Distributed computation
- · Complexity theory
- ·Consensus algorithms

The consensus problem

Main idea

 Having a set of agents to agree upon a certain value using only local information exchange (local interaction)

Also known as:

- Agreement algorithms (economics, signal processing)
- Gossip algorithms (CS & communications)
- Synchronization (statistical mechanics)
- Rendezvous (robotics)

Suitable for (noisy) sensor networks

- Clock synchronization: all clocks gives the same time
- Signal Processing: mean temperature in a room
- Target detection: do we agree there is target?
- Fault detection: is that sensor properly functioning?
- Attack detection: is that sensor being "tampered"?

A robotics example: the rendezvous problem

GOAL: a set of N vehicles should converge to a common location using only local communication

Vehicle dynamics

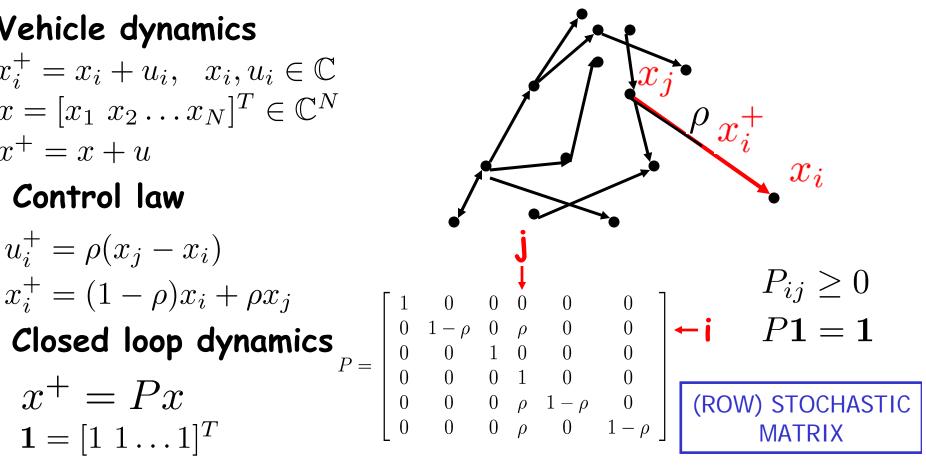
$$x_i^+ = x_i + u_i, \quad x_i, u_i \in \mathbb{C}$$
$$x = [x_1 \ x_2 \dots x_N]^T \in \mathbb{C}^N$$
$$x^+ = x + u$$

Control law

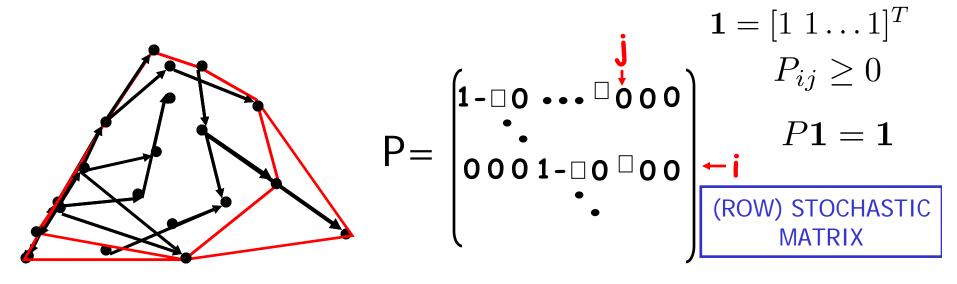
$$u_i^+ =
ho(x_j - x_i)$$
 $x_i^+ = (1 -
ho)x_i +
ho x_j$ Closed loop dynamics

$$x^+ = Px$$

$$\mathbf{1} = [1 \ 1 \dots 1]^T$$



A robotics example: the rendezvous problem



$$x^+ = Px$$

Convex hull always shrinks.

If communication graph sufficiently connected, then shrinks to a point

$$x(t) = P^t x(0) \rightarrow \alpha \mathbf{1}$$

 $\alpha \in \text{convHull}(x_1(0), \dots, x_N(0))$

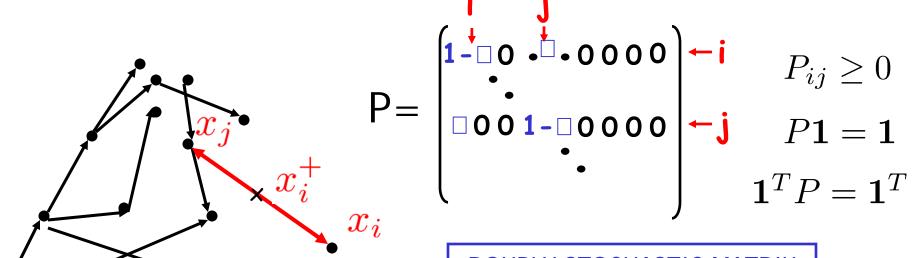
A robotics example: the rendezvous problem

$$x_j^+ = (1 - \rho)x_j + \rho x_i$$
 & $x_i^+ = (1 - \rho)x_i + \rho x_j$

$$x_i^+ = (1 - \rho)x_i + \rho x_i$$

$$\frac{x_j^+ + x_i^+}{2} = \frac{x_j + x_i}{2}$$
 Center of mass is constant

is constant

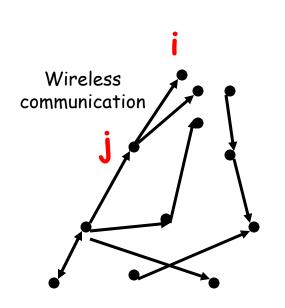


DOUBLY STOCHASTIC MATRIX

$$x(t) = P^{t}x(0) \to \alpha \mathbf{1}$$
$$\alpha = \frac{1}{N} \sum_{i} x_{i}(0)$$

A signal processing example: the average consensus

GOAL: Compute best estimate of random variable



$$P_{ij} \ge 0$$

 $P\mathbf{1} = \mathbf{1}$
 $\mathbf{1}^T P = \mathbf{1}^T$

 $y_i = x + v_i$, measurament of node i $v_i \sim \mathcal{N}(0, \sigma)$ gaussian noise $x \in \mathbb{R}$ variable to be estimated

$$\hat{x}^{global} = \frac{1}{N} \sum y_i$$

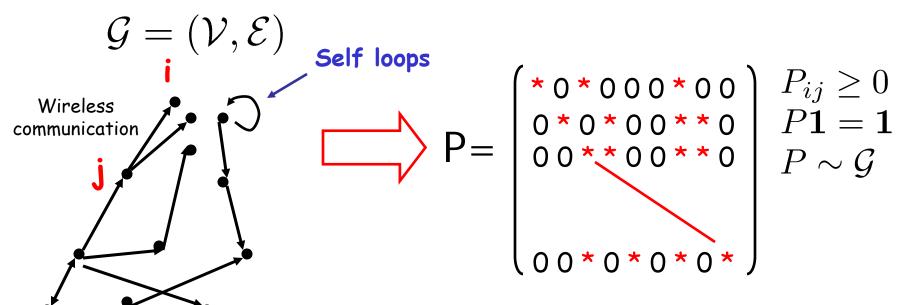
$$\hat{x}_i^{local}(0) = y_i(0)$$
, initialization

$$x_i^{local}(t+1) = (1-\rho)\hat{x}_i^{local}(t) + \rho\hat{x}_j^{local}(t)$$

$$\hat{x}_i^{local}(t) \to \hat{x}^{global}, \ \forall i = 1, \dots, N$$

graph well connected

DEPARTMENT OF PADOVA ENGINEERING UNIVERSITY OF PADOVA ENGINEERING



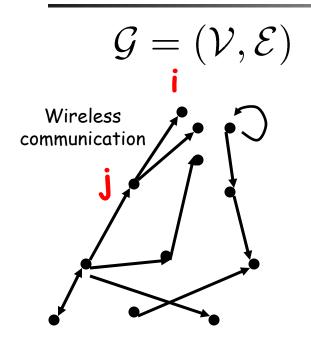
- Given G
 - When $\exists P$ that achieves consensus?
 - When ∃P that achieves average consensus?
 - How to design P for fastest convergence?
 - How to compute optimal P_{ij} using local communication (distributed) ?
 - How does performance scale with # nodes?
 - What about time-varying or state-dependent graph & matrices, i.e. P=P(t,x)?

DEPARTMENT OF PRODUCE THE PROD

- Iff graph is connected, i.e. path $i \rightarrow j$ or $j \rightarrow i$ & and the graph formed by maximally strongly connected subgraphs has only one sink
- (suboptimal) P is $P_{ij} = \frac{1}{\text{in-degree}(i)}$ where in-degree=sum of non-zero entry in the row, i.e. incoming links
- Can be computed in distributed fashion
- If graph not sufficiently connected, agents converge to convex hull of SOME anchor points "Analysis of coordination in multiple agents formations through partial difference equations",

G Ferrari-Trecate, A Buffa, M Gati, submitted for pub.

When ∃P that achieves average consensus?



- Iff graph of strongly connected, i.e. there is path $i \rightarrow j$ and $j \rightarrow i$
- Not easy to find P, in fact $P_{ij} = \frac{1}{\text{in-degree}(i)}$ does not work
- If graph is undirected, then $\exists P=P^{T_i}$ can be computed in distributed fashion (SUBOPTIMAL) "Consensus and Cooperation in Networked Multi-Agent Systems",

R Olfati-Saber, JA Fax, RM Murray, PIEEE Jan 07

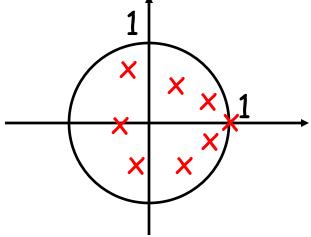
ENGINEERING How to design P for fastest convergence?

Stochastic matrix P can be seen as a Markoy Chain.

$$\lambda_i(P) \le 1, \sigma = |\lambda_2|$$
 $P\mathbf{1} = \mathbf{1}$

• $1-\sigma$ = spectral gap

$$\min_{P} \quad \sigma(P)$$
 $s.t. \quad P \sim \mathcal{G}$
 $P \text{ stochastic}$

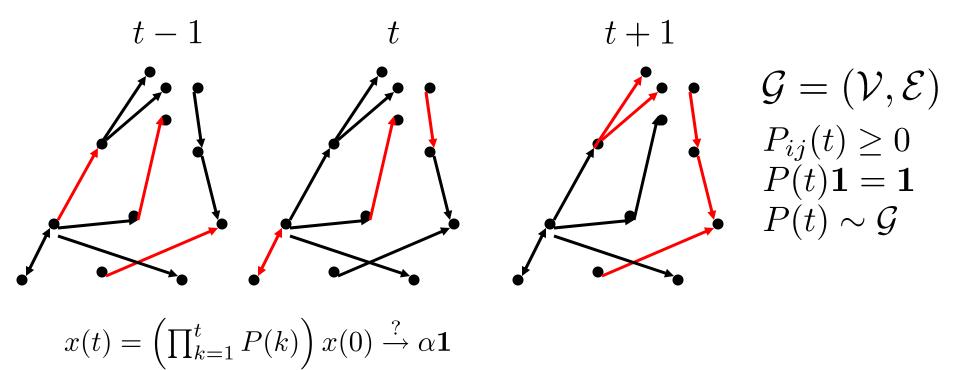


- Very hard problem (centralized) in general. Some fast convex algorithm if
 - G undirected "Fastest mixing Markov chain on a graph", S. Boyd, P Diaconis, L. Xiao, SIAM Review 2004
 - G has symmetries (Cayley graphs & circulant matrices)

"Communication constraints in the average consensus problem", R.Carli F. Fagnani, A. Speranzon, S. Zampieri, to apper Automatica

DEPARTMENT OF INFORMATION ENGINEERING UNIVERSITY OF PADOVA

Time-varying communication algorithms

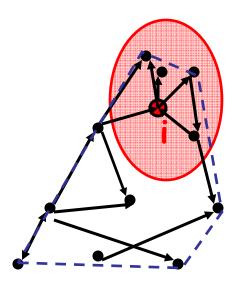


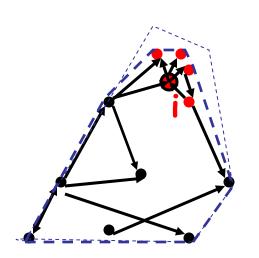
If union of sub-graphs within a sufficiently long time-window, are strongly connected, then ∃ P(t) that guarantee convergence

"Coordination of groups of mobile autonomous agents using nearest neighbor rules" A. Jadbabaie, J. Lin, and A. S. Morse, TAC '03

If pairwise update guarantees average consensus, P_{ij}(t)=P_{ji}(t)

Randomized communication algorithms





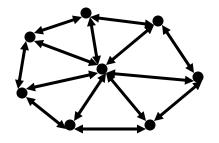
$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$
 $P_{ij}(t) \geq 0$
 $P(t)\mathbf{1} = \mathbf{1}$
 $P(t) \sim \mathcal{G}$

- i→j, j∈ Neighbors(i), at random with probability p_{i→j}
- Do averaging when link established, $x_j^+ = \frac{x_j + x_i}{2}$
- p_{ij} can be determined by sensor network (packet loss prob.)
- p_{ij} can be designed (comm. protocol) to increase convergence speed
- For geometric random graphs, random walk is close to optimal choice

$$p_{i \to j} = \frac{1}{\text{out-degree}(i)}$$

Optimal Randomized communication algorithms

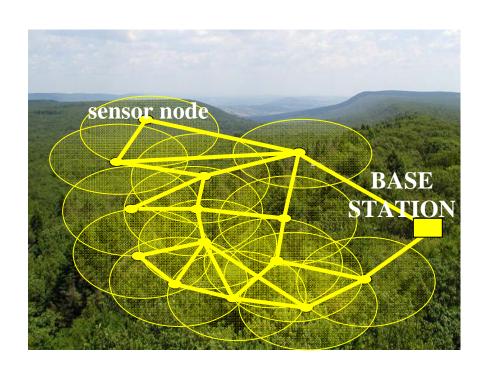
Underlying communication graph

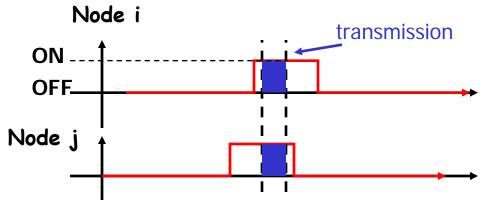


$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$
 $P_{ij}(t) \geq 0$
 $P(t)\mathbf{1} = \mathbf{1}$
 $P(t) \sim \mathcal{G}$

- Given underlying communication graph (with possibly lossy links)
- Average update equation $x_j^+ = \frac{x_j + x_i}{2}$
- How should I select a randomized scheduling policy for node broadcast selection?

Time synchronization in sensor networks





Why time-synch?

- Spatio-temporal correlation of events such as tracking
- Communication scheduling
 TDMA to reduce interference
- Power management

Problems:

- Every node has own clock
- Different offsets
- Different speeds (skew)
- Random transmission delay

Communication delay

	•					Γ_d	+
sender	send	access	transı	mission			
$\mathrm{node}\;\mathbf{i}$	<u> </u> 			T_t			
receiver		prop	∢ agation	recep	tion	receive	
$\mathrm{node}\;\mathbf{j}$	T_s	T_a	T_p	T_{rp})	T_{rv}	
\overline{t}	1	t_1^M	\overline{IAC} t_2^M	AC			t_2 t

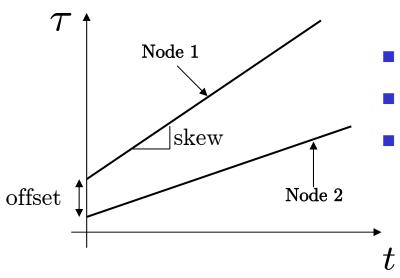
 $T_s, T_{rv} \sim 100ms$ random, depends on OS $T_s \sim 0.1 - 1s$, VERY random, depends on traffic and radio $T_t = T_{rp} \sim 10 - 500ms$, deterministic, depends on packet size $T_t = T_{rp} \sim 100ns$, deterministic, depends on packet size

MAC layer time-stamping

- Read local clock t₁^{MAC} at node / when start sending first bit
- Write t₁^{MAC} on leaving packet

t_1^{MAC} data	header
------------------	--------

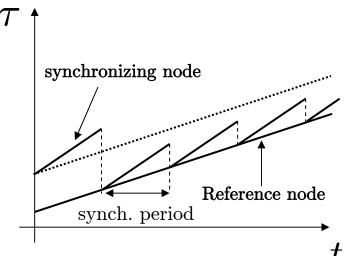
Clock characteristics & standard clock pair sych



Offset: instantaneous time difference

Skew: clock speed

Drift: derivative of clock speed

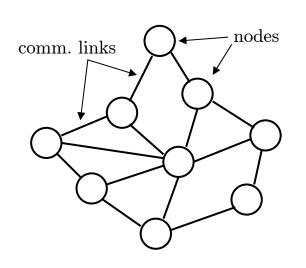


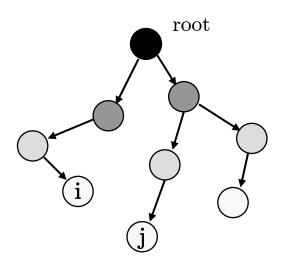
Offset synch: periodically remove offset with respect to reference clock

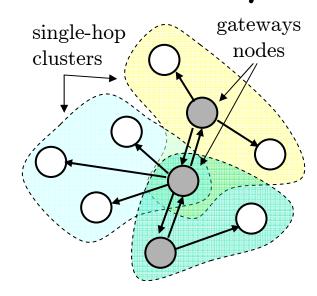
Skew compensation: estimate relative speed with respect to reference clock

Sych topologies for sensor networks

Tree-based sync Cluster-based sync







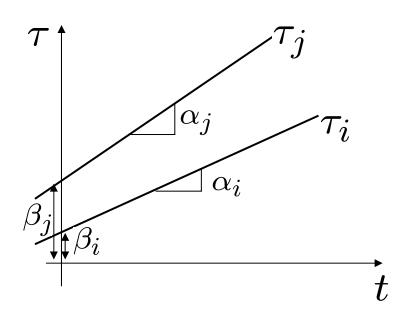
- PROS
 - Straightforward extension of pair synch
- CONS
 - Links may disappear
 - Root or gateways might temporarily disappear or die
 - New nodes might appear
 - Can be made adaptive but high protocol overhead

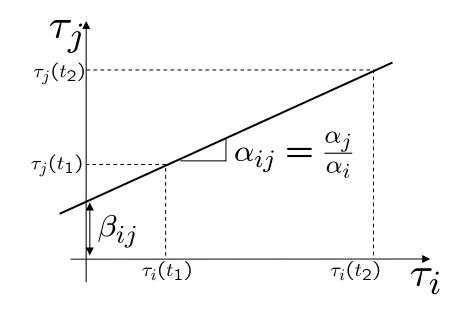
Ideal protocol features

- Distributed:
 - each sensor runs the same code
- Asynchronous:
 - Non-uniform updating period
- Adaptive:
 - should handle dying nodes, appearing nodes, moving nodes
- Simple to implement
- Robust to packet loss
- Long synch periods

	distrib.	skew comp.	MAC timestamp
Time-synch Prot. for Sensor Networks	no	no	no
Lightweight Time Synch.	no	no	no
Flooding Time Synch Prot.	no	yes	yes
Reference Broadcast Synchronization	no	yes	yes
Reachback Firefly Algorithm	yes	no	yes
Distributed Time Synch Prot.	yes	yes	yes
Average Time Synch Prot.	yes	yes	yes

Modeling (1)





Local clocks

$$\tau_i(t) = \alpha_i t + \beta_i$$

$$\tau_j(t) = \alpha_j t + \beta_j$$

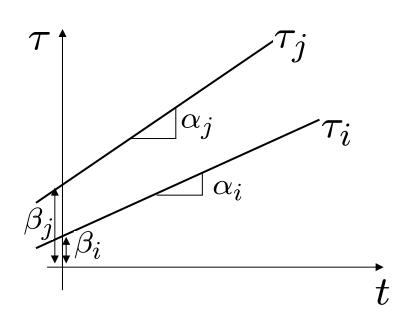
 (α_j, β_j, t) cannot be measured directly

$$\tau_{j} = \frac{\alpha_{j}}{\alpha_{i}} \tau_{i} + (\beta_{j} - \frac{\alpha_{j}}{\alpha_{i}} \beta_{i})$$

$$= \alpha_{ij} \tau_{i} + \beta_{ij}$$

Relative skew CAN be measured

Modeling (2)



Local clocks

$$\tau_i(t) = \alpha_i t + \beta_i \qquad _{i=1,...,N}$$

Virtual reference clock

$$\tau_v(t) = \alpha_v t + \beta_v, \alpha_v \simeq 1$$

Local clock estimate

$$\widehat{\tau}_j(t) = \widehat{\alpha}_j \tau_i + \widehat{o}_j \qquad i = 1, \dots, N$$

$$\hat{\tau}_j(t) = \hat{\alpha}_j \alpha_j t + \hat{\alpha}_i \beta_i + \hat{o}_j$$

GOAL: find $(\hat{\alpha}_j, \hat{o}_j)$ such that $\lim_{t\to\infty} \hat{\tau}_i(t) = \tau_v(t), \forall i=1,..,N$

GOAL: find $(\hat{\alpha}_j, \hat{o}_j)$ such that $\hat{\alpha}_i(t) \to \frac{\alpha_v}{\alpha_i}$

$$egin{array}{l} \partial_i(\iota) &
ightarrow eta_v - rac{arphi}{lpha_i} eta_i \
ightarrow 1 & N \end{array}$$

Averaging for skew compensation

find \widehat{lpha}_j such that

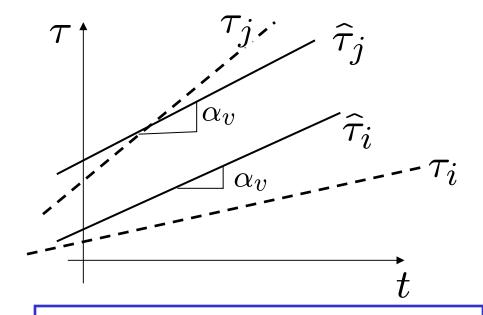
$$\widehat{\alpha}_i(t) \to \frac{\alpha_v}{\alpha_i}$$

$$x_i(t) \stackrel{\triangle}{=} \widehat{\alpha}_i(t)\alpha_i \to \alpha_v$$

$$x_i^+ = (1 - \rho)x_i + \rho x_j$$

Graph sufficiently connected

$$\hat{\alpha}_i^+ \alpha_i = (1 - \rho)\hat{\alpha}_i \alpha_i + \rho \hat{\alpha}_j \alpha_j$$
$$x_i(t) \to \alpha_v \in \text{ConvexHull}[x_1(0), ..., x_N(0)]$$



$$\begin{split} \widehat{\alpha}(0) &= 1 \\ \widehat{\alpha}_i^+ &= (1 - \rho)\widehat{\alpha}_i + \rho \frac{\alpha_j}{\alpha_i} \widehat{\alpha}_j \\ \alpha_v &\in \mathsf{ConvexHull}[\alpha_1(0), ..., \alpha_N(0)] \end{split}$$

Averaging for offset compensation

After skew compensation:

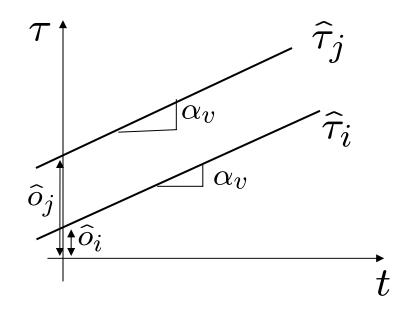
$$\hat{\tau}_i(t) = \alpha_v t + \hat{o}_i$$

$$\hat{\tau}_j(t) = \alpha_v t + \hat{o}_j$$

we want

$$\hat{o}_i(t) \rightarrow \beta_v, \ \forall i = 1,..,N$$

$$\hat{o}_{i}^{+} = (1 - \rho)\hat{o}_{i} + \rho\hat{o}_{j}
= \hat{o}_{i} + \rho(\hat{o}_{j} - \hat{o}_{i})
= \hat{o}_{i} + \rho(\hat{\tau}_{j} - \hat{\tau}_{i})$$



Average Time Synchronization Protocol (ATSP)

Relative Skew Estimation

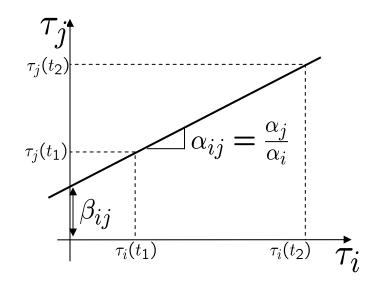
$$\eta_{ij}(0) = 1
\eta_{ij}^{+} = \rho_{\eta} \eta_{ij} + (1 - \rho_{\eta}) \frac{\tau_{j}(t_{2}) - \tau_{j}(t_{1})}{\tau_{i}(t_{2}) - \tau_{i}(t_{1})}
\eta_{ij}(t) \to \alpha_{ij}$$

Skew Compensation

$$\hat{\alpha}_i(0) = 1$$
 $\hat{\alpha}_i^+ = (1 - \rho_\alpha)\hat{\alpha}_i + \rho_\alpha \eta_{ij} \hat{\alpha}_j$
 $\hat{\alpha}_i(t) \to \alpha_v$

Offset Compensation

$$\hat{o}_{i}(0) = 0
\hat{o}_{i}^{+} = \hat{o}_{i} + \rho_{o}(\hat{\tau}_{j} - \hat{\tau}_{i})
= \hat{o}_{i} + \rho_{o}(\hat{\alpha}_{j}\tau_{j} + \hat{o}_{j} - \hat{\alpha}_{i}\tau_{i} - \hat{o}_{j})
\hat{o}_{i}(t) \rightarrow \beta_{v}$$



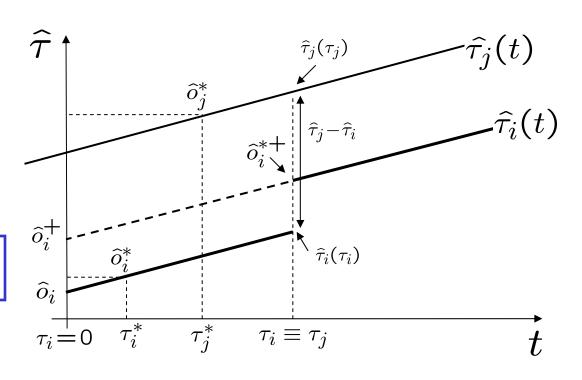
$$t \to \infty, \ \hat{\tau}_i(t) = \hat{\tau}_j(t), \ \forall (i,j)$$

DEPARTMENT OF PADOVA PADOVA NIVERSITY OF PADOVA NIVERSITY OF PADOVA PADO

$$\hat{\tau}_j(t) = \hat{\alpha}_j \tau_i + \hat{o}_j$$

$$\hat{o}_{i}^{+} = \hat{o}_{i} + \rho(\hat{\tau}_{j} - \hat{\tau}_{i})
= \hat{o}_{i} + \rho(\hat{\alpha}_{j}\alpha_{j}t + \hat{o}_{j} - \hat{\alpha}_{i}\alpha_{i}t + \hat{o}_{i})$$

$$\widehat{\tau}_j(t) = \widehat{\alpha}_j(\tau_i - \tau_i^*) + \widehat{o}_j^*$$



$$\hat{o}_{i}^{*+}(\tau_{i}) = \hat{\tau}_{i} + (1 - \rho_{o})(\hat{\tau}_{j} - \hat{\tau}_{i}) = \rho_{o}\hat{\tau}_{i} + (1 - \rho_{o})\hat{\tau}_{j}$$

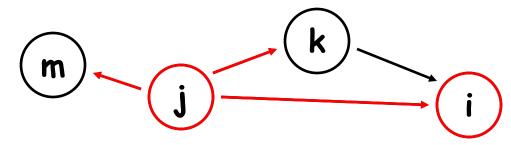
$$= \rho_{o}(\hat{\alpha}_{i}(\tau_{i} - \tau_{i}^{*}) + \hat{o}_{i}^{*}) + (1 - \rho_{o})(\hat{\alpha}_{j}(\tau_{j} - \tau_{j}^{*}) + \hat{o}_{j}^{*})$$

Implementation (1)

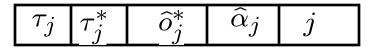
Algorithm 1 Node i: Parameter update

Input: synch packet with data $(\tau_j, \tau_i^*, \hat{o}_i^*, \hat{\alpha}_j)$ from node j

- 1: $\tau_i \leftarrow \text{read_local_clock}()$
- 2: **if** j is a new node **then**
- $\eta_{ij} \leftarrow 1$
- 4: **else**
- $\eta_{ij} \leftarrow \rho_{\eta} \eta_{ij} + (1 \rho_{\eta}) \frac{\tau_{j} \tau_{ij}^{old}}{\tau_{i} \tau_{ii}^{old}}$
- 6: $\hat{\alpha}_i \leftarrow \rho_{\alpha} \hat{\alpha}_i + (1 \rho_{\alpha}) \eta_{ij} \hat{\alpha}_j^{\circ}$ 7: $\hat{o}_i^* \leftarrow \rho_o \left(\hat{\alpha}_i (\tau_i \tau_i^*) + \hat{o}_i^* \right) + (1 \rho_o) \left(\hat{\alpha}_j (\tau_j \tau_j^*) + \hat{o}_j^* \right)$
- 9: end if
- 10: $\tau_{jj}^{old} \leftarrow \tau_j$
- 11: $\tau_{ij}^{old} \leftarrow \tau_i$

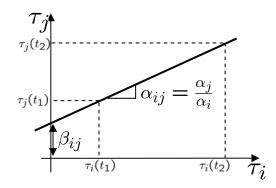


Send packet



NOTE: do NOT send

$$\hat{\tau}_j(t) = \hat{\alpha}_j(\tau_i(t) - \tau_i^*) + \hat{\sigma}_j^*$$



Local variables of node i

in-node	$h_{ m i}$		
j	η_{ij}	$ au_{ij}^{old}$	$ au_{jj}^{old}$
k	η_{ik}	$ au_{ik}^{old}$	$ au_{kk}^{old}$
•			

$ au_i^*$	\widehat{o}_i^*	$[\hat{lpha}_i]$
-----------	-------------------	------------------

Implementation (2)

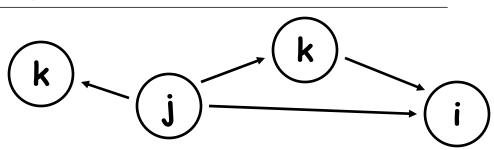
Algorithm 1 Node i: Parameter update

Input: synch packet with data $(\tau_i, \tau_i^*, \hat{o}_i^*, \hat{\alpha}_i)$ from node j

- 1: $\tau_i \leftarrow \text{read_local_clock}()$
- 2: **if** j is a new node **then**
- 3: $\eta_{ij} \leftarrow 1$
- 4: **else**

5:
$$\eta_{ij} \leftarrow \rho_{\eta} \eta_{ij} + (1 - \rho_{\eta}) \frac{\tau_{j} - \tau_{ij}^{old}}{\tau_{i} - \tau_{ij}^{old}}$$

- 6: $\hat{\alpha}_i \leftarrow \rho_{\alpha} \hat{\alpha}_i + (1 \rho_{\alpha}) \eta_{ij} \hat{\alpha}_j^{\circ}$ 7: $\hat{o}_i^* \leftarrow \rho_o \left(\hat{\alpha}_i (\tau_i \tau_i^*) + \hat{o}_i^* \right) + (1 \rho_o) \left(\hat{\alpha}_j (\tau_j \tau_j^*) + \hat{o}_j^* \right)$
- 9: end if
- 10: $\tau_{jj}^{old} \leftarrow \tau_j$
- 11: $\tau_{ij}^{old} \leftarrow \tau_i$



Send packet

$egin{bmatrix} au_j & au_j^* & \widehat{o}_j^* \end{bmatrix}$	$\hat{\alpha}_j$	j
---	------------------	---

$\hat{\tau}_j(t) = \hat{\alpha}_j(\tau_i - \tau_i^*) + \hat{\sigma}_i^*$

Local variables of node i

in-node	$h_{ m i}$		
j	η_{ij}	$ au_{ij}^{old}$	$ au_{jj}^{old}$
k	η_{ik}	$ au_{ik}^{old}$	$ au_{kk}^{old}$
•			
•			

$ au_i^*$	\widehat{lpha}_i	\widehat{o}_i^*
-----------	--------------------	-------------------

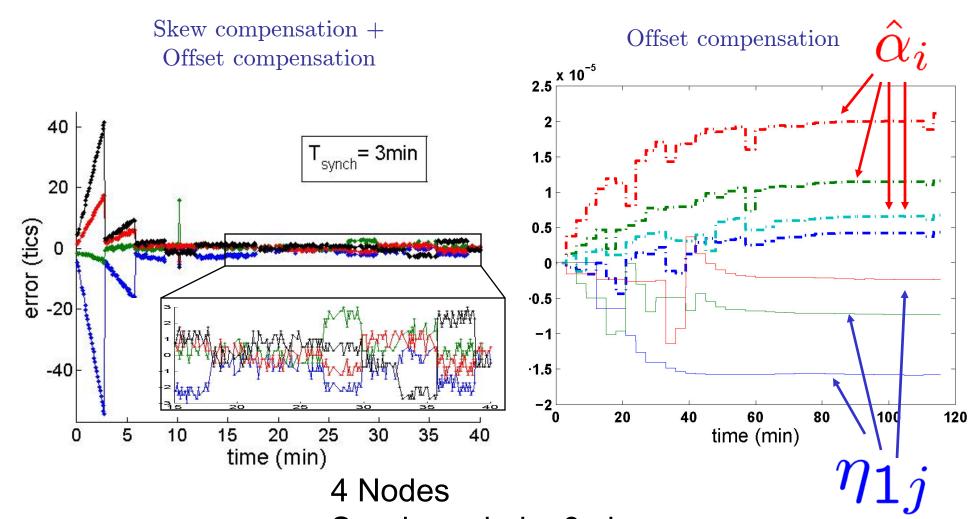
The testbed

Motion Capture System -(virtual GPS)

Wireless Sensor Networks (Moteix Tmote Sky)

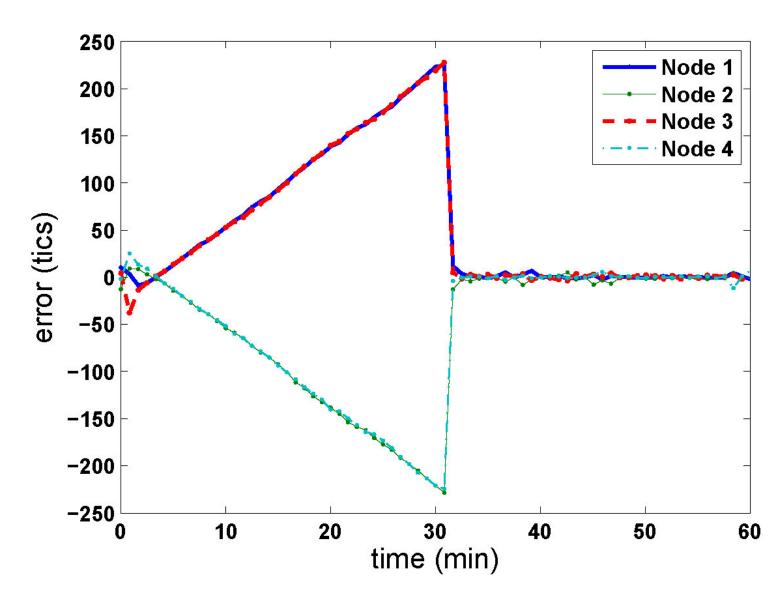
Mobile vehicles (EPFL e-puck)

Experimental results (1)

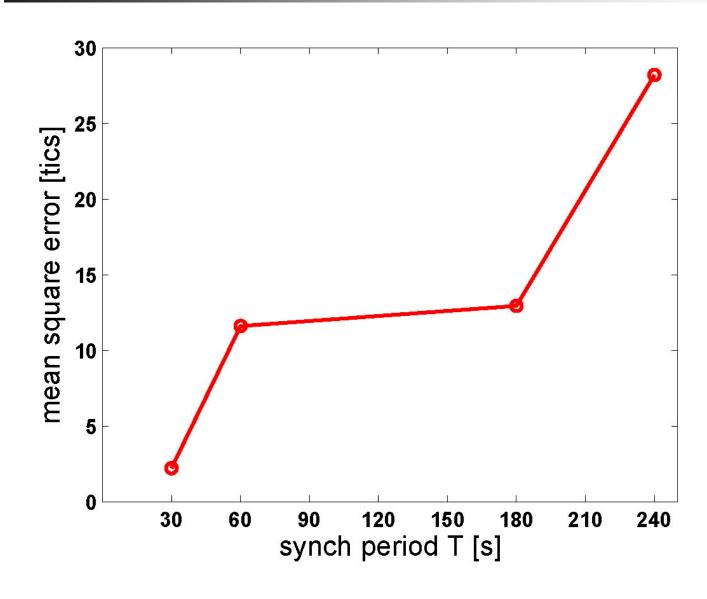


Synch. period = 3min 1 tic = 30µs (32kHz clock)

Experimental results (2)



Experimental results (3)



Conclusions

- Time-synch in sensor network is natural example of consensus algorithms
- Average Time Sych Protocol
 - Purely distributed
 - Robust to packet loss, time-varying network topology
 - Asynchronous
 - Minimal memory and computational requirements
- Preliminary results are promising
- Still software issues with MAC layer time-stamping

Future work

- How to compute optimal weights ρ?
- Can estimate mean error as function of network size, i.e. #nodes & #links/node, and noise?
- Test on a 8x8 network grid and compare with state-of-art time-synch protocols
- Use it for TDMA scheduling and power saving