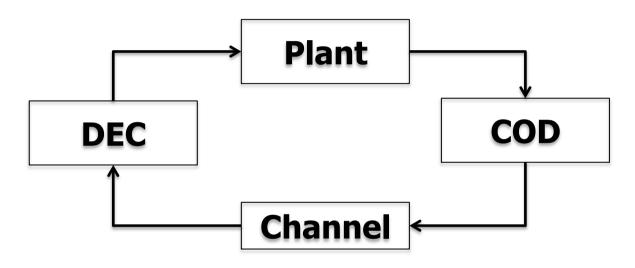
Control over finite capacity channels: the role of data loss, delay and signal-to-noise limitations



Luca Schenato

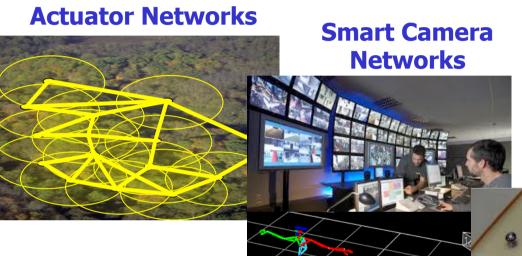
University of Padova Control Seminars, Berkeley, 2014

University of Padova

- Founded 1222: 2nd oldest university
- 60K students out of 200K citizens
- First Ph.d. woman in 1678: Elena Piscopia
- Alumni: Galileo, Copernicus, Riccati, Bernoulli
- Department of Information Engineering (EE&CS&BIOENG) 3K students

Applications: MAgIC Lab

Wireless Sensor Actuator Networks



M. g.I.C.

Multi Agent Intelligent Control

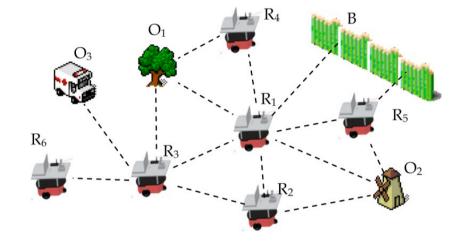
Robotic Networks

> Smart Energy Grids

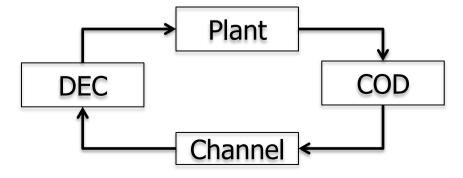
Networked Control Systems: physically distributed dynamical systems interconnected by a communication network

Research lines

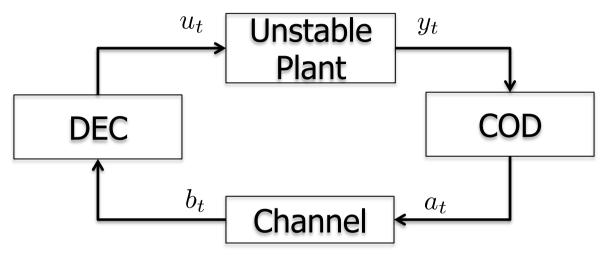
- Research line 1: multi-agent systems:
 - Consensus algorithms
 - Distributed estimation
 - Distributed optimization



- Research line 2: control subject to communication constraints:
 - Packet loss
 - Random delay
 - Sensor fusion



Motivation



Control Theory: unstable sources, perfect channels ,'60s Communication/Information Theory: stable sources, realistic channels, '60s Convergence of Control and Communication: unstable sources with realistic channels , '00s

Joint work with:

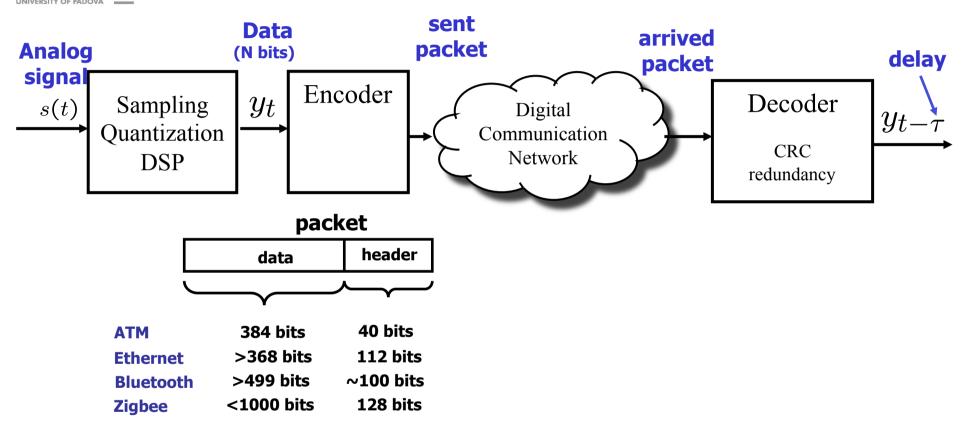
Alessandro Chiuso

Andrea Zanella

Nicola Laurenti

Subhrakanti Dey Uppsala Univ., Sweden

10 years ago in Berkeley....



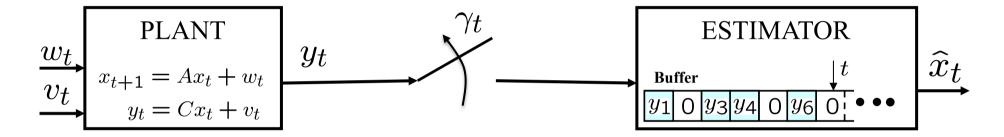
Assumptions:

- (1) Quantization noise < < sensor noise
- (2) Packet-rate limited (≠ bit-rate)
- (3) No transmission noise (data corrupted=dropped packet)

Packet loss at receiver & Unit delay (τ=1)

10 years ago in Berkeley....

 $\hat{x}_t = \mathbb{E}[x_t | \{y_k\} \text{ available at estimator at time } t]$



$$\gamma_t = \begin{cases} 1 & \text{if } y_t \text{ received at time } t \\ 0 & \text{otherwise} \end{cases}$$

$$\tilde{y}_t = \gamma_t (Cx_t + v_t) = C_t x_t + u_t$$

$$\hat{x}_t = \mathbb{E}[x_t | \tilde{y}_t, \dots, \tilde{y}_t, \gamma_t, \dots, \gamma_1]$$

10 years ago in Berkeley....

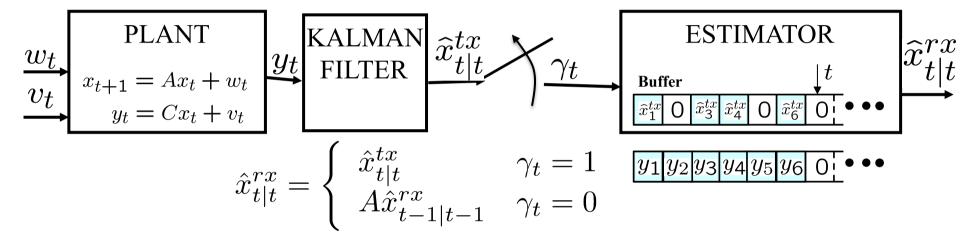
B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M.I. Jordan, and S. Sastry. **Kalman filtering with intermittent observations**. *IEEE Transactions on Automatic Control*, 49(9):1453–1464, September 2004

$$\begin{split} \hat{x}_{t+1|t} &= A\hat{x}_{t|t-1} + \frac{\gamma_t A K_t (y_t - C\hat{x}_{t|t-1})}{K_t = f(P_{t|t-1})} \\ K_t &= f(P_{t|t-1}) \\ P_{t+1|t} &= \Phi_{\gamma_t} (P_{t|t-1}) \\ \Phi_{\lambda}(P) &= APA^T + Q - \lambda \, APC^T (CPC^T + R)^{-1} CPA^T \quad \text{Modified Algebraic Riccati Equation (MARE)} \\ \Phi_{\lambda}(P) &= APA^T + Q - \lambda \, APC^T (CPC^T + R)^{-1} CPA^T \quad \text{Modified Algebraic Riccati Equation (MARE)} \\ \Phi_{\lambda}(P) &= APA^T + Q - \lambda \, APC^T (CPC^T + R)^{-1} CPA^T \quad \text{Modified Algebraic Riccati Equation (MARE)} \\ \Phi_{\lambda}(P) &= APA^T + Q - \lambda \, APC^T (CPC^T + R)^{-1} CPA^T \quad \text{Modified Algebraic Riccati Equation (MARE)} \\ \Phi_{\lambda}(P) &= APA^T + Q - \lambda \, APC^T (CPC^T + R)^{-1} CPA^T \quad \text{Modified Algebraic Riccati Equation (MARE)} \\ \Phi_{\lambda}(P) &= APA^T + Q - \lambda \, APC^T (CPC^T + R)^{-1} CPA^T \quad \text{Modified Algebraic Riccati Equation (MARE)} \\ \Phi_{\lambda}(P) &= APA^T + Q - \lambda \, APC^T (CPC^T + R)^{-1} CPA^T \quad \text{Modified Algebraic Riccati Equation (MARE)} \\ \Phi_{\lambda}(P) &= APA^T + Q - \lambda \, APC^T (CPC^T + R)^{-1} CPA^T \quad \text{Modified Algebraic Riccati Equation (MARE)} \\ \Phi_{\lambda}(P) &= APA^T + Q - \lambda \, APC^T (CPC^T + R)^{-1} CPA^T \quad \text{Modified Algebraic Riccati Equation (MARE)} \\ \Phi_{\lambda}(P) &= APA^T + Q - \lambda \, APC^T (CPC^T + R)^{-1} CPA^T \quad \text{Modified Algebraic Riccati Equation (MARE)} \\ \Phi_{\lambda}(P) &= APA^T + Q - \lambda \, APC^T (CPC^T + R)^{-1} CPA^T \quad \text{Modified Algebraic Riccati Equation (MARE)} \\ \Phi_{\lambda}(P) &= APA^T + Q - \lambda \, APC^T (CPC^T + R)^{-1} CPA^T \quad \text{Modified Algebraic Riccati Equation (MARE)} \\ \Phi_{\lambda}(P) &= APA^T + Q - \lambda \, APC^T (CPC^T + R)^{-1} CPA^T \quad \text{Modified Algebraic Riccati Equation (MARE)} \\ \Phi_{\lambda}(P) &= APA^T + Q - \lambda \, APC^T (P^T + Q^T + Q^$$

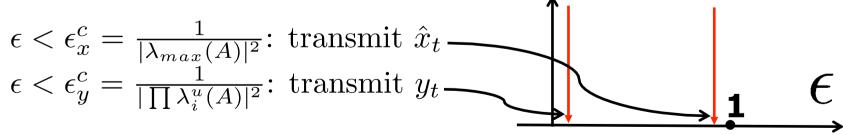
- Simple to understand but not trivial
- Critical packet loss probability function of eigenvalues of A
- Some new mathematical techniques
- Estimator designed for performance not only stability
- Many open questions remained unanswered

One open question

V. Gupta, D. Spanos, B. Hassibi, and R. M. Murray. **Optimal LQG control across a packet-dropping link.** *Systems and Control Letters*, 56(6):439–446, 2007

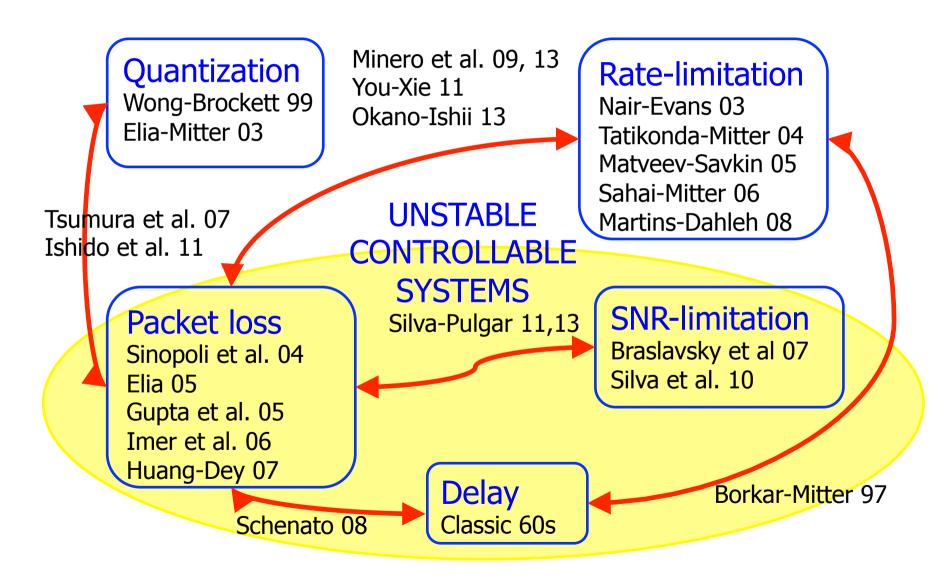


If $y \in \mathbb{R}, x \in \mathbb{R}^n$, then critical packet loss probability ϵ .

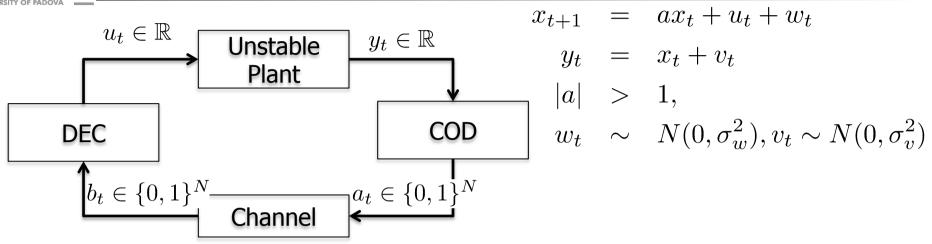


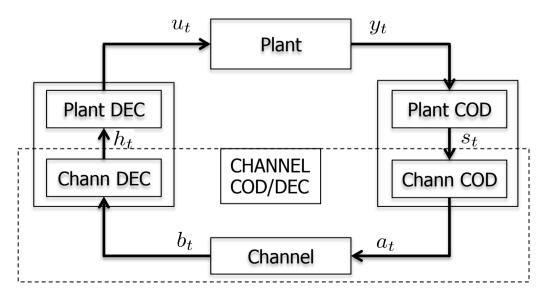
If n=10000 is it better to send the quantized state rather than the quantized measurement? ==> need to include quantization

Previous work



Modeling





Proposed approach:

- 1) Separate control/estimation design from communication design.
- 2) Use of traditional coding with finite block-length (different from any-time coding of Sahai-Mitter 07 !!)

Ideally: $h_t \approx s_t \in \mathbb{R}$

About coding modeling

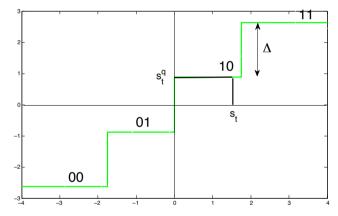
A naïve coding/decoding scheme:

[10]: symbol to be sent

[10|1]: add parity check bit

 $a_t = [111|000|111]$: add redundancy

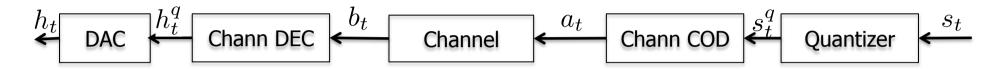
Noisy Channel: recovery via majority bits



RECEIVED (b_t)	RECOVERY	DECODED
[101 100 011]	[10 1]	correct decoding: [10] $(h_t^q = s_t^q)$
[111 <mark>11</mark> 0 111]	[11 1]	erasure
[111 000 001]	[10 0]	erasure
[100 110 111]	[01 1]	wrong decoding: [01] (h _t q≠s _t q)

Receiver knows Δ and therefore maps [10] into the real number h_t

About coding modeling



Role of code lenght:

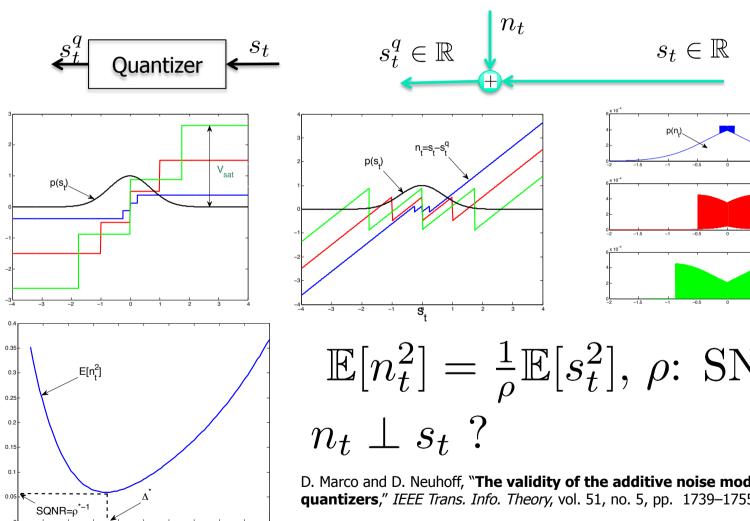
 $s_t^{q}=[10]$: 2-bits of information per period $a_t=[111|000|111]$: 9-bit word per period over the channel

 $(s_t^q, s_{t-1}^q) = [11,10] -> a_t = [xxx|xxx|xxx|xxx|xxx|xxx|xxx]$ smarter coding 18-bit blocklength over 2 period => 9-bits/period

Longer block-length:

- Same channel rate (bits/period)
- Smaller erasure probability
- Larger delay

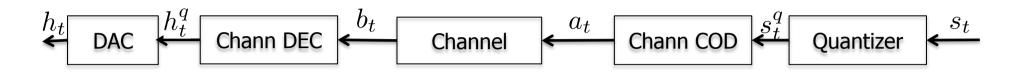
M.▲g.Ï.C. About quantization modeling DEPARTMENT OF INFORMATION ENGINEERING

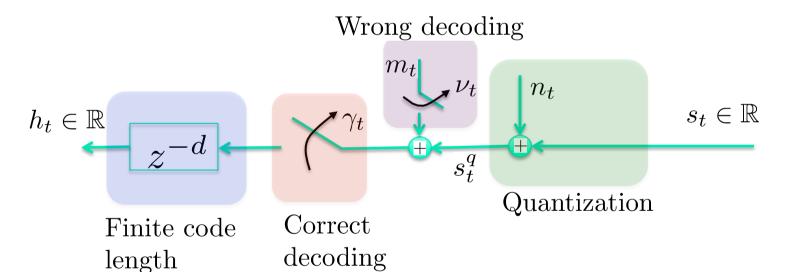


Δ=0.25 _Δ=1.5 $\mathbb{E}[n_t^2] = \frac{1}{\rho} \mathbb{E}[s_t^2], \, \rho$: SNR D. Marco and D. Neuhoff, "The validity of the additive noise model for uniform scalar **quantizers**," IEEE Trans. Info. Theory, vol. 51, no. 5, pp. 1739–1755, 2005

A. Leong, S. Dey, and G. Nair, "Quantized filtering schemes for multi- sensor linear state estimation: Stability and performance under high rate quantization," IEEE *Trans. Sig. Proc.*, vol. 61, no. 15, pp. 3852–3865, 2013.

"Analog" channel COD/DEC model





$$n_t$$
: quantization noise

 $\gamma_t = 0, \nu_t = \{0, 1\}$: undecoded word (erasure) $P[\nu_t = 1] = \varepsilon_w$: undetected error probability

 $\gamma_t = 1, \nu_t = 0$: correctly decoded word

 $\gamma_t = 1, \nu_t = 1$: wrongly decoded word

d: decoding delay (integer)

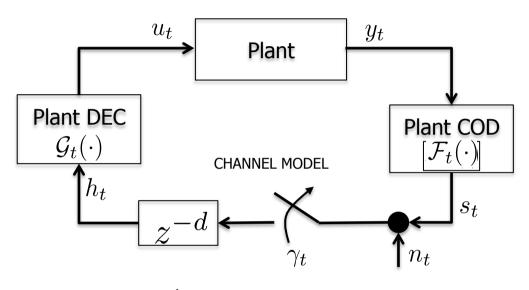
$$P[\gamma_t = 0] = \varepsilon$$
: erasure probability

$$\varepsilon_w \ll \varepsilon$$

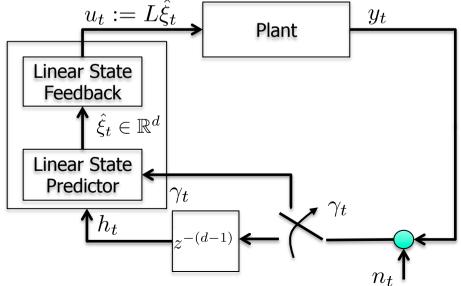
 $E[n_t^2] = \frac{1}{\rho} E[s_t^2], \, \rho: \, \text{SNR}$

$$E[m_t^2] \approx E[s_t^2]$$

Problem formulation

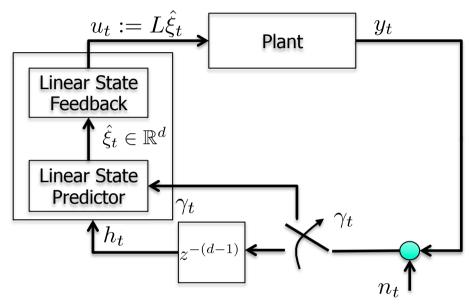


$$\begin{array}{rcl} x_{t+1} & = & ax_t + u_t + w_t \\ y_t & = & x_t + v_t \end{array}$$



- 1. Scalar dynamics
- 2. No transmission preprocessing
- 3. Estimator+ state feedback architecture

Problem formulation (cont'd) Properties of the properties of the



$$\begin{array}{rcl} x_{t+1} & = & ax_t + u_t + w_t \\ y_t & = & x_t + v_t \end{array}$$

Augmented System dynamics

$$\begin{bmatrix}
x_{t-d+2} \\
\vdots \\
x_{t+1}
\end{bmatrix} = \begin{bmatrix}
0 & 1 & \cdots & 0 \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & \ddots & 1 \\
0 & \cdots & 0 & a
\end{bmatrix}
\begin{bmatrix}
x_{t-d+1} \\
\vdots \\
x_t
\end{bmatrix} + \begin{bmatrix}
0 \\
\vdots \\
0 \\
1
\end{bmatrix}
(u_t + w_t)$$

$$\hat{\xi}_{t+1} = A\hat{\xi}_t + Bu_t + \gamma_{t-d+1}G(h_t - H\hat{\xi}_t)$$

$$u_t = L\hat{\xi}_t$$

$$LQG performance optimization$$

$$y_t = \underbrace{\begin{bmatrix}
0 & \cdots & 0 & 1
\end{bmatrix} \xi_t + v_t}$$

$$h_t = \gamma_{t-d+1}(\underbrace{\begin{bmatrix}
1 & 0 & \cdots & 0
\end{bmatrix} \xi_t + v_{t-d+1} + n_{t-d+1}}$$

$$x_{t-d+1} + n_{t-d+1}$$

$$x_$$

Linear estimator + linear controller

$$\hat{\xi}_{t+1} = A\hat{\xi}_t + Bu_t + \gamma_{t-d+1}G(h_t - H\hat{\xi}_t)$$

$$u_t = L\hat{\xi}_t$$

LQG performance optimization

$$(G^*, L^*) := \operatorname{arg} \min_{G, L} \mathbb{E}[y_t^2] + r \mathbb{E}[u_t^2]$$
s.t.
$$\mathbb{E}[n_t^2] = \frac{1}{\rho} \mathbb{E}[y_t^2], \quad n_t \perp y_t$$

Problem solution

Augmented System dynamics

$$\xi_{t+1} = A\xi_t + B(u_t + w_t)
y_t = C\xi_t + v_t
h_t = \gamma_{t-d+1}H(\xi_t + v_{t-d+1} + n_{t-d+1})$$

Linear estimator + linear controller

$$\hat{\xi}_{t+1} = A\hat{\xi}_t + Bu_t + \gamma_{t-d+1}G(h_t - H\hat{\xi}_t)$$

$$u_t = L\hat{\xi}_t$$

$$P := \operatorname{Var} \left\{ \begin{bmatrix} \hat{\xi}_t \\ \xi_t - \hat{\xi}_t \end{bmatrix} \right\}$$
 $min_{G,L} \quad J(P,G,L)$
s.t. $P = \mathcal{M}(P,G,L)$

J and \mathcal{M} : linear in P "quadratic" in G,L

LQG performance optimization

$$(G^*, L^*)$$
 := $\underset{\text{s.t.}}{\operatorname{arg}} min_{G,L}J(G, L) = \mathbb{E}[y_t^2] + {}_{\boldsymbol{r}}\mathbb{E}[u_t^2]$
s.t. $\mathbb{E}[n_t^2] = \alpha \mathbb{E}[y_t^2]$

$$P = \underbrace{(1 - \epsilon)\bar{A}_1 P \bar{A}_1^{\top} + \epsilon \bar{A}_0 P \bar{A}_0^{\top} + \sigma_w^2 \bar{B} \bar{B}^{\top} + \alpha (1 - \epsilon)\bar{G} \bar{C} P \bar{C}^{\top} \bar{G}^{\top} + (1 - \epsilon)(1 + \alpha)\bar{G} \sigma_v^2 \bar{G}^{\top}}_{\mathcal{M}(P,G,L)}$$

Problem solution

Solve via Lagrangian

$$min_{P,\Lambda,G,L}$$
 $J(P,G,L) + trace(\Lambda(P-\mathcal{M}(P,G,L))) := \mathcal{L}(P,\Lambda,G,L)$
s.t. $P \ge 0, \Lambda \ge 0$

Necessary optimal conditions

$$\frac{\partial \mathcal{L}}{\partial P} = 0, \quad \frac{\partial \mathcal{L}}{\partial \Lambda} = 0, \quad \frac{\partial \mathcal{L}}{\partial L} = 0, \quad \frac{\partial \mathcal{L}}{\partial G} = 0$$

Coupled Riccati-like Equations

$$P = \Phi_1(P, \Lambda)$$

$$\Lambda = \Phi_2(P, \Lambda)$$

$$G = \Psi_1(P)$$

$$L = \Psi_2(\Lambda)$$

Further simplification

Coupled Riccati-like Equations

$$P = \Phi_1(P, \Lambda)$$

$$\Lambda = \Phi_2(P, \Lambda)$$

$$G = \Psi_1(P)$$

$$L = \Psi_2(\Lambda)$$

$$\begin{bmatrix} x_{t-d+2} \\ \vdots \\ x_{t+1} \end{bmatrix} = \begin{bmatrix} 0 & 1 & \cdots & 0 \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & \ddots & 1 \\ 0 & \cdots & 0 & a \end{bmatrix} \begin{bmatrix} x_{t-d+1} \\ \vdots \\ x_t \end{bmatrix} + \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} (u_t + w_t)$$

$$y_t = \underbrace{\begin{bmatrix} 0 & \cdots & 0 & 1 \end{bmatrix}}_{A} \xi_t + v_t$$

$$h_t = \gamma_{t-d+1} (\underbrace{\begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix}}_{E} \xi_t + v_{t-d+1} + n_{t-d+1})$$

$$L = \begin{bmatrix} 0 & 0 & \cdots & 0 & \ell \end{bmatrix}$$

$$G = \begin{bmatrix} g & ag & \cdots & a^{d-1}g \end{bmatrix}^T$$

For r = 0 problem equivalent to the solution of a scalar Riccati-like equation:

$$p = a^2 p + \sigma_w^2 - \delta \frac{a^2 p^2}{p^* + \bar{r}(d)}$$
$$\delta := \frac{1 - \epsilon}{1 + \alpha a^{2d}}$$

Further simplification

$$p = a^2 p + \sigma_w^2 - \delta \frac{a^2 p^2}{p + \bar{r}(d)}$$
$$\delta := \frac{1 - \epsilon}{1 + \alpha a^{2d}}$$

B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M.I. Jordan, and S. Sastry. **Kalman filtering with intermittent observations**. *IEEE Transactions on Automatic Control*, 49(9):1453–1464, September 2004

Necessary and sufficient stability for $r \ge 0$:

$$\frac{1-\epsilon}{1+\alpha a^{2d}} > 1 - \frac{1}{a^2}$$

d: decoding delay

 ϵ : erasure probability

 $\alpha = \frac{1}{SNR}$: noise-to-signal ratio

Discussion w/ related works

$$\frac{1-\epsilon}{1+\alpha a^{2d}} > 1 - \frac{1}{a^2}$$

1) Infinite resolution (α =0) and no delay (d=0):

$$1 - \epsilon > 1 - \frac{1}{a^2}$$

B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M.I. Jordan, and S. Sastry. Kalman filtering with intermittent observations. IEEE Transactions on Automatic Control, 49(9):1453-1464, September 2004

2) Infinite resolution (α =0) and with delay (d>0):

$$1 - \epsilon > 1 - \frac{1}{a^2}$$

L. Schenato. Kalman filtering for networked control systems with random delay and packet loss. IEEE Transactions on Automatic Control, 53:1311-1317, 2008

3) No packet loss ($\varepsilon = 0$) and no delay (d>0):

$$SNR = \frac{1}{\alpha} > a^2 - 1$$

 $SNR=rac{1}{lpha}>a^2-1$ J.H. Braslavsky, R.H. Middleton, and J.S. Freudenberg. Feedback stabilization over signal-to-noise ratio constrained channels. IEEE Transactions on Automatic Control, 52(8), 2007

Recalling the rate $R = \frac{1}{2} \log(1 + SNR)$ and R < C:

$$C > \log|a|$$

S. Tatikonda and S. Mitter. Control under communication constraints. IEEE Transaction on Automatic Control, 49(7):1056–1068, July 2004.

M. Ag. I. C. Multi Agent Intelligent Control

Discussion w/ related works

$$\frac{1-\epsilon}{1+\alpha a^{2d}} > 1 - \frac{1}{a^2}$$

4) No packet loss (ϵ =0) and delay (d=1):

$$SNR = \frac{1}{\alpha} > a^4 - a^2$$

J.H. Braslavsky, R.H. Middleton, and J.S. Freudenberg. **Feedback stabilization over signal-to-noise ratio constrained channels**. *IEEE Transactions on Automatic Control*, 52(8), 2007

5) Infinite resolution (α =0), packet loss as SNR-limitation + delay

$$\frac{1-\epsilon}{1+\epsilon(a^{2d}-1)} > 1 - \frac{1}{a^2}$$
$$1 - \epsilon > 1 - \frac{1}{a^2}$$

E.I. Silva and S.A. Pulgar. **Performance limitations for single-input LTI plants controlled over SNR constrained channels with feedback**. *Automatica*, 49(2), 2013

Our condition less stringent and independent of delay

6) Rate-limited with delay (d=1):

$$R = \frac{1}{2} \log(1 + SNR)$$

$$\mathbb{E}\left[\left(\frac{a^2}{2^{2R_t}}\right)^n\right] < 1$$

$$R_t = R\delta_t, \delta_t \sim \mathcal{B}(1 - \epsilon)$$

$$\frac{a^2}{1+\rho}(1-\epsilon) + a^2\epsilon < 1$$

P. Minero, L. Coviello, and M. Franceschetti. **Stabilization over Markov feedback channels: The general case**. *Transactions on Automatic Control*, 58(2):349–362, 2013

M. Ag. I.C. Multi Agent Intelligent Control Discussion w/ related works ENGINEERING DISCUSSION W/ related works

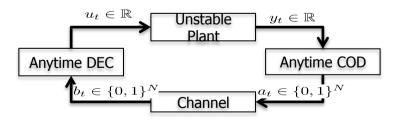
$$\frac{1-\epsilon}{1+\alpha a^{2d}} > 1 - \frac{1}{a^2}$$

6) Down-sampling: equivalent to a←— a^d, d ←— 1

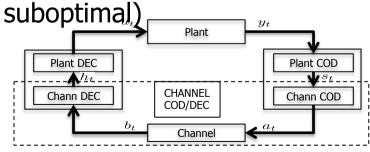
$$\frac{1-\epsilon}{1+\alpha a^{2d}} > 1 - \frac{1}{a^{2d}}$$
 More stringent constraint

7) Relation with sequential coding (any-time capacity)

Anytime coding/decoding



Fixed-length codes (our approach is



Necessary for optimality:

A. Sahai and S. Mitter. The necessity and sufficiency of anytime capacity for control over a noisy communication link: Part I. *IEEE Transaction on Information Theory*, 2006

M. Ag. I.C. What is the role of capacity? What is the role of capacity?

 $SNR(=\frac{1}{\alpha}), d, \epsilon$ are not abritrary but are function of the channel

$$|a^*(\mathcal{C})| := \max_{a,\alpha,d,\epsilon} |a|$$

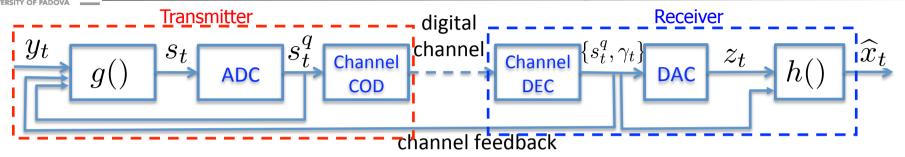
$$s.t. \quad \frac{1-\epsilon}{1+\alpha a^{2d}} > 1 - \frac{1}{a^2}$$

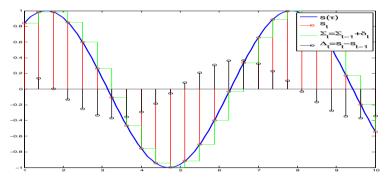
$$(\alpha,d,\epsilon) \in \Omega(\mathcal{C})$$

Feasible set which depends on channel parameters

Y. Polyanskiy, H.V. Poor, and S. Verdu. **Channel coding rate in the finite blocklength regime.** *IEEE Transactions on Information Theory*, 56(5):23072359, 2010

Remote estimation subject to quantization and packet loss





"Delta-Sigma" modulation:

 $\Delta_t = y_t - y_{t-1}$ at the transmitter $\Sigma_t = \Sigma_{t-1} + \Delta_t$ at the receiver If $\Sigma_0 = y_0$ then $\Sigma_t = y_t$ for all t

July 29, 1952

C. C. CUTLER

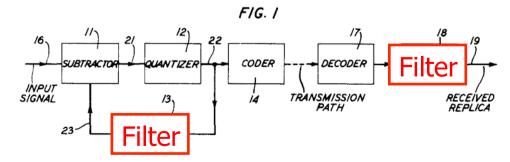
2,605,361

DIFFERENTIAL QUANTIZATION OF COMMUNICATION SIGNALS

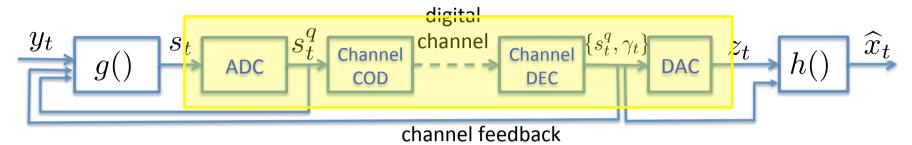
Filed June 29, 1950

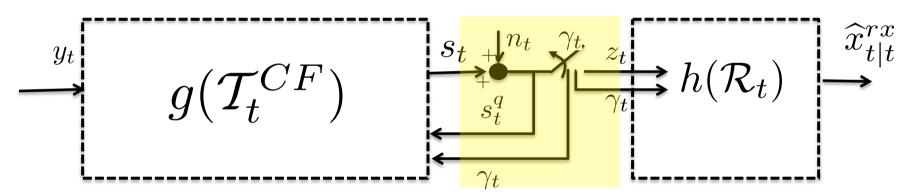
3 Sheets-Sheet 1

Differential pulse-code modulation (DPCM)



Remote estimation subject to quantization and packet loss





Information set with channel feedback (ACK/NACK)

$$\mathcal{T}_{t}^{CF} = \{y_{t}, ..., y_{0}, s_{t-1}, ..., s_{0}, n_{t-1}, ..., n_{0}, \gamma_{t-1}, ..., \gamma_{0}\}$$

Information set at receiver

$$\mathcal{R}_t := \{z_t, \dots, z_0, \gamma_t, \dots \gamma_0\}$$

Information set without channel feedback (ACK/NACK)

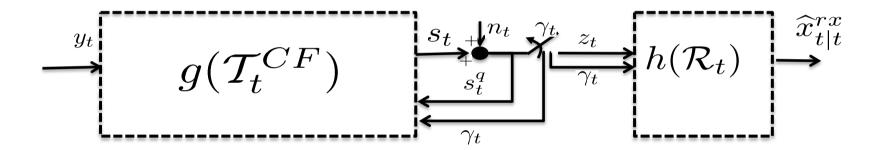
$$\mathcal{T}_t^{NCF} = \{y_t, ..., y_0, s_{t-1}, ..., s_0, n_{t-1}, ..., n_0\}$$

Goal: minimize error variance $\mathbb{E}[(x_{t+1} - \hat{x}_{t+1|t}^{rx})^2]$

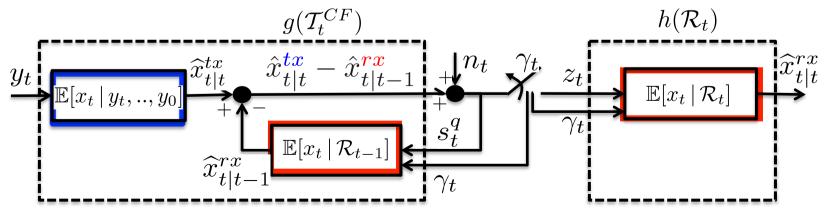
M. Ag. I.C. What is the optimal strategy with channel feedback? PEPARTMENT OF PROGRAETION 2 Channel feedback?

$$x_{t+1} = ax_t + w_t$$
, scalar system
$$y_t = x_t + v_t$$

$$|a| < 1$$
, stable source
$$\mathcal{T}_t^{CF} \supset \mathcal{R}_{t-1}$$



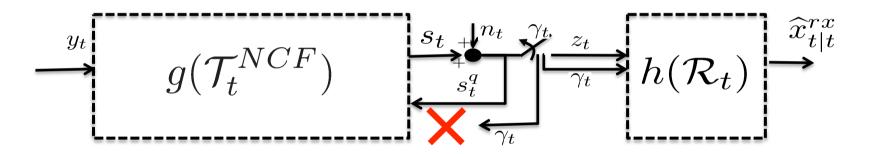
Optimal strategy (among linear strategies): send innovation



M. Ag. i.c. What is the optimal strategy with no channel feedback?

$$x_{t+1} = ax_t + w_t$$
, scalar system
$$y_t = x_t + v_t$$

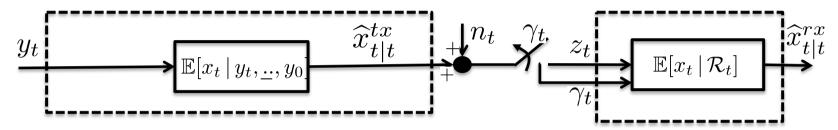
$$|a| < 1$$
, stable source
$$\mathcal{T}_t^{NCF} \not\supset \mathcal{R}_{t-1}$$



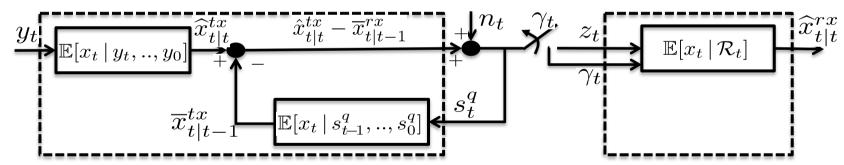
Optimal strategy? not clear, likely non-linear Approach: reasonable suboptimal strategies

Suboptimal strategies

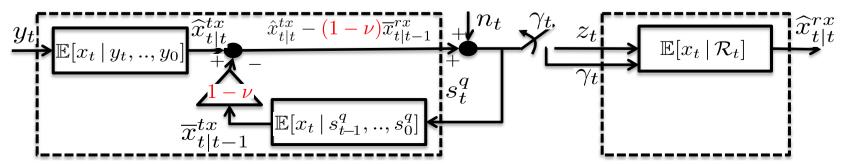
1) Estimated state forwarding (Kalman estimate)



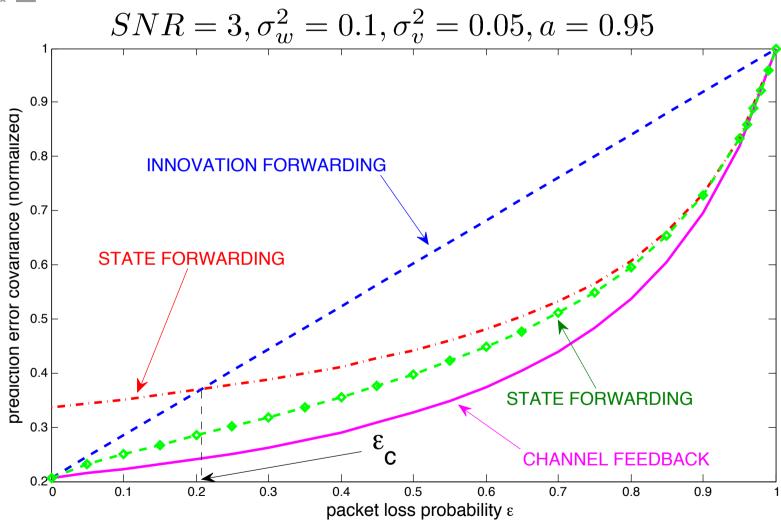
2) Innovation forwarding assuming no packet loss



3) Hybrid strategy: soft innovation forwarding



Analytical results

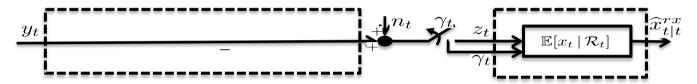


For any choice of parameters $\epsilon_c < 0.5$

A unexpected result

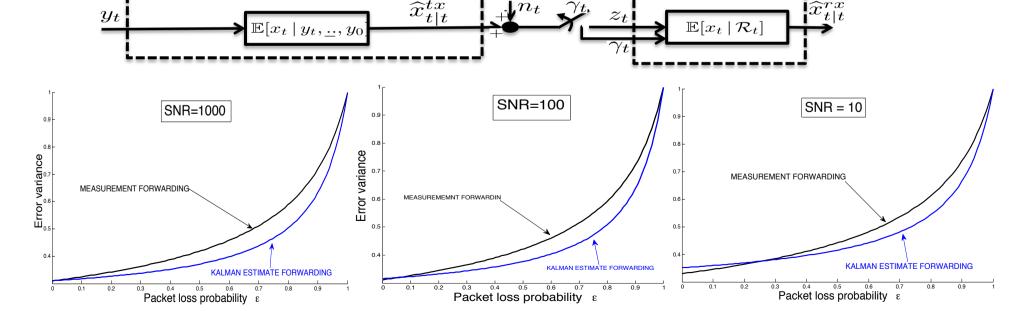
1) Measurement forwarding

B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M.I. Jordan, and S. Sastry. **Kalman filtering with intermittent observations**. *IEEE Transactions on Automatic Control*, 49(9):1453–1464, September 2004



2) Kalman estimate forwarding

V. Gupta, D. Spanos, B. Hassibi, and R. M. Murray. **Optimal LQG control across a packet-dropping link.** *Systems and Control Letters*, 56(6):439–446, 2007



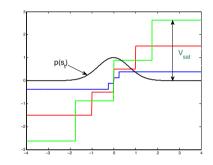
Takehome messages

- "Analog" model that takes into account ratelimitation, delay and packet loss
- Stability is often useless without performance
- Available information at receiver/transmitter has heavy impact on estimator/controller design
- Some unexpected results when SNR and packet loss are jointly considered

(Many) Open Problems

- Characterization of $\Omega(\mathcal{C})$
- Adaptive scaling for quantization to enforce

$$\mathbb{E}[n_t^2] = \alpha \mathbb{E}[s_t^2], \quad \forall t$$

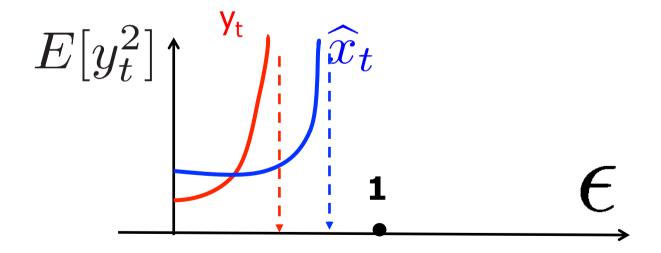


- SISO dynamical systems
- MIMO dynamical systems
- Quantization model for vector signals $s_t \in \mathbb{R}^n$
- **Explicit** computation of $a^*(\mathcal{C})$ for realistic codes
- Evaluation of control performance (stability is not enough)

(Many) Open Problems

If $y \in \mathbb{R}, x \in \mathbb{R}^n$, then critical packet loss probability ϵ .

$$\epsilon < \epsilon_x^c = \frac{1}{|\lambda_{max}(A)|^2} : \text{ transmit } \hat{x}_t - \epsilon < \epsilon_y^c = \frac{1}{|\prod \lambda_i^u(A)|^2} : \text{ transmit } y_t - \epsilon < \epsilon_y^c - \epsilon_y^c = \frac{1}{|\prod \lambda_i^u(A)|^2} : \text{ transmit } y_t - \epsilon_y^c - \epsilon_y^$$



Questions?

URL: http://automatica.dei.unipd.it/people/schenato.html

Chiuso, N. Laurenti, L. Schenato, A. Zanella. **LQG control over finite capacity channels: the role of data losses, delays and SNR limitations**. *Automatica (under review)*

A. Chiuso, N. Laurenti, L. Schenato, A. Zanella. **Analysis of delay-throughput-reliability tradeoff in a multihop wireless channel for the control of unstable systems**. *Technical Report, 2013*

S. Dey, A. Chiuso, L. Schenato. **Remote estimation with noisy measurements subject to packet loss and quantization noise**. *IEEE Transactions on Control of Network Systems (under review)*, 20XX

Theoretical vs Sampling Error variance

$$\hat{P}_y := \frac{1}{10000} \sum_{t=1}^{10000} y_t^2 \quad P_y = \begin{bmatrix} C & C \end{bmatrix} P \begin{bmatrix} C^\top \\ C^\top \end{bmatrix} + \sigma_v^2$$

$$N_b=3$$
 bits/sample ($ho=12,\ d_{max}(a,arepsilon,
ho)=2$)

d	1	2	3
P_y	21.81	702.5	∞
\hat{P}_y	21.25	429.1	$\rightarrow \infty$

$$N_b=4$$
 bits/sample ($ho=48$, $d_{max}(a,arepsilon,
ho)=4$)

d	1	2	3	4
P_y	13.67	36.20	136.84	∞
\hat{P}_y	13.42	38.10	149.58	$\rightarrow \infty$

$$N_b = 5$$
 bits/sample ($\rho = 192$, $d_{max}(a, \varepsilon, \rho) = 5$)

	, , ,						
d	1	2	3	4	5	6	
P_y	12.47	28.87	70.71	199.77	1012.86	∞	
\hat{P}_y	12.35	29.15	72.82	194.3	1414.15	$\rightarrow \infty$	

$$N_b = 6$$
 bits/sample ($\rho = 768$, $d_{max}(a, \varepsilon, \rho) = 7$)

d	1	2	3	4	5	6	7	8
P_y	12.20	27.45	62.80	145.25	366.95	1122.34	11412.34	∞
\hat{P}_y	12.31	28.09	62.12	147.97	373.46	1149.14	12100.01	$\rightarrow \infty$

Table : Sample vs. Population variances as a function of the delay d. Each table refer to a different number of bits/sample (equivalently $SQNR \ \rho$.)