Distributed estimation and control applications
using linear consensus algorithms

Federica Garin and Luca Schenato

Abstract In this chapter we present a popular class of distributearéfgns, known
as linear consensus algorithms, which have the ability tomde the global aver-
age of local quantities. These algorithms are particulsuiyable in the context of
multi-agent systems and networked control systems, ietrabsystems that are
physically distributed and cooperate by exchanging inftiom through a commu-
nication network. We present the main results availabld@literature about the
analysis and design of linear consensus algorithms,fdr &gtchronous and asyn-
chronous implementations. We then show that many contptiinization and esti-
mation problems such as least squares, sensor calibragibit)/e coordination and
Kalman filtering can be cast as the computation of some savefages, therefore
being suitable for consensus algorithms. We finally corelbg presenting very
recent studies about the performance of many of these d@nttcestimation prob-
lems, which give rise to novel metrics for the consensusrélgus. These indexes
of performance are rather different from more tradition&tncs like the rate of
convergence and have fundamental consequences on tha désimnsensus algo-
rithms.

1 Introduction

In the past decades we have being witnessing the growth afegring systems
composed by a large number of devices that can communicdte@perate to
achieve a common goal. Although complex large-scale mong@and control sys-
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tems are not new, as for example nuclear plants and air tiafitrol, a new ar-
chitectural paradigm is emerging, mainly due to the adopdibsmart agents, i.e.,
devices that have the ability to cooperate and to take autons decisions without
any supervisory system. In fact, traditional large-scastesms have a centralized or
at best a hierarchical architecture, which has the advarttage relatively easy to
be designed and has safety guarantees. However, thesasystguire very reliable
sensors and actuators, are generally very expensive, andtckrale well due to
communication and computation limitations. The recemdr® avoid these prob-
lems is to substitute costly sensors, actuators and conuation systems with a
larger number of devices that can autonomously compensét@atmal failures and
computation limitations through communication and coagien. Although very
promising, this new paradigm brings new problems into tloéupe, mainly due to
the lack of analysis and design tools for such systems. lticp&ar, there are only
few tools for predicting the global behavior of the systenaaghole starting from
the local sensing and control rules adopted by the smarbseasad actuators. As a
consequence, there has been a strong effort in past yeararyyengineering areas
to develop such tools.

One of the most promising tools are the linear consensusitiges, which are
simple distributed algorithms which require only minimangputation, commu-
nication and synchronization to compute averages of logahtities that reside in
each device. These algorithms have their roots in the asaf/Markov chains [53]
and have been deeply studied within the computer sciencencmiity for load bal-
ancing [61, 42] and within the linear algebra community foe aisynchronous so-
lution of linear systems [30, 56]. More recently they haverbeediscovered and
applied by the control and robotics communities for coofegacoordination of
multi-agent systems, as surveyed in [52, 51] and in the tdmsok [12].

The spirit of this chapter is mostly tutorial. We start in @t 2 by presenting a
coherent description of the linear consensus algorithrdsbgrsurveying the most
important results. No prior knowledge is required exceptstandard linear alge-
bra and control systems theory. A special attention has pk@ed on the design
of such algorithms, which, in our opinion, is one of the madévant aspects for
a control engineer. In Section 3 we illustrate through sor@rmles how these al-
gorithms can be applied to relevant estimation and contablpms such as least
squares, sensor calibration, and vehicle coordinati@h tpuname a few. Section 4
presents some more recent research directions. More ehgcitarting from the
analysis of control applications of consensus algorittsush as those described in
Section 3, we show that the performance indexes to be carsidee different from
the traditional index given by rate of convergence, i.e.a@bgential spectral radius
of the consensus matrix, and in general this index depend$ tre eigenvalues of
the consensus matrix. This observation has relevant caesegs in terms of anal-
ysis and design of consensus algorithms, which goes beyentlirrent results and
opens up new research directions, which we believe arecplatly relevant for the
control community.
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2 Linear consensus algorithms: definitions and main results

In this section, we review some of the main results on theyaisabnd design of
consensus algorithms and we also provide references far reoent developments
under different scenarios and assumptions. In particwkagyill concentrate on lin-
ear discrete-time consensus algorithms. However we wi# gome references to
continuous time and nonlinear consensus. We start by intiag some mathemat-
ical preliminaries. Let us consider the following lineardagpe equation:

x(t+1) = Q(t)x(t) 1)

wherex(t) = [xq(t) x2(t) --- xn(t)]" € RN and, for allt, Q(t) € RN*N is astochastic
matrix, i.e. [Q(t)]ij = qij(t) >0 andzﬂ-\‘:lqij = 1,Vi, i.e. each row sums to unity.
Equation (1) can be written as

N
X(t+1) = 3 aj(tx(t), i=1...,N 2
=1
= m(t)+;qij(t)(xj (t) —%(t) 3)
JF#

where the local updates of each component of the vedtowritten explicitly.

A stochastic matrixQ is saiddoubly-stochastid also ZiNzl gij =1,Vj, i.e. each
column sums to unity. Clearly if a stochastic matrix is syrmiei.e. Q = Q',
then it is also doubly-stochastic. An important class ofldgtstochastic matrices
is given by the class of stochastic matrices which are alswleint. A matrixQ =
circ(cy, Cy,...,CN) is acirculant matrixif

Ci1 C2C3--- CN
CN C1C2 -+ CN-1

Q=1|. . . (4)
C2C3C--r C

All eigenvalues); of a stochastic matriQ are included in the unitcircle, i.g4;| <1,
and the vectot = [11---1]T € RN is an eigenvector fa@ and its eigenvalue is equal
to one, i.,eQl = 1. The essential spectral radiussr (Q) of a stochastic matrix
Q is defined as the second largest eigenvalue in modulus of #t8xnQ, i.e. if
we consider the ordered eigenvalues in modules|A1| > |Az| > --- > |An|, then
esr (Q) = |Az].

Many important results about convergence of consensusitlgs can be re-
framed as graph properties. Therefore we provide some lugedliminary defi-
nitions. We define the (directed) graph associated with ehststic matrixQ as
9o = (& ,&g), where the nodes are/” = {1,2,...,N} and the edges aréy =
{(j,i)|qij > 0}, i.e.(j,i) € & implies that nodé can receive information from node
j. A graph isundirectedf (i, j) € & implies that alsdj,i) € &.
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We also say that a matriQ is compatiblewith the graph = (.4, &) if its
associated grapio = (.4, o) is such that/g C ¢, i.e., is a subgraph of. We
denote withGg the set of graphs which include all self-loops, &< Gg if and
only if (i,i) € &,Vi € .. Thein-degreeof a nodei is defined agliy(i) = |#n(i)|,
where¥in (i) ={j|(j,i) € &,i # j} is the set of neighbors that can send information
toi and| - | indicates the cardinality of a set. Similarly, thet-degreeof a nodd is
defined aslout(i) = | You(i)| and¥ou(i) = {j|(i,]) € &,i # j}. For an undirected
graph, in-neighbors and out-neighbors of a nodmincide and they are simply
denoted by the set’(i) whose degree id(i) = | ¥/ (i)|.

Theadjacency matrix A& {0, 1}N*N of a graph = (.#", &) is defined agAji; =
1if (i,j) € & andi # j, and[A]jj = 0 otherwise. Thed_aplacian matrix Lof a
undirected graph is defined Bs= D — A, whereD = diag{d(1),d(2),...,d(N)} is
diagonal andli(i) is the degree of node The LaplaciarL is positive semidefinite
andL1=0.

A graph isrooted if there exists a nod& € .4 such that for any other node
j € A there is a unique path frokto j. A graph isstrongly connected there is
a path from any node to any other node in the graph. Clearlsoagly connected
graph implies that it is also rooted for any node. Themeterof a graph is defined
as the length of the longest among all shortest paths cangeaty two nodes in a
strongly connected graph. A graptcismpletdf (i, j) € &,Vi, j € 4. Theunionof
two graphs#y = (A, 61) and%, = (A, &) is defined as the gragh = (4, &) =
94, U4 where& = & U é7.

2.1 Analysis

In this section we describe three main frameworks for modetionsensus algo-
rithms. The first is related to static synchronous impleragon, where updates
at each node are performed simultaneously, thus beingrejetesented by con-
stant matrices. The second and the third are both more mufmbmodeling asyn-

chronous implementations, where information exchangesaal variable updates
are not necessarily coordinated, thus being well-reptedeoy time-varying ma-

trices. The second framework addresses the problem of §irttiem weakest suffi-

cient conditions that guarantee convergence to consensusd worst-case point
of view, thus being able to characterize a wide class of amseimplementations.
The drawback of this approach is that it is very hard to esénperformance in-

dexes such as the rate of convergence and, when possibjeetlietions are often
over-pessimistic. The third framework considers rand@ahiasynchronous imple-
mentations which has three main advantages as comparee se¢bnd approach.
The first advantage is that randomized communication andtepdequire almost
no coordination among nodes and are easy to implement itiggache second ad-
vantage is that this approach naturally models stochaatica of the environment,
such as communication losses, communication noise andigaton. The third ad-

vantage is that the estimation of performance such as raterviergence is closer
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to the experimental performance observed through sinougtind experiments.

Let us consider the following definitions:

Definition 1. Let us consider Eqn. (1). We say ti@(t) solves theconsensus prob-
lemiflimi_oXi(t)=a, Vi=1,...,N, wherex(t) is thei-th component of the vec-
tor x(t). We say thaf(t) solves theaverage consensus probleri in addition to
the previous condition we hawe= % sN . %(0). If Q(t) is a random variable, then
we say thaf solves the probabilistic (average) consensus problenif the limit
above exists almost surely.

These definitions include a wide class of consensus stestegirategies with a
time—invariant matriXQ(t) = Q, deterministic time-varying strategi€st), and ran-
domized strategies whef¥t) is drawn from a set of stochastic matric€saccord-
ing to a probability distribution. The next theorem desesilsome sufficient condi-
tions which guarantee deterministic and probabilistie(age) consensus.

Theorem 1.Let us consider the sequence of constant matricés © Q. If the
graph%g € Gg and is rooted, then Q solves the consensus problem, and

lim Q' =1n"
wheren € RN is the left eigenvector of Q for the eigenvalue one and hagitbe-
ertiesn; > 0and1'n = 1. If %q is strongly connected, thep > 0, Vi. If in addition
Q is doubly-stochastic, the#, is strongly connected and Q solves the average con-

sensus problem, i.g = ﬁl. Moreover, in all cases the convergence is exponential
and its rate is given by the essential spectral radiss (Q).

This theorem is well known and can be found in many textboak®arkov
chains such as in [53]. The assumption that Gg is not necessary to achieve con-

sensus; for example considgr= {1 0 , for whichx(t) = x1(0) [ﬂ foreacht > 1

1 0]
andx(0) = [x1(0) x2(0)]T. However, some additional assumption besidgeing
01
10
, . - Xl(o)] {Xz(o)}
is such that¥g is rooted, but it givex(2t) = andx(2t+1) =

: aives(20) = | (01| andx(a+1) = | (0
for all t. In this chapter, for the sake of simplicity, we will use tresamption that
%o € Gg), also noting that this is a very mild requirement since it nsethat any
agent can communicate to itself; however in some cases,auahthe de Bruijn
graphs [24], it is useful to consider also graphs nd&in

rooted is actually needed in order to guarantee consermusxampleQ =

Besides the results on constant matriQemuch research has been devoted to the
analysis of time-varying linear consensus which is ad@eby the next theorem.

Theorem 2.Consider the deterministic sequence of stochastic matiiGgt)},"
and the corresponding associated graphift) = %q). Suppose?(t) € Gg, Vt.
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Then the sequence(t) solves the consensus problem if and only if there exists
a finite positive integer number T such that the graphg) obtained from the
union of the graph%/(t) in the following way:¥ (1) = ¢ (1) U¥ (T+1)U... U

4 (1+T—-1)witht=0,1,... are all rooted. If in addition the matrices (@ are

all doubly-stochastic, then they solve the average consgm®blem.

A simple proof of the previous theorem can be found in [41},ituroots can be
tracked back at least to [61], and it has been rediscoverestadimes in the past
years [33, 50, 8, 13]. The previous theorem states that iti;ecessary for graphs
associated to the matric€gt) to be connected at all time, but only over a time win-
dow. This assumption basically guarantees that informdtiavels, possibly with
some delay, from at least one node to all other nodes infynitelny times. What is
particularly remarkable in this theorem and also in Theotes that convergence
is completely characterized by connectivity propertieshef graphssy ), regard-
less of the specific values of the entries of the matri@ég. On the other hand,
the negative side is that the rate of convergence is harditoas since it is based
on worst-case analysis. Therefore in general it is ovesip@stic and of little prac-
tical use. Recent work has tried to address this problem loynfintighter bounds
on the rate of convergence while adding only general coinssran the topological
properties of the graplig,) and on the numerical values for the entrie€qf) [2].

A more recent approach to consensus is to model time-vacgingensus in term
of randomized strategies. The advantage of a randomizewagpis to preserve
simple convergence conditions based on graph propertiés alftaining good esti-
mates for the rate of convergence of typical realizatiot® fiext theorem provides
convergence conditions in a randomized context.

Theorem 3.Consider a random i.i.d. sequence of stochastic matrig@&)},"%
drawn according to some probability distribution from thet £, and the stochastic
matrixQ =E[Q(t)]. If the graphs?(t) = ¥y € GsI,Vt and if% is rooted, then the
sequence Q) solves the probabilistic consensus problem. The rate ofergence
in mean square sense defined@s= supq) limsup_,., (E[[|x(t) —x()[[?])¥ is
bounded by

(esr (Q))> < p < s (E[QT(1)QQ(L)])

whereQ =1 — ﬁllT andsr (P) indicates the spectral radius of the matrix P, i.e.
its largest eigenvalue in absolute value. If in additioft (are all doubly-stochastic,
then they solve the probabilistic average consensus pmoble

The proof of this theorem can be found in [26]. Similarly te firevious two the-
orems, even in a randomized scenario the convergence morsditre characterized
in terms of graphs connectivity properties. In particulastates that convergence
is guaranteed if the graph is connected on average. Howgifferently from The-
orem 2, the randomized framework provides tighter boundthemate of conver-
gence. Another advantage of considering a randomized frankds the ability to
model scenarios subject to random communication links deadailure.

There is a rich literature on randomized consensus thahésgtthe results of
the previous theorem. One direction is to find weaker coremrg conditions, more
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specifically by relaxing the hypothesis of i.i.d. sequenesrgodicity only [58].

Another direction is to add additional hypotheses on theioesQ(t) or on the set
2 in order to improve the convergence bounds. For examplelij if was shown
that if Q(t) are symmetric and idempotent. i@(t) = Q' (t) andQ?(t) = Q(t), then

the upper bound is given 3r (E[QT (t)QQ(t)]) = esr (Q).

There is also a rich literature on the analysis of consenedsrudifferent sce-
narios. For example, there is an equivalent version of theseosus problem in
continuous time given by

x=A(t)x (5)

whereA is aMetzler matrix i.e. a matrix whose off-diagonal elements are nonneg-
ative and the row-sum is null, i.&1 = 0. This types of systems have been well
characterized by Moreau [40]. For example, the opposite ladfdacian matrix is
a Metzler matrix, which implies that = —Lx achieves consensus under general
connectivity properties of the associated graph. The nanotis time framework is
particularly suitable for modeling flocking and vehicle dynics [28, 52, 59].

Another research direction is concerned with convergeooeliions for con-
sensus with delayed information, i.e. for consensus whygsardics can be written
as

N
xit+1) =S gjx(t—r(t)), i=1,...,N
;l i

where the delay;(t) can be unknown and time-varying [46, 8, 7, 60, 54, 62]. The
main finding is that consensus is very robust to delay, whigtarticularly important
in networked systems where delay is unavoidable. This cdrossthe observation
that the convex hull of the poinig(t) can only shrink or remain constant, and delay
only marginally affects this property [41, 8].

Also much interest has been generated from consensus stdgeantization
and in particular to quantized communication. In this cgnhtee dynamics can be
written as

N
it+1) =9 qgjaq(xj(t)), i=1,....,N
X ( ) J; jda(xj(t)), i

whereqq(-) : R — Qy and @ is a finite or countable set. A typical example is
dq(x) = |x], where|x] indicates the largest integer smaller tharThis problem
is particularly challenging due to the fact that quant@atacts similarly to noise,
thus being particularly harmful since the consensus mesf@t) are not strictly
stable but always have an eigenvalue in one and convergegbé mot be guaran-
teed. Therefore, much effort has been given in finding qaatitin strategies and
guantization functions that still guarantee consensusl8,29, 38, 36, 43].
Another interesting aspect is related to consensus suigjéossy communica-
tion, i.e. a scenario where communication scheduled betvwee nodes fails due
to random interference or noise. This scenario naturabytfiié randomized frame-
work of Theorem 3, however it also requires the design of apmmeation mech-
anism when a packet is lost. Different strategies have beepoged and studied
[35, 27, 47]. For example a natural scheme is to compensatkeddost packets by
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replacing the the lost valug from the transmitting nod¢ with the self valuex; of
the receiving nodg more formally:

N N
i(t+1) = (i 1—yj(t))aij )X i (Odijxj(t), i=1,...,N
X(t+1) (qﬂ_%ﬂ( v,<>>q,)x+j_§#vj<>qjxj<> i

wherey; (t) is a random variable such thpf(t) = 1 if transmission at timé from
nodej to nodei was successful, ang (t) = 0 otherwise [27]. These works show
that packet loss in general does not affect convergencerteetsus, but it can re-
duce convergence rate and change the final consensus vatoenpared to ideal
scenario with perfect communication, iyg.(t) = 1,Vi, j,t.

A different setting is studied in [64], where additive noiseincluded in the
consensus dynamics, i.e.

X(t+1) = Qx(t)+v(t).

Note that, in all cases described above, noise affects thedspf convergence
and the final value obtained (which is not the desired avg¢ragédoes not prevent
convergence. Differently, in the case when there is noifledrtiransmissions among
nodes (without feedback), so that the messages sent by ahaxgaeceived by its
neighbors corrupted by noises which might be different,\hith are unknown to
the sender, then convergence itself is an issue. The difficuiin the design of a
modified consensus algorithm capable of avoiding noiseraatation. Algorithms
dealing with variations on this setting have been desigmeldeaalyzed by various
authors, e.g. [49, 32, 34] (using time-varying weights ia tonsensus algorithm,
to decrease the effect of neighbors’ noise) and [16] (usingy-€orrecting codes of
increasing length to decrease the communication noise).

2.2 Design

Up to now, we provided a short overview of the properties afsemsus algorithms
under different scenarios and assumptions. However, iryraagineering applica-
tions it is also very important to be able to design such dlgars. From a con-
sensus design perspective, the design space is given byptimunication graph

@ ={,&} of a network ofN = |.#| agents, and the design problem consists in
finding suitableQ(t) compatible with# that achieve consensus or average consen-
sus. We assume that the graghncludes self-loops, i.€4 € Gg, and that it is at
least rooted.

There are two main approaches to design. The first focusesxahdesign meth-
ods which require only local information, i.e. each node dasign its commu-
nication and consensus updates weights almost indepdépdénihe other nodes.
Obviously, with this approach optimality with respect tarsperformance index
is not guaranteed. The second approach focuses on methaatstwhto optimize
some global performance index. As a consequence, this lefels to a centralized
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optimization problem that strongly depends on the topolmgg might be suitable
if the network static and has small size. We start by presgtiese two approaches
first within the context of static consensus, (Ft) = Q and then in the context of
time-varying consensus strategies.

2.2.1 Matrix design — static consensu<)

If only consensus is required then a simple local strategleign the matrixQ is
given by:

1 .
i=—, (,)e&
q'J din(|)+1 (J )
Clearly¥%g = ¢, andQ is stochastic, thus satisfying hypotheses of Theorem 1.
Differently, if average consensus is required, varioustimhs are possible. If the
graph is undirected a possible solution is to choose:

e if (j,i) €& andi# j
q”_{l—ed(i) 1= | ©
whereg < Wd() This matrix is clearly symmetric since the non-zero ofigibnal

terms are all equal and positigg = ;i = &,Vi, j. The condition ore is necessary
to guarantee that all diagonal terms are positive. As a cuesee(Q is a stochastic
symmetric matrix, therefore it is also doubly-stochastloreoverdg = ¢ and by
hypothesis? is rooted, thus satisfying hypotheses of Theorem 1. Note that this
matrix is strongly related to the Laplacian mattiof the graph?. In fact, consider
the discretized dynamics of Egn. (5) wheére- —L with time stepe, i.e.x(t+1) =
e ¢hx(t) = Qqgx(t), then the first order expansion@f, i.e.Qq = | —eL+O(¢), has
the same structure of th@ given by Eqn. (6).

Another possible strategy for undirected graphs is basetherMetropolis-
Hastings weights:

= max(dw yra if (1,0) € £ andi # | -
2j= 1|¢Jq11 ifi=]

Clearly the matrixQ is symmetric and the diagonal elements are strictly pasitiv

1
Smceq" =1- Zj 1|7éJqIJ >1- ZJ Li#j,(i,j)e& d()+1 =1- (§J)rl d(i)+1 >0,

thereforeQ is doubly-stochastic artdy = ¢ which are sufficient conditions to guar-
antee average consensus. As compared to the strategy basee lbaplacian of
Eqn. (6), the strategy based on the Metropolis weights of Efris local, i.e. each
node requires only the knowledge of local information, ngntiee degrees of its
neighbors, while the former requires the knowledge of areufyound on the de-
gree of all nodes of the network. Moreover, the Metropohsdd consensus matrix
has in general faster convergence rate than the Laplacis@diconsensus matrix.

1 |f an undirected graph is rooted, then it is also stronglynemted.
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If the communication grap# is directed, then the design of a consistent doubly-
stochastic matrix is not trivial. A possible strategy isdéxhsn the design of a doubly-
stochastic matrix based on a convex combination of permoutatatrices, where a
permutation matrixP is defined a® € {0,1}N*N 1TPp = 1T P1 = 1. Note that a
permutation matrix is doubly-stochastic. This procedareasically an application
of the Birkhoff's Theorem [39]. We start from the assumptitiat the graph is
strongly connected. This implies that for each edge(j,i) € & there exists a path
connecting nodéto nodej, which in turns implies there exists at least one simple
cycle? inthe graph including the edggei.e. there exists a sequence of non repeated
verticesty, 0o, ..., 0, € A suchthaty =i,4. = |, (¢,0i11) e &fori=1,...,L—1
and({.,¢;) € &. Associated to this cycle it is possible to define a permoratiatrix
P. as follows:
= 1 forr=1,...,L—-1

(Pelertrya =

[Pe]fol

[Pelk = 1 fork#£4,r=1,...,L
[Pe]hk = otherwise

Clearly%p, C ¢. According to this procedure it is always possible to fiiatycles

in the graph¢ and permutation matricd3,i = 1,...,M constructed as above, that
includes all edges of the graphs. Let us consider now thexr@te agl + z{\ilajP.
whereg; > 0,Vi =0,...,M andz{\ioa =1, thenQ is still doubly-stochastic since
it is a convex combination of doubly-stochastic matricelsofsince all edges &
are included irQ, then¥g = ¢. These two facts guarantee ti@aachieves average
consensus.

However, this procedure is rather tedious and requiresaglatowledge of the
graphtopology. There is an elegant alternative soluti@ttoeve average consensus
[1], which requires only local knowledge of the graph tompld_et us consider the
matrix Q designed as follows:

1 o
= G 11 IV ES
This matrix is column-stochastic, i.e. its transpose istsstic Q"1 = 1), and¥y =
¢ is strongly connected. This implies by Theorem 1 thag ligQ! = lim¢ . ((QT))T =
(1p")T = p1™ wherep; > 0,Vi. Now let us consider(t + 1) = Qzt) andw(t +
1) = Qw(t) where the initial condition are(0) = x(0) andw(0) = 1, and the
X(t) such thatx(t) = Lt)) From lim_. Q' = p1T, it follows that lim . z(t) =

(5M,2(0))p = ($M1%(0))p and m_ew(t) = (51, w(0))p = Np, therefore
(0)

iMoo Xi (1) = p'(z' 1” ) =x Z 1Xi(0) as desired. Note that average consensus

is achieved througﬁ a nonlinear algorithm that uses twolleataear iterative up-
dates very similar to standard consensus. The weak poifiti®approach is that
perfect communication is required since the algorithm eaoome unstable if lossy
links are considered.

So far, we just considered design strategies to achieveeosns or average con-
sensus, but we did not discuss about their rate of conveeg®wsign of consensus
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algorithms with fast rate of convergence is not a triviaktdssimple consensus is
required, there is a simple strategy that achieves in a finiteber of steps. Given
a rooted graph, it is always possible to find a tree that casr@te node, hamely
the root, to all other nodes. Without loss of generalityyass that the root is node
i =1, and let us consider only the set of directed edges asedaiath this tree, i.e.
See C &. Note thatéiee does not contain self-loops. Let us consider the marix
designed as follows:

Q=1 Gj=1 (j,i) €Stree, ] #1

Clearly the matrix is stochastic and it is not difficult to ¢hatQ* = 1[1 0 --- Q]
fort > ¢, i.e.x(t) =x1(0) fort > ¢, wherel is the maximum distance of all nodes
from the root. This implies thatsr (Q) = 0. In other words, each node sets the
value of its variablex;(t) to the value received from its parents, therefore after a
finite number of steps all nodes will have a copy of the initi@hdition of the root.
This gives very fast convergence rate even for very large/onss, as long as the
diameter, i.e. the largest path distance within any two sp@desmall.

If average consensus is required, then the previous syra@ipviously not suit-
able. Optimal design of) in terms of fast rate of convergence is not trivial in di-
rected graph. If the graph is undirected, then it has beewrsihy Xiao et al. [63]
that finding a symmetric stochastic matrix consistent whth graph with smallest
esr is a convex problem. i.e.

n’ggin esr (Q)
st. Q=Q",Q1=1[Qj > 0,4 =¥

Actually the non-negativeness constraint on the elemen@®is not necessary to
have a convex problem, and therefore can be removed, thugpmg a matrixQ
with possible negative entries which can lead to an evenlenedr . On the other
hand, this is a centralized optimization problem, and th@le/tiopology of the
network is needed to find the optimal solution. Local optiatian strategies to min-
imize theesr are still an open area of research.

2.2.2 Matrix design — dynamic consensugQ(t)

Now, we address the problem of designing dynamic consemisaisges where the
consensus matrix is not constant but can change over tingeniBjor drawback of
static consensus is that it requires some sort of synchatiaizamong all nodes of
the network. In fact, between one iteration and the subsdteeation, nodes need
to exchange information and then update their local vaembimultaneously. This
can be difficult to enforce or simply too costly. Therefokegre is much interest in
designing consensus strategies that require little coatidin and synchronization
among nodes. These algorithms are also referregyschronous algorithmSome

of the most popular asynchronous strategies are motivgtprhlotical consideration
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based on the communication schemes that can be implementeztworks. These
include broadcast [3], asymmetric gossip [25] and symmegossip [11].

In the broadcastscheme, one nodetransmits its information to all its neigh-
bors #u(i), and each receiving node updates its local variable usingersus.
More formally, given a possibly directed grapgh= (./",&), thenQ(t) € Qg =
{Q1,Q2,...,0Qn}, whereN = |.#] and

Q=I1—-w ej(ej—e,)T

jel out(i)

wherew € (0,1), | is the identity matrix of dimensioN, andg € RN is a vector of
all zeros except for thieth entry which is set to one. Clearly &)} are stochastic,
have self-loops, anédg C 9.

Differently, in theasymmetric gossipne node selects only one of its possi-
ble neighbors/oui(i), which after receiving the message updates its local viariab
More formally, given a possibly directed grapgh= (.4",&), thenQ(t) € Qac =
{Q1](i,j) € £.i# j}, where

Q' =1-wej(ej—a)T

wherew € (0,1) ande are defined as above. Clearly @i are stochastic, have
self-loops, and/y; C ¢. Note that even if the graplf is undirected, than the ma-
tricesQ' are only stochastic and do not guarantee average consdiftgisame
consideration applies to the broadcast matri@edefined above.

The symmetric gossijis applicable only to undirected graphs. In this scheme,
one nodd transmits its information to only one of its neighbgrswhich in turn
transmits back to the nodeanother message with its local value. Only after the
completion of this procedure the two nodes update their lestiaes using a con-
sensus scheme based on the same weigiMore formally, given the undirected
graph¥ = (¥ ,&), thenQ(t) € Qsg= {Q" | (i,]) € &,i # j}, where

Ql=1-w(ej—e)(e—a)'
Clearly allQ are doubly-stochastic, are idempotent (i(&')2 = Q'l), have self-
loops, and/qi; C ¢. Although symmetric gossip is somewhat more complex from a
communication point of view, differently from broadcastlaasymmetric gossip, it
has the advantage to preserve the average at any time iribnefore convergence
to consensus automatically guarantees convergence tagge/eonsensus.

At this point, the design problem is how to select a sequeh@¥tg from the sets
defined above for the broadcast, asymmetric gossip and strinmessip, and how
to choose the consensus weighin general the consensus weight is setite 1/2
and more attention is paid on the drawing of matri@¢s). One approach is to de-
terministically select these matrices according to songeiesece, however this still
requires some sort of coordination and synchronization.gkamatural approach
is to select these matrices randomly, possibly accordireptoe i.i.d. distribution
on the set€). This distribution can be represented by a vegiar RN, such that
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p>0andl” p= 1 for the broadcast model, whepe= P[Q(t) = Q;]. Similarly, the
probability distribution in the symmetric and asymmetrasgip can be represented
by a matrixP € RN*N which is nonnegative, i.gPJi; > 0, is consistent with the
graph, i.e% C ¢, and sum to unity, i.elTP1 = 1, where[P}ij = P[Q(t) = Q']. In
this case, the design space corresponds to the probahditipdtion of these sets,
i.e. the vectolp or the matrixP. The proper framework to analyze these strategies is
given by Theorem 3. Many results about exact rate of convegand its optimal
design are available for communications grafhthat present special symmetries
like complete graphs, circulant graphs, hypercubes, anfl@ 26]. Differently, for
general undirected graphs, Boyd et al. [11] showed thatuthéeaandomized sym-
metric gossip schemes with weight=1/2, the rate of convergence can be bound
by p < esr (Q) thus suggesting the following optimization criteria forximaizing

the rate of convergence:

min esr (Q)
st. Q= Z PlijQ", [Plij >0,1TP1=1 % C¥

which turns out to be a convex problem. This optimizationbfem is a central-
ized problem, however the authors in [11] suggested alsopirbal decentral-
ized optimization schemes. Fagnani et al. [25] studied Hyenanetric gossip for
general undirected graphs and showed that rate of convege=m be bound by
p <sr ([QT(0)2Q(0)]) = 1—2w((1—w)—wN~1)u, wherey is the smallest posi-
tive eigenvalue of the positive semidefinite masix diag P1) — (P+PT)/2, where
diag’x) : R" — R"™*" indicates a diagonal matrix whole diagonal entries are the e
tries of the vectok. Therefore in this scenario a possible optimization dritarfor
minimizing the rate of convergence is to minimigewhich is minimized by set-
tingw = 3 Nﬁl 3 1 and by maximizingu. If we restrict to symmetric probability
matncesP PT, maximizingu is equivalent to the following convex optimization
problem:

max &
Pe
st. diagPl)—P>¢l, P=PT [P; >0,1"TP1=1 % C¥

Similarly to [11] also this optimization problem is centeald and therefore might
not be suitable for fully distributed optimization.

2.2.3 Graph design

In the previous sections, we focused on the issue of how tigulése coefficients
of the matrixQ for a given communication grap#i. However, there are scenarios
for which also the communication graph can be designedetber it is useful to
understand the effect of the graph topology on the perfoomand how it scales as



14 Federica Garin and Luca Schenato

the number of nodes increases. Also, it is important to rfwg tn many cases, the
effect of the graph topology on performance is much morevagiethan the actual
choice of the weights, i.e. of the non-zero entrieQofn fact, for example, Xiao et
al. [64] studied consensus over random geometric grapfjsaft8compared opti-
mal design with suboptimal decentralized strategies likkeconsensus based on the
Metropolis matrix, showing that performance differenceswat so drammatically
different and seemed to scale similarly with the graph size.

In this context, let us consider the static consens$us 1) = Qx(t). Asking what
graph allows for the fastest convergence, without any &rrtonstraint, is trivially
answered (the complete graph, i.e. every pair of nodes iseziad by an edge) and
is not very meaningful: the complete graph correspondsnitrakized computation.
A more interesting question is asked by Delvenne et al. [2R,\&hat is the best
graph, under the constraint that each agent receives at vnosssages at each
iteration (i.e. % has bounded in-degree)? The answer is given by a family phgra
known asde Bruijn graphswell-known in the computer science literature for their
expansion properties, and capable of giving the exact geérdinite time (not only
lim—eX(t) = ﬁlTx(O), but alsox(t) = ﬁlTx(O) for somet), and moreover the time
t is the smallest possible with the constraint on the in-degre

The very good performance of de Bruijn graphs is surpridiegimpared with a
family of graphsAbelian Cayley graphi 7], which are grids onl-dimensional tori
(acircle ford = 1), and whose algebraic structure (a generalization ofilzire ma-

trices) allows to compute the eigenvalues and to provedghai{Q) > 1— ch*il,
wherev is the degree of the nodes ands a positive scalar independent of the
graph. This proves that, whéx\h— o, esr (Q) — 1, i.e., convergence is consider-
ably slowed down by the size of the network. However, thisosalways the case:
in addition to de Bruijn graphs, there are other significdasses of graphs, known
asexpander graphssuch thaesr (Q) is bounded away from 1 whed — « (see
[45] for the study of such graphs in the context of conseng@ighms). A particu-
lar family of graphs which allow fast information transféaging a small diameter
despite the small degree of each node) are the so-csiied-world graph, which
are considered as a reasonable model for many social ititerade.g., the col-
laboration graph for scientific authors, or the spread ofesdimeases) and for the
world-wide web; they have been studied in the consensuatitee by Olfati-Saber
[44] and Tahbaz-Salehi et al. [57].

All such graphs have good properties in terms of fast corararg, despite the
small (average) number of neighbors of each node, and asegpo Abelian Cay-
ley graphs (roughly speaking: grids) where convergencerg slow for large net-
works. The key fact that makes this difference is that ingridt only the number
of neighbors is little, but also their position is forced te lbcal, in a somehow
geometrical sense. In many practical deployments of seret@rorks, geometrical
constraints are indeed present, and thus the very stracingesymmetrical Abelian
Cayley graphs can be thought as an idealized version oftieadiettings, and are
important in that they underline the strong limitationstthach locality constraint
has on performance and gives guidelines for the design afidhger of nodes in
the network, in the case when the topology is bound to havk augiven struc-
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ture and the size only is the objective of design. A step tdaa more realistic,
less structured family of graphs where geometrical bourelsiaforced is the study

of random geometric grapH48]. Random geometric graphs are undirected graphs
which are widely used to model wireless sensor networkstla@gare obtained by
randomly generating points in the Euclidean space (usualtite plane) according

to a Poisson point process (the number of points in any baliretgon is a Poisson
random variable with average proportional to the area, hagbosition of points is
uniformly distributed in the region) and then drawing anetdgtween two nodes if
and only if their relative distance is smaller than a predsficommunication radius

r.

The analysis of the effect of the graph topology on perforoeamas been con-
sidered also for time-varying consensus algorithms, anitpéarly for randomized
algorithms (as opposed to the previously-mentioned rgswliere families of ran-
dom graphs were considered in the sense that the one timaantvgraph is ran-
domly selected before starting the algorithm). An earlyknoy Hatano et al. [31]
studies the case where, at each time step, the graph is crevsamly according
to the Erd6s-Rényi model, i.e., the presence or absenedgss between any pair
of nodes are given by i.i.d. Bernoulli random variables. Aren@cent research line
has studied convergence of various randomized gossipidlg, when the random
activation of a node or of an edge is restricted to an undeglgraph smaller than
the complete graph. In this context, a relevant result bynBaget al. [26] concerns
the rate of convergence of various algorithms (includinmsetric, asymmetric
and broadcast gossip) when the underlying graph is an Ab&layley graph. An-
other very interesting result can be found in [11], wherertie of convergence of
symmetric gossip is found for random geometric graphs antpaved to the faster
convergence in the preferential connectivity model (a pexponodel for the graph
of the world wide web, and an example of small-world graph).

3 Estimation and control problems as average consensus

In this section we illustrate with few examples that soménestion and control

problems can be reframed as the computation of the averagenoé quantities,

which therefore can be efficiently computed in a distributeshion using average
consensus algorithms.

3.1 Parameter estimation with heterogeneous sensors

Let us consideN sensors that measure a noisy version of the true parafeté

as follows:
Yi=0+4Vi, i~.4(0,06%), i=1,....,N
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wherey; are independent zero-mean random variable with covariaﬁp'ee. sen-
sors have different accuracy. The minimum-variance eséirnhthe parameted,
given all the measurements, is given by:

A N
Buv = ) aiyi, ai=
2,

£Ys

N 1
2j=1 o?
i.e. itis a convex combination of the measurements. It ig &asee that the previous
estimator can be written as:

1N 1.,
« NZi:lgizM
B = TN 1
Nij:1gjz

i.e. itis the ratio of two averages. Therefore, it can be gspiically computed in a
distributed fashion using two average consensus algosithiparallel whose initial

condition are set t&! (0) = Ly; andx? (0) = 2, so that
y
LA X)) A -
tlTooel(t) T XIU('[) - 6MVa vi.

3.2 Node counting in a network

In many applications it is important to know how many nodesr¢hare in a net-
work. This can be easily computed via an average consengasthin, by set-

ting all the initial conditions to zero except for one node. k;(0) = 1 and

x(0) =0,i = 2,...,N. Since average consensus guarantees converge to the aver-
age of initial conditions, an asymptotically correct esttor of the total number of
nodeN is given by:

- 1
N|(t) .—)(i—(t),
because
.- . 1 1 )
lim Ni(t) = lim = TN =N, Vi.
t—-oo t—00 X; (t) & ijlxi (O)

3.3 Generalized averages

Besides the common arithmetic average it is also possildertgoute other types of
averages such as
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Zg = {’/%iiy{’

wherea = 1 gives rise to the usual arithmetic average= 2 the mean square,
o = —1 the harmonic mean. Also note that := limg_, 1 2Zg = Mmaxy; [6, 21].
These generalized averages can be computed using avenaggnsas by setting
the initial conditionx;(0) = y* and computing an estimate of the desired average as
follows:

lim Z(t) := /%) =24, Vi

t—+foo
Another important average is the geometric mean defined as:

The geometric mean can be writtengs= exp(logz;) = exp(zi'\‘:llogyi), there-
fore it can be computed using average consensus by seténgitial conditions to
xi(0) = logy; and the following estimator:

Jim 2(t) 1= exp(Nx(t)) = 79, Vi

Note, however, that in this case the number of nddeweds to be known in ad-
vance.

3.4 Vehicle rendezvous

An important example of vehicle formation control is thedervous problem (see
e.g. [12]), where all vehicles are required to meet at a comimeation using only
relative position information for all initial conditionsn its simplest formulation,
the vehicle dynamics is given by

Xi(t+1) =x(t) + ui(t)

and the goal is to find a linear control strategy which usey oglative distance
information, i.e.

N
(1) = i (D) (X (1) — X (t
ui(t) J;qj()(xj() xi(t))

such that lim_ 1. X (t) = X for somex. This is indeed a consensus problem that
can be solved by choosing the weighigt) that guarantees convergeAcBesides

2 In realistic scenarios the gaigg are a function of vehicle location, i.g;j = g;j(x). A typical
model is to consider limited communication range 0, i.e.q; = 0 if |[x —x;| > r. This gives
rise to nonlinear dynamics which is not captured by the mprdedented in Section 2. The analysis
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convergence, it is also relevant to compute performandeeoféndezvous strategy.
A natural approach is to consider a linear quadratic (LQ)sueagiven by:

o e —(oo)|[2 - 2
JLq—Jx+£Ju—tZOIIX(t) X(eo)| +8I;IIU(UII

wherex = [xg X2 --- Xn]T, u=[ug Uz --- uN]T, ande is a positive scalar that trades
off the integral square error of all vehicles from the renaess locatiork(«) = X1,
namelyJy, versus the integral energy of all vehicles required to@ehtonsensus,
namelyJy.

3.5 Least Squares Data Regression

Least squares are one of the most popular estimation tastsig data regression,
where the objective is to estimate a functips: f(x), from a noisy data se¥ =
{(%,yi)}N.,. A standard approach is to propose a parametrized funéon =
z?":lelgi (x), whereg;(x) are known functions, often called basis functions, and
6,i =1...,M are unknown parameters to be determined based on the dd#a set
The least squares estimate of the parameter véctof6;, 6, --- 6y]" is defined as

N
A , o W2
Os= argemmé (vi — fa(xi))

If we define the vectorg = [g1(%) G2(%)--- gu(x)]T e RMi=1,... N, y=
[y1y2 --- ym]" € RN, and the matrixG = [g1 g2 --- gu]" € RN*M, then we have

N -1, N
Ao inly—Go|2= (GTG) Gy = o i
bLs = argminly - G6||* = (G'G) “G'y (izlg g'> (iZ\gy>

~(520) (29v)

under the implicit assumption thé®" G) 1 exists. From last equation it is clear that
the estimate can be computed as a nonlinear combinatioroadverages, therefore
a consensus based strategy is to run two average consegstithais with initial
conditionsx’%(0) = gigl € RM*M andx?(0) = giyi € RM, and then asymptotically
computing the least square estimate as:

lim 8(t):= () H&(t) = bis, Vi

t—+oo

of these systems is beyond the scope of this work and we iedeinterested reader to [22] an
references therein.
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Note that in this scenarixf are matrices ang’” are vectors, therefore they are not
scalar as usually considered in Egn. (1), however all regilSection 2 still apply
by considering the local updates rules of Eqn. (2) or Eqn[g83)9].

3.6 Sensor calibration

Often inexpensive sensors might be affected by unknowretsffdue to fabrica-
tion imperfections or aging. A common example is given bygbasor that mea-
sures the signal strength, the RSSI, in the radio chip of ceroial wireless sensor
nodes [9]. The RSSI is often used to estimate the relativardis between two of
these wireless nodes for localization and tracking apfitina. More precisely the
signal strengtly;j measured by noderom nodej can be modeled as:

yij = f(&,&j) +oi

whereé; and§; are the locations of the receiving nodand the transmitter node
j, respectively, ana is the offset of the receiving node. Typicallf(é;,&;) is a
function of the distancé; — &;|| only, but in indoor environments this cannot be
the case. However, it still holds that

f(&,&)) = (&j,&).,

i.e. the functionf is symmetric in terms of nodes locations. The objective ¢f ca
ibration is to estimate the offse; for each node in order to remove it from the
measurements. This is clearly impossible, unless at leeshode is calibrated or if

the functionf and the node locations are known. A less demanding requirement
is to find offset estimates; Such thai; — 6; = o for all i, i.e. to be able to have all
nodes with the same offset This can be interpreted as a consensus problem on the
variablex;(t) = 0, — Gi(t). However, this is still an undetermined problem sinds
arbitrary. One solution to remove this ambiguity is to cleose node as a refer-
ence, for example node= 1, i.e.0 = 05. A less arbitrary choice is to find such

that
N N

argaminizlﬁi2 - argaminiz1 —0)? = N 210. =N Zx.

where the last equality is obtained by settm¢]J = 0. This strategy, which aims
at minimizing the magnitude of offset compensation teon$niplies that average
consensus is to be sought. By substitutir{t)) = o; — 6i(t) into Eqn. (3) we get:
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0 —6i(t+1) = o — Gi(t +un i(t) — (0 —Gi(t)))

P

6i(t+1) = 6i(t) — Y aij(t)(fji +0j—06j(t) — (fij +0i — Gi(t)))

I
o
=
—
=
-

z |

1]

1Qij (t)(6(t) — 6i(t) +Yij — Vi)

where we used the notatidi{é;, ;) = fjj and the assumption thédg = fj. From
average consensus we have that:

lim 6i(t)=0;—

1 o
t—-oo N

HMZ

From this expression, it is clear that if the offset are ndlyrdistributed, i.e.0; ~
A (0,02), then lim\y_ 4« |6i () — 0j| = 0 almost surely, i.e. if the number of nodes
is large, then the offset estimate is very close to the trisebf

3.7 Kalman Filtering

Estimation of dynamical systems is another important dreeus consider the fol-
lowing dynamical systems observed Nysensors:

E(t+1) = AZ(t) +w(t)
yi(t) =GEM) +vi(t), i=1,...,N

wherew(t) ~ .4(0,Q) andvi(t) ~ .4 (0,R)) are uncorrelated white Gaussian
noises. If we define the new vectoy&) = [yi(t) y2(t) --- yn(t)]" andv(t) =
[V1(t) va(t) --- vn(t)]T. The minimum error covariance estimate is giverfbMt) =
E[&(h)|y(t),y(t—1)...y(1)] and its error variance B(h|t) := Var(& (h) — f(h|t)).
The optimal estimator is known as the Kalman Filter, whoseagiqns are given by:

E(tlt—1) = Af(t—1t - 1)
P(t]t— 1) = AP(t - 1]t - AT +Q
E(tt) = E(tjt— 1)+ P(t|t— 1)CT (CP(tjt — 1)CT + R) (y(t) — C&(t|t — 1))
P(t[t) = P(t|t — 1) — P(t|t — 1)CT (CP(t|t — 1)CT + R)~CP(t|t — 1)

The first two equations are known as the prediction step githé last two equations
are known as the correction step. Using the matrix inver@omma, the correction
step can be written as
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E(tlt) = Pt (P(t)t— DE(tlt— 1)+ CTR (1))
= P(t/t)(P(tjt — 1) (t]t— 1) + iic? Rlyi(t))
= P(t{t)(P(tjt — 1)§ (t]t — 1)+ z(t))
P(tt) = (P(tjt—1) +C"TRIC) 1 = (P(t|t — 1) + iicr RG)?
= (Ptt-1)+2)*

which are also known as the inverse covariance filter. Froeselequations it is
evident that the sufficient statistics necessary to redtvescentralized Kalman filter
are the quantities(t) = N(& N, CTR 1yi(t)) andZ = N(# 3N, CTR'C) which

are averages of local quantities. Therefore, a possité¢esly to run a local filter

on each local node, which, between two measuremghts 1) andy(t), runsm
iterations of the average consensus algorithm to reateandZ, and then updates

its estimate using the centralized Kalman gainmlis sufficiently large and if the
total number of nodeBl is known to each sensor, then each local filter coincides
with the centralized Kalman filter [55]. Ifn is not sufficiently large to guarantee
that the consensus has converged, then performance of dakfilbers needs to
evaluated and also the consensus algorithms design shedlesigned accordingly

to improve it. In this context [14], if scalar dynamics is statered, i.eé € R where
A=Ci =1,Vi,Q=q, andR=r, then the equations for the consensus-based Kalman
filter can be written as

R(tlt— 1) = QUK(t — 1t — 1) ©
R(t]) = (1— O)R(t]t — 1) + £y(t)

wherex'= [%1(t) R(t) ---&n(t)]" € RN is the vector of the local estimators of the
true statef at each node antle (0,1) is the Kalman gain.

4 Control-based performance metrics for consensus algotims

The performance analysis of consensus algorithms presenfect. 2, which ex-
ploits results from Markov chains literature, is focusedpoedicting the speed of
convergence to the average. This is very useful, but howievemot the whole
story. In fact, when convergence to the average is not arctgeper se, but is used
to solve an estimation or control problem, it is importanttmsider different per-
formance measures, more tightly related to the actual tgepursued. Also, the
introduction of other performance indices allows a bettetarstanding of large-
scale networks, because for some very relevant familiesmincunication graphs,
e.g., for grids (lattices), the essential spectral radssgo one when the number
of agentsN grows, so that it is not clear whethesr (Q)' will go to zero or not,
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if both N andt tend to infinity. In this section, we will present examplessofne
alternative performance indices, and references to tlewast literature; however,
this research topic is very recent and presently activédhaovery likely new papers
will appear in the next years.

For the sake of simplicity, we restrict our attention to dansQ, instead of
studying all the (randomly)-time-varying schemes introeldiin the previous sec-
tions. Moreover, we will always assume tl%&j is rooted and has all self-loops, so
that Thm. 1 holds true. Additional assumptions that we wiiéo use are tha® is
doubly-stochastic, so that = £1, and thatQ is normal, i.e.Q"Q = QQ'; under
these assumptions, all the costs we consider can be remaistsimple functions of
the eigenvalues dd.

4.1 Performanceindices

In this sections we give some examples of performance rsetrising in the use
of consensus algorithm for estimation or control taskssTi®inot a comprehen-
sive list of all indices presented in the recent literaturalstributed estimation and
networked control; for example, we do not present here tterésting results re-
lated to estimation from relative measurements [5], to tiecarising from vehicle
formation control [4], and clock synchronization [15].

4.1.1 LQ cost

As discussed in Sect. 3.4, an interesting performance eristthe LQ costl g =
Ji+ €Ju, wheredy = & 510 E (|[X(t) — x()||?) is related to the speed of conver-
gence, while a second terdy = %thOE (|x(t+1) —x(t)||?) takes into account
the energy of the input sequence.

Let us see how to obtain easier expressionsifoand J, [23, 20]. Let us fo-
cus on the case whe is doubly-stochastic, so thafeo) = %fx(O). Under this
assumption, the following equalities hold tPue

2 2
AT IQ AT and =35 [0, ©

3 J, and J, might be infinite for some choices @. A sufficient condition for convergence
of both costs is thaQ is doubly-stochasticig is rooted andQ € Gg. This is easily proved
from Eqn. (9) using the following property of Frobenius norfiAB||r < ||Al|g||B|lr. Thus,
< Esioll(Q—f11M) ||il — Ltry®,(QTQ— 1117)" , where the convergence of the last se-
ries is ensured by the fact th@f Q is stochastic@ being doubly-stochastic) arighr is a sub-
graph of¥g (thanks to the self-loops #g) and thus inherits its properties. A similar proof can be
given also fordy, after noting thady = 3 -o//(Q— 411M)H(Q—1)||2.
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where|| - ||r the Frobenius norm of a square matrix, i|A||r = VtrATA.
If in addition Q is normal, then the expression furtherly simplifies to:

k=% 5 = and J, =41 [1-AP (10)
:N [ U:N -
2 11412 remig 1A

A£1 AA1L

whereA (Q) denotes the set of all eigenvaluesfwith their multiplicity).

The proof —as all proofs in this section— repeatedly usessliity of expecta-
tion and of trace, plus the observation that for any stk we havea = tra, and
the property ttABC) = tr(CAB) whereA, B,C are matrices of suitable size.

The first expression in Eqn. (9) is obtained as follows:

k=g 2 EHOT(@ ~ 11T (Q - {111)x(0))
- %ZJE [tr (x(0)" (@ - {117 (@ = §11)x(0))]
- LS (@ (@ B OXOT])

where we assume uniform distribution of initial conditipns. E[x(0)x(0)"] = 1.
The second expression is easily obtained by the same temwmiq

In order to prove Eqgn. (10), we recall that normality@fimplies that all pow-
ers ofQ, as well asQ" andQ' Q are diagonalized with the same change of basis.
Moreover, by stochasticity and primitivity dp, alsoQ — ﬁllT (and all its pow-
ers, and its transpose) are diagonalized in that same bakislanoting the eigen-
values ofQ by A; = 1,A,,..., AN, we have that the eigenvalues Qf — %11t are
AM—1=0,A—0=Ap,..., AN — 0= Ay, so that|Q' — L1112 = 3N , ||A4[|%, and
finally J, = § Sh_o S0l Anl?)' = & Thez Tﬁhuz

For the second part of Eqn. (10), na@&"! — Q! is normal and has eigenvalues
/\rt](/\h —1)forh=1,...,N, and then conclude with the same technique as above.

4.1.2 Steady-state performance for noisy or quantized corgasus

For the consensus algorithm of Eqn. (1), Thm. 1 tells evémgthbout steady-state
performance: wheh— o, x(t) — X(e) := nTx(0)1, and ifQ is doubly-stochastic,
thenn = %1. However this is no longer true if there is noise in the cosssrmpro-
cess, or quantization in the exchanged messages.

In the presence of noise within the successive iteratiortk@tonsensus algo-
rithm, the steady state can be different from the averagesofitial values, despite
Q being doubly-stochastic. Here we present a case analyféd]irwhere the noise
is additive.
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Consider the following consensus algorithm affected byg@oi

X(t+1) = Qx(t) +v(t),

where{vi(t)} are noises uncorrelated w.r.t. bathndt, with zero mean and unit
variance. Consider the case whénis doubly-stochastic, so that, for any initial
conditionx(0), 1TE[x(t)] = 17x(0) for all t, andE[x(t)] — &1Tx(0). However, it
is clear that the average-preserving property, and theezgence to% 17x(0) are
true only in expectation, and not for all realizations of tiw@se process. Thus, it
is more reasonable to define the error as the distance frorantaveragd(t) =
X(t) — %11Tx(t)) rather than distance from average consensus, which migketen
exist. Hence, the relevant average quadratic cost is héredeas

1
Jnoisy := tlm NE [”X(t) - %:U-TX(UHZ]

Notice thatlhoisy turns out to be the same as the cishtroduced when studying
the LQ-cost. In fact, note that

X(1) = IX(0) +ti)QSV(t 1o,

so thatd(t) = (Q' — £117)x(0) + 20 (Q®— 2117)v(t — 1—s). Thus, by the statis-

tical assumptions on the noises (zero-mean, uncorrelabédsariance):
E[[6®)]%] = I(Q - §117)x(0)|?

+2 Z)x(O)T(Qt — AN Q- F11NENM(t - 1-9)]

+ f tr{(Q - 11T (Q°— F11NHE[v(t — 1-r)v(t—1-9)]}

r,s=0

_ ||( '[ 111T ||2_|_ Zotr S lllT (QS_ %111-)

Whent — o, the first term goes to zero, while the sum becomes an infinite, s
thus ending the proof.

A similar cost has been considered in [29], where howeventhge was used as
a model forquantization error, and thus noise appears in the equation in a different
way, as follows:
X(t+1) = Q[(x(t) +v(t)] — v(t)
The fact that noise is multiplied b@ takes into account that the quantization error
is within all messages passed to neighbors, while the sadigin—v(t) is possible,
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as every agent knows its own quantization error, and is Us@favoiding accumu-
lation of errors over time: in this way, the averq@ﬂaTx(t) is kept constant.

As in the previous case, the assumption is thét)’s are uncorrelated with
respect to both andt, and have zero-mean and unit variance, @nis doubly-
stochastic, so thdtx(t) — ﬁlTx(O). Again the relevant cost is the variance of the
distance from consensdst) = x(t) — ﬁllTx(t), in the limit of infinite number of
iterations:

1
Jquantz:= fim S ([[x(t) = §117x(0)]%)

Clearly, due to the different update equationx(r, this will result in an expression
for Jquantiz different from the one fodygisy; it turns out thatlyyantiz is equal to the
costJ, defined when dealing with the LQ-cost.

To prove this, notice that

X(t+1) = Q'x(0) —|—tzzQs(Q— Dv(t—1-s)

so thatd(t +1) = (Q' — £117)x(0) + zOQS“ Q)V(t—1—9).

By exploiting linearity of expectation and of trace, and fthet that arguments of
the trace can be cyclically permuted, together with theraggions on the noise, we
get

E([8(1)]%) = Q' - §117)x ||2+Zotr {@" -~}

By taking the limit fort — oo, the first term goes to zero, while the summation be-
comes an infinite sum, givindyuantiz= 5 Y-0[|Q"* — Q'|[r and thus ending the
proof.

4.1.3 Performance of static estimation algorithm

Consider the static estimation problem described in Setf.l&it in the simplest
case, when all sensors have the same variaiee 1. In this case, the best estimate
is the averageéMV = %fx(O) and the sensors can compute it in a distributed way
by simply using a consensus algorithxi+ 1) = Qx(t), for some stochastic matrix
Q. What is peculiar to this setting, is that the focus is not ow Iprecisely the
average is computed, but on how good the estimat@ isf In fact, knowing that
X(t) converges tx(c) = 117x(0)1 does not answer the questions on how wed is
estimated byx(e) if the matrix Q is not doubly-stochastic and on how well 8s
estimated aftet iterations of the algorithm.

To address these questions, we consider the estimatiaredrro= x(t) — 61. To
answer the first question, let us first notice thaQ i doubly-stochastic, thex{o)
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is the average of the measurements, x@e) = éMV 1, andéMV has zero-mean and
variance%. If Q is not doubly-stochastic, then it is interesting to study éhror; it
is easy to see thafeo) = 1nTv, and sak[e(e)] = 0, while its covariance matrix is

E[e(w)e(0)"] =1nTE [W' | n1" =1||n|%1" = ||n|211",

i.e., each sensor’s final estimate has variajgg?. Notice that YN < ||n|> < 1,
since||n||1 = 1.

Now let us turn our attention to the more interesting probtgmnderstanding
how well 8 is estimated after a finite number of iteratiohsstudyinge(t). More
precisely, the relevant performance measure is the avepaagratic error, defined
as

Jestim(t) := FE [[Ix(t) — 61]%]
This cost can be re-written as:
Jestim(t) = %tr[(QT )tQt]

and, ifQ is normal, the expression simplifies as follows:

Jestim(t) = % Z |A |2t (11)
AEN(Q)

To prove the first claim, note that
Jestim(t) = FE[|Q'X(0) — 61(|7] = RE[||(Q — 1)1+ Qv|*] = RE [V (Q)TQ'Y]

from which the claim follows by taking the trace and cycllgglermuting its ar-
guments, recalling that[vv'] = I. Then the simplified expression for norn@iis
immediate.

4.1.4 Distributed Kalman flter

Consider the distributed Kalman filter presented in Seat, &d in particular its
scalar version described in Eqn. (8). There are differentswaf analyzing per-
formance of such algorithm. One interesting performandens the asymptotic
quadratic estimation error, defined as:

Iesti=  im E[[IR(]t) —x(t)1]|?]

This cost can be re-formulated as follows:

1-10)? =
Ken= Thi o+ 3 I0-0Q;

and, in the case wheQ is normal, the following easier characterization holdgtru
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q(l—-0)? re? 1
Test =11 e TN 1—(1—0)2Apm
AeA(Q)
Another relevant performance metric is the asymptotic gaiacprediction error
JK,pred:: %JEQOE [Hi(tlt - 1) - X(t)lllz} )

which can be re-written as

[e9]

JK pred = 3 + %2 5;) H (1- ﬁ)sQ(SJr”mH

2
1—(1—02 .

and, for normaf, is also equal to

q r(? AP
J = 5 1 1 _/1_/N\2/xI12m"
Kpred = T 1 _gy2 TN /\e;(@ 1—(1—-2¢)3A|2m

The techniques used for obtaining the simplified expressioae similar to those
shown for the costs previously presented and details caourelfin [14].

4.2 Evaluation and optimization of performance indices

Clearly any performance index can be numerically computea fgiven matrixQ,
and gives a way of comparing the quality of different choiime<Q. However, there
are two research lines which lead to interesting resultsgusome performance
index. A first line concerns optimization of a chosen cost agall matricesQ
consistent with a given communication graph. A second é@stiamg direction is the
study of the different costs for some relevant families @frs and matrices, in par-
ticular for large-scale graphs. The more classical regultsis two directions when
the performance index is the essential spectral radiusiscagbed in Section 2.2.

Providing a comprehensive summary of the results is beyloadtope of this
chapter: we give here some examples, so as to illustrate sorioeis or unexpected
results and motivate the need for different performanceiosgtand then we give
pointers to some relevant literature, with the disclainfet t—this being a very
recent and still active research area— our reference listswiely turn out to be
incomplete.

An interesting work on design of the entries@for a given graph by optimiza-
tion of a cost different fronesr (Q) is Xiao et al. [64]. Here noisy consensus is ana-
lyzed, so that the relevant metricigisy= Jx. The authors show that the problem of
finding, for a given graph and among all symmetric choiceseifjts, the weights
minimizing Jnoisy, iS @ convex optimization problem, and they provide effitiat
though centralized) algorithms for its solution. They atsopare numerically, for
various graphs topologies, the three caltssy obtained with the optima®, with
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the Q minimizing esr Q and the simple Metropolis rule; for some topologies the
difference is significant, while for other graphs the thresutts are very similar.

Another example is Carli et al. [14], where the problem ofimjting Jg preq for
a given graph among normal matrices is examined. The fiestaating result is that
symmetric matrices are indeed optimal, and then, the asifiave that, for fixed
¢, the optimization problem among symmetric matrices is earim Q; however,
despite the problem being also convex{init is not jointly convex inQ and /.
Then simplified problems (under the limit for infinite comnication or for small
measuerement noise) are studied more in detail.

The optimality of de Bruijn graphs with respect to converggespeed, among all
graphs with bounded in-degree, is confirmed, at least aotroglly in N and for
smalle, also when the LQ cost is considered [23].

Another approach which is receiving much attention is thelsf asymptotic
performance in large-scale graphs. The idea is to consateiliés of graphs of
increasing size, sharing the same common properties (ire s@mse that will be
specified in the examples, having the same shape), and tgzankabw the cost
scales with the number of nodes. This is more an analysisahdesign problem,
but it gives useful hints on the number of nodes. Here we piessimple example.

Example 1 (Circle)Consider a grapiy consisting of a circle dN nodes, where
each node has a self-loop and an outgoing edge towards gkbwaion the right.
Consider a coefficient/2 on each edge, so th@y = circ(1/2,1/2,0,...,0) is a
circulant matrix. Becaus# is circulant, we know that it is normal, and we can
easily compute its eigenvalues(Qn) = {3 + %ei%rh, h=0,...,N—1}[17]. Thus,
the essential spectral radius is

esr (Qu) =A% =/3(1+cogqM) =1- 15 +O(L) forN—c.

Now we can plug the expression for the eigenvalues in Equsif@0) and (11).
Then, an explicit computation (see e.g. [19]) gives that

1
\]u:].—N

while some careful upper and lower bounds (see e.g. [20]y $hat

—

N < K(Qn)<cN and c3 maX{ﬁ, %} < Jestim(Qn; t) < C4maX{%, i} :

wherec;, ¢, C3,C4 are positive numbers independentbf

It is interesting to compare the performance of the circlédnwhat of a complete
graph, i.e., with the casg}, = ﬁllT, where in one step the exact average is com-
puted. It is easy to see that the eigenvalue®'are 1 with multiplicity 1 and 0 with
multiplicity N — 1, so thatesr (Q}) = 0, J(Q) = 1— &, Jestim(Q}y,t) = & for all
t > 1). Intuitively, performance of the circle is much worsecéese of the slow
flow of information, as opposed to the complete exchange sBagges in one single

iteration for the complete graph. This intuition is confichfer most performance
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indices; however, it is interesting to note tHatQn) = J«(Q)) is actually the same
as for the circle and for the complete graph, thus showingaffferent choice of
performance metric can lead to significantly different Hssu

The key point that allows to study the example of the circléhis fact that an
expression for the eigenvalues is easily found, thanksdatbebraic structure of
Q, which is circulant. The same can be done more in generahéocase of circles
with more edges towards neighbors (giving rise to diffem@rtulant matrices) and
for higher dimension, where the underlying algebraic stnecis that of Cayley
graphs, Cayley matrices and discrete Fourier transformAlyelian groups (see e.g.
[17]). The result presented in [20] concerns gridsdedimensional torus, or grids
ond-dimensional cubes with some assumptions of symmetry afdleéicients and
suitable border conditions, and in both cases with locaym@drhoods (bounded
difference among labels of nodes connected by an edgedtédissthat

c1fa(N) < <cpfg(N) and Csmax{%,(T%)a}SJestim(t)§C4maX{%7(T%)a}7

wheref;(N) =N, f2(N) =logN andfq(N) =1 foralld > 3, and where;, Cy, C3,Ca
are positive numbers independentbf

The study of Cayley graphs, although motivated by the akjelstructure that
allows to tackle the analysis, is interesting, because #neya simplified and ide-
alized version of communication scenarios of practicadri@st. In particular, they
capture the effects on performance of the strong constitaitcommunication is
local, not only in the sense of a little number of neighbots, dso with a bound
on the distance among connected agents. The study of megeiiar and realistic
scenarios of communication with geometric constrainthiésgubject of on-going
research, where two main directions are being exploredh®orte side, there is an
interest in the random geometric graph model (points thromiformly at random
in a portion of space and edges among all pairs of verticdgmit given distance
r), for which simulations show a behavior very similar to téta grid (see e.g.
[20]), but a rigorous theory is still missing: most of knowasults concern only the
essential spectral radius and not all the spectrum. On tex eide, there is the idea
to study perturbations of known graphs; this is completéfgrent from traditional
theory of perturbation of matrices, because here pertiotimare not continuous,
and are little in the sense that only few edges (with resjpettte graph size) are re-
moved or added or receive different weight. In this diragti@ useful tool (because
of its monotonicity properties with respect to edge insertis the analogy between
reversible Markov chains and resistive electrical netwpexploited e.g. in [5].

We conclude this section by presenting in detail an exantyaedlarifies how
comparing two families of graphs by two different perforrmammeasures can in-
deed significantly change the result, leading to a diffedafinition of the ‘best’
graph. This is a toy example, not very sensible in practiaeghsily highlighting
which issues can arise.

Example 2Let N be an even number, and consid&r a graph consisting of two
disconnected complete graphs, eaciNg@ nodes; Fig. 1 depictépas an example.
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Associate to each edge a coefficiefi\2 so thatQy has the following form:

2117] 0
o= [z

We would like to compare performance of thi@ with the circle presented as
Example 1, by looking at the essential spectral radius, had by looking at the
estimation errodesiim. The eigenvalues dy are simply 1 with multiplicity 2 and
the eigenvalue 0 with multiplicitiN — 2, so thaesr (Qy) = 1, which is worse than
the circle. However, for all > 1, Jestim(Qn) = % which is almost as good as the
best possible error (the error variance in the case of dmmhestimation,%), as
opposed to the circle which, for lar@& has a very slow convergence.

Behind computation of the eigenvalues, there is an inwigixplanation of what
happens. In the grapl4,, the essential spectral radius 1 describes the fact that the
graph is disconnected, and thus no convergence is possilthe taverage of all
initial values: simply no information can transit from onegp to another; never-
theless, the estimation error is very good for laig&ecause it is the averageldf2
measurements, and it is computed very fast, in one itergatiamks to the complete
graph which gives centralized computation within the grofiN/2 agents. Con-
versely, in the circle average consensus can be reachegtxtigally, as described
by the essential spectral radius smaller than one, but cgemee is very slow for

largeN (esr =1— % +O($)), and a reasonably good estimation error is achieved
only after a long time.

The readers concerned with the fact tgtis disconnected (and thus violates the
assumptions made throughout this chapter) may consideghdlgimodified graph
%, as shown in Figure 1(b), still associating a coefficiefitl 2vith each edge; Let
us denote by the matrix so modified. This graph is studied in [10] undertame
Kn/2 — Kny2 and [10, Prop. 5.1] gives the exact computation of all eigéres of

Qn: A(Qn) has 1 with multiplicity 1, 0 with multiplicityN — 3 and then} — 2 +

%, /1+ % - % with multiplicity 1 each. Here the single edge connecting tvo
subgroups of agents allows only a quite slow convergease ((QN) =1- % +

O(N—lz), very similar to that of the circle), while the estimatiomarbecomes very
good after few iterations]éstim(QN) < 3forallt > 1).

B B

(a) Graph#;oin Example 2 (b) Graph#y in Example 2

Fig. 1 Communication graphs considered in Example 2.
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5 Conclusion

In this chapter we have tried to present a comprehensiveafithe linear consensus
algorithms from a control and estimation perspective, bjewging the most impor-
tant results available in the literature, by showing som#nefpossible applications
in control and estimation, and by presenting which are blgteontrol-based indices
of performance for the consensus algorithm design.

We believe that much has still to be done in this area, in @aer in two direc-
tions. The first direction points to finding which traditidrantrol and estimation
problems can be cast as consensus problems. In fact, attmmii@ll problems can
be cast as averages of local quantities, if they can be appated as so, we could
exploit the effectiveness and strong robustness of conseaigorithms. The second
direction addresses the implications of the new contrgkeldgerformance metrics
for the design of the consensus algorithms. In fact, as wstithted with few toy
examples, they give rise to design criteria that can be alifterent from the tradi-
tional ones.
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