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APPENDIX

In this paper we describe the technical proofs for the
results presented in [1].

A. Proof of Proposition 1

As we showed in Section III-A of the main paper, it is
possible to reformulate the partition-based problem (8) so
that it conforms to problem

min
x
{f(x) + ι(I−P )(y)}

s.t. Ax+ y = 0
(A1)

to which the R-ADMM can be applied. The three update
equations (4), (5) and (6) that characterize the R-ADMM
applied to problem (A1) yield

y(k + 1) = argmin
y
{Lρ(x(k),y;w(k))

+ ρ(2α− 1)〈y, (Ax(k) + y(k))〉}
(A2)

w(k + 1) = w(k)− ρ(Ax(k) + y(k + 1))

− ρ(2α− 1)(Ax(k) + y(k))
(A3)

x(k + 1) = argmin
x

Lρ(x,y(k + 1);w(k + 1)) (A4)

where w is the vector of Lagrange multipliers and the
augmented Lagrangian is

Lρ(x,y;w) = f(x) + ι(I−P )(y)−w>(Ax+ y)

+
ρ

2
‖Ax+ y‖2 .

However, as shown in [2], the R-ADMM for problem (A1)
can be equivalently characterized with the set of four iterates

y(k) = argmin
y=Py

{
−z>(k)y +

ρ

2
‖y‖2

}
(A5)

w(k) = z(k)− ρy(k) (A6)

x(k) = argmin
x

{
f(x)− (2w(k)− z(k))>Ax

+
ρ

2
‖Ax‖2

}
(A7)

z(k + 1) = (1− 2α)z(k) + 2α(w(k)− ρAx(k)). (A8)

Similarly to what has been done in [3], it is now possible to
leverage the distributed nature of problem (A1) in order to
simplify Equations (A5)–(A8).
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First of all, solving the system of KKT conditions for (A5)
yields y(k) = (I + P )z(k)/(2ρ), and therefore Equations
(A5)–(A8) become

y(k) = (I + P )z(k)/(2ρ) (A9)
w(k) = (I − P )z(k)/2 (A10)

x(k) = argmin
x

{
f(x) + (Pz(k))>Ax+

ρ

2
‖Ax‖2

}
(A11)

z(k + 1) = (1− α)z(k)− αPz(k)− 2αρAx(k). (A12)

Since we are interested in the trajectory k → x(k) and by
the fact that the update (A11) depends only on the vector
z(k), then the R-ADMM for problem (A1) can be described
by Equations (A11) and (A12) only.

Notice now that the trajectory k → x(k) generated by
(A11) is equivalent to that generated by (A4) if the initial
condition for x is the same and if z(0) = w(0) + ρy(0)
since Equation (A6) has to hold at time k = 0. Therefore
Propositon 1 is proved if we can show that (A11) and (A12)
can be rewritten as (11) and (12).

Recall that the permutation matrix P swaps the element
z
(i,j)
i with the element z(j,i)i of vector z, and that the row of
Ax relative to the auxiliary variable z(j,i)i is −x(i)i . Therefore
it follows that

(Pz)>Ax =
[
· · · z

(j,i)>
i · · · z

(i,j)>
i · · ·

]


...
−x(i)i

...
−x(j)i

...


= −

N∑
i=1

∑
j∈Ni

z
(i,j)>
i x

(i)
i +

∑
j∈Ni

z
(i,j)>
j x

(i)
j

 .

Moreover, for each node i x(i)i appears in |Ni| constraints
and {x(i)j }j∈Ni

, in one constraint each. Hence we have

‖Ax‖2 = |Ni|
∥∥∥x(i)i ∥∥∥2 + ∑

j∈Ni

∥∥∥x(i)j ∥∥∥2 .
Therefore Equations (11) and (12) can be derived from (A11)
and (A12) using the particular structure of the problem,
proving Proposition 1. �

B. Proof of Propositions 2 and 3
As was mentioned above, the partition-based problem can

be reformulated as (A1) which can be solved by the applica-
tion of the R-ADMM. Therefore both the convergence results



of Propositions 2 and 3 follow from those of Propositions 2
and 3 of [3].
Indeed the R-ADMM is guaranteed to converge in both the
loss-less and lossy scenarios as long as the step-size and
penalty parameters are such that 0 < α < 1 and ρ > 0.
Moreover, the components of the primal variables vector,
which in the partition-based case are the subvectors x(i), are
guaranteed to converge to the optimum value, that is, each
variable x(i)i converges to the optimum x∗i . �
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