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Abstract—In this paper we present the design of the flight
control algorithms for flapping wing micromechanical flying
insects (MFIs). Inspired by the sensory feedback and neuromot
structure of insects, we propose a similar top-down hierarchical
architecture to achieve high performance despite the MFIs’
limited on-board computational resources. The flight stabilization
problem is formulated as high frequency periodic control of an
underactuated system. In particular, we provide a methodology
to approximate the time-varying dynamics caused by the aerody-
namic forces with a time-invariant model using averaging theory
and a biomimetic parametrization of the wing trajectories. This
approximation leads to a simpler dynamical model that can be
identified using experimental data from the on-board sensors and
the voltage inputs to the wing actuators. The overall control law is
a periodic proportional output feedback. Simulations, including
sensor and actuator models, demonstrate stable flight in hovering
mode.

Index Terms—flapping flight, micro aerial vehicles, bio-
mimetic, periodic control, averaging.

I. INTRODUCTION

aerodynamics, body dynamics, sensors, and electromeecthani
actuation is presented together with a list of references to
relevant research. In this paper we focus on the controlcéspe
of flapping flight. In particular, we propose a hierarchical
architecture for the control unit that mimics the sensory
feedback and neuromotor structure of insects to achieve hig
performance while satisfying MFIs physical and computa-
tional limitations. One of the main contributions of thispea

is to approximate the time-varying (TV) dynamics of insect
flight caused by the flapping wings with a time-invariant (TI)
system based on which feedback controllers can be designed.
This approximation relies on two ideas that can be formelize
within the framework of high-frequency control theory. The
first idea is that the frequency of the aerodynamic forces
acting on the insect is much higher than the bandwidth of the
body dynamics, therefore only the mean aerodynamic forces
and torques over one wingbeat affect the insect dynamics.
The second idea is to parameterize the wing trajectory using
biologically inspired wing kinematic parameters whicheaff

The recent interest in micro aerial vehicles (MAVs) [1]the distribution of aerodynamic forces within one wingbeat
largely motivated by the need for aerial reconnaissance tbus modulating the total forces and torques acting on the
bots inside buildings and confined spaces, has galvanizB@ect. These parameters appear as virtual inputs in the TI
the development of inch-size flapping wing MAVs that coul@pproximation of flight dynamics. Finally, we show how the
mimic insect flight. This is a challenging endeavor for salerparameters of the Tl approximation can be identified diyectl
reasons. First, aerodynamics for inch-size flapping robdteém sensors measurements and actuators input voltages ob-
differ substantially from manmade fixed or rotary-wingedained from experiments from the original TV system. This
vehicles [2]. Second, size constraints forbid the use airyot approach is particularly suitable for flapping flight singe i
electric motors and commercial inertial navigation systengloes not require the knowledge of exact aerodynamics models
(INS), global positioning systems (GPS) and current cameravhich are particularly complex. Also, it provides a model
Finally, a flapping frequency beyonid)0H = requires sensors for uncertainty caused by sensor and actuator nonlineguriti

and processing algorithms with bandwidth and sensitivity

and external disturbances that can be used to design robust

least one order of magnitude higher than those usually faundcontrollers.

today’s aircrafts. Nonetheless, recent technologicabades,
together with better understanding of insect aerodynaarics

The paper is organized as follows. In Section II, we briefly
review biological literature about insect flight control che-

mechanisms have promoted projects aimed at the designnisims, focusing on the interaction between the sensorgmsyst

Micromechanical Flying Insects (MFIs) [3].

and the neuromotor architecture. In Section Il the hidrial

The goal of this paper is to develop a general framewogkchitecture of flight control observed in insects and the
to design a control unit for MFIs which would enable thenhelicopter attitude-based navigation are used as a modéildo
to accomplish complex autonomous tasks such as seard@sign of an equivalent control system for MFls. In Section
ing, surveillance and monitoring. This paper builds upon ¥ we highlight analogies and differences between flapping
companion paper [4] where comprehensive modeling of MHight and helicopter flight. In Section V we propose a formal

approach to approximate the time-varying insect dynamics
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and wing trajectory parametrization. Section VI presehts t
design of the input voltage to the actuators that is required
to track a desired wing trajectory. In Section VII we model
insect dynamics as a discrete-time dynamical system where t
inputs are the kinematic parameters defined in the previous
section. Closed-loop identification is then implemented to
estimate the discrete-time system. The identified modéleis t
used to design LQR-based feedback laws for hovering. Finall



: : . . . Inertial motor
in Section VIII, conclusions and future research directiane Wing control skynals

presented. muscles

Il. INSECTFLIGHT SENSORS ANDCONTROL
MECHANISMS

Flies have inhabited our planet for over 300 million ye:
and today they account for more than 125,000 diffe :
_species, S0 that_, by now, roughly every ter_1th knovyn spe N - /Matere
is a fly [5]. This evolutionary success might spring fre Y /o
their insuperable maneuverability and agility to surviwhijch . \ N
enable them, for example, to chase mates at turning vede Compound . | Hallem

o —1 i - eye isual motor muscles
of more thanSOQO s~* with delay t|ines ofllgss than 3Q m control signals

The extraordinary maneuverability exhibited by flying
sects is the result of a sophisticated neuromotor contr® Fig. 1. Neuromotor control physiology in flying insect.
tem combined with highly specialized sensors. These sgiisu
comprise of the pressure sensilla, the halteres, the paeli
the compound eyes. [14]. Therefore, this level of control indirectly affectbet

Pressure force sensillare present along the wing surfaceflight behavior by biasing the motion of the halteres, thus
the wing base, the halteres, and other parts of the bo@yeating an external disturbance that the lower level otrobn
Although their functionality in flight control is not cleathey would try to compensate. This hierarchical architecture in
might play an important role in estimating the instantarseoinsects might reflect the evolution of the halteres from the
air flow around the wing and in controlling the wing trajegtor hindwings; neurons from the visual system were connected
[6]. to the muscles of both the forewings and hindwings, and

The halteres two oscillating club-shaped appendices, areontinued to do so when the later evolved into halteres;
the biological equivalence of a gyroscope, and they are ugeeurons interconnected the forewing and hindwing pairs so
to estimate the body angular velocities [7]. as to permit their synchronization, and continued to do so

The ocelli, a sensor system composed of three wide-angiden the hindwings were reduced to halteres. Therefore, a
photoreceptors oriented in a tetrahedron configuration, cierarchical architecture appears to be an efficient swiu
estimate insect orientation relative to the horizon by carimg resolve the conflict between flight stability reflexes andlgoa
the light intensity from different regions of the sky [8]. orientated maneuvers. In fact, a similar structure is atesgnt

The Compound eyeserve the purpose of estimating |argebetween the vestibular-ocular reflexes and active heatlanta
field optical flow, small-field object fixation, and object oge in Vertebrates [17]. This typical biological neuromotontol
nition [9] [10] [11]. The large-field optical flow estimatedarchitecture is shown in the left side of Fig. 2. Without some
from the compound eyes can provide information about ti@@propriate inhibiting mechanism, the haltere-mediatguai-e
orientation, the angular velocity, and the linear velacithe librium reflexes would always counter goal-oriented magion
compound eyes combined with ocelli and halteres, play tf@ resolve this potential conflict, the nervous system must
role of the inertial navigation system (INS) in insect flightcontain the means of attenuating equilibrium reflexes durin
and can guarantee good performance [12] [13]. Furthermot@e generation of controlled maneuvers.
compound eyes can also perform specialized visual prowgssi Another sublevel, as part of the reactive control system,
for object fixation and landmark recognition, which is used tmight be present and associated with the pressure sensors
navigate the environment and estimate proximity of Obedethh innervate the wings and the haltere. This bottom level
and targets. reactive control can adjust wing motion within a single wing

A more detailed description for these sensors from a fligh€at to improve aerodynamic efficiency and compensate for
control perspective can be found in [13] [4] and in théocal turbulence [18].
references therein. The hierarchical structure of neuromotor control in true

At present, still litle is known about the flight controlinSects has been adopted as a guiding model for the design
mechanisms and neuromotor physiology in insects [14] [1gi the control unit for MFIs, as described in the next section
[5] [16]. Experimental evidence suggests the existence of
at least two levels of control, as shown in Fig. 1. At the Il. HIERARCHICAL CONTROL ARCHITECTURE
lower level the halteres and the ocelli control the wing The hierarchical architecture, partially inspired by ittse
muscles directly in order to keep stable flight orientatiornd autonomous aerial robots research [19], decomposes the
This level of control seems to be reactive, since it mediatesiginal flight control problem into a set of hierarchical
corrective reflexes to compensate for external disturtsanaaodules, each responsible for a specific task. This way, the
and to maintain a stable flight posture. At the higher levatpntrollers in each module can be designed independently of
the brain, stimulated by visual and physiological stimulthose on higher levels, thus allowing the possibility toréc
plays the role of a navigation planner, which plans the fligimentally build more and more articulated control strucdure
trajectory based on its ultimate goal, such as foraging Big. 2 shows the architecture proposed for the MFI control
chasing a mate. Different from the haltere-ocelli systeme, tunit. It is possible to identify three main levels: thavigation
visual system is not directly connected to the wing musclgslanner, the flight mode stabilizerand thewing trajectory
instead it provides excitatory input to the haltere musclesntroller. The top level is a voluntary one since planning



is determined by MFI's goal, and the two lower levels arangle of attack, and upstroke-to-downstroke wing speed.rat
more reactive since the purpose of the flight mode stabilizerhe active change of these parameters by insects have been
and the wing kinematic generator is to maintain the desiretbserved to be directly correlated to specific maneuvers and
flight posture and the desired wing trajectory in the preseric flight modes [20]. Then every wing trajectory is mapped to the
external disturbances, respectively. Each of these tleneslsl corresponding actuator voltages via another map, as deslcri
in the control unit receives specific sensory informatiamdr in Section VI. The wing trajectory controller receives itpu
different sensors. information from force sensors placed at the wing's base.
This sensory information can be directly used to estimate
the instantaneous position and velocity of the wing, thus

improving wing motion control through feedback.
BIOLOGICAL

N CONTROL 'ConroL
ARi;:::ij: : ARCHITETURE IV. INSECT VERSUSHELICOPTERFLIGHT
M oy | Similar to aerial vehicles that are based on rotary wingh suc
! o ore as helicopters, flying insects control their flight by cofiing
H ATIE Navigation Planner their attitude and the magnitude of the vertical thrust [20]
i "Flight mode selection], Position and velocity control is achieved via attitude colt
l : Flight Mode Stabilizer Flow Sensors in fact forces acting on a plane parallel to the ground can
| REACTIVE | 2 | [Hover] [Cruise | [ Steer Jose[Climb | [ |amere® be generated by tilting and banking the body. For example,
 Desired wing trajectoryy Compass pitching down would result in a forward thrust, while rotlin
| Wing Trajectory Controller |—F‘°;,°;;;“§:;§ sideward would result in a lateral acceleration. Altitudatcol
: ‘Actuator inputs is achieved via mean lift modulation, for example, by insrea
oty oy ing the vertical force it would result in an upward accelierat
— ’ and vice versa.

However, there are some particular differences that pteven
one from directly applying successful flight control tecurés
Fig. 2. Design architecture for the control unit of the MFI comparegieveloped for helicopters to insect flight [21]. The firstetif
to the neuromotor control architecture present in most animals. o ce is the lateral asymmetry of helicopter flight. For exiamp
the spinning of the rotor blade induces a reaction yaw torque
At the top level of the control unit there is theavigation on the helicopter body that would make the body to rotate in
planner. Besides sensory input from the visual system, thtke opposite direction if not compensated by the tail rotor.
unit can receive commands from a communication link ar@dn the other hand, the tail rotor generates a lateral thrust
information from application-specific sensors such as ¢b@im that needs to be compensated by tilting the helicopter body
or temperature sensors. The purpose of this module is sideways. This problem is not present in insect flight sitee t
choose a sequence of appropriate flight modes for the flighings oscillate almost symmetrically on the opposite sifle o
mode stabilizer level, which enables the MFI to safely natdg the insect body, therefore lateral inertial forces canotlower
the environment and achieve the desired task such as tgrritthe course of a wingbeat. Moreover, when the helicopter siove
exploration, target localization and tracking. forward, the blade is advancing on one side and retreating on
The middle level is theflight mode stabilizerwhich is the opposite side; the blade on the advancing side expesenc
responsible for stabilizing different flight modes aval@alo a larger flow, while the one on the retreating side experience
the MFI, such as take off, hovering, cruising, steer leftest a smaller or even reverse flow, thus causing lateral imbalanc
right, climb, dive, and land. Each flight mode is achieved bgnd instability, called dynamic stall, which needs to bévatyt
a dedicated controller that uses as inputs the signals frem tompensated [22]. In insect flight, however, the motion af tw
halteres, the ocelli, the large-field optical flow estima@wsd wings is very symmetric and coupling between lateral and
a magnetic compass. Based on this information, the coatrollongitudinal dynamics is probably less pronounced.
chooses the appropriate values for the desired torques andnother difference is the highly time-varying nature of the
forces that must be applied to MFI body to compensaterodynamic forces in insect flight. As shown in Fig. 5 the
possible disturbances and to maintain the desired flightemoderodynamic forces and torques generated by the wings can
The desired torques and forces are then mapped directly iotange substantially during a wingbeat. However, the wing
the corresponding wing trajectory for the next wingbeat, asotions cannot change dramatically from one wingbeat to the
shown in Section V-C. next, since the wings need to oscillate to maintain sufficien
The bottom level is thewing trajectory controllerwhich lift to sustain the insect weight. Moreover, in insect flighe
is responsible for generating the electrical signals fag thwo wings can be actively controlled to follow asymmetric
actuators in order to track the desired wing motion gendrati¥ajectories. This allows the insects to generate largeilang
by the flight mode stabilizer module. The set of possible wingccelerations by modulating the distribution of the aerody
trajectories is parameterized according to some biokitiemanamic forces within a wingbeat without substantially affieg
parameters, as described in Section V-C. These paramegerstlae mean lift generation. The dependence of torque geoarati
chosen based on biomimetic principles, i.e. by changingitheon wing motion in insects has also recently been considered
it is possible to replicate most of the wing trajectoriesesbed in [23] [24].
in insects. The most important biokinematic parameterstere  Finally, it is not clear whether the insect forward flight
stroke angle amplitude and offset, timing of rotation, meamd hovering flight dynamics are intrinsically stable. Réce



theoretical [25] and experimental [26] research by Tagtoal. P V=W P TOP VIEW
on forward flight in desert locusts and numerical analysis by
Sunet al. [27] on hovering flight in bumblebees, suggest that, . saiei
the insect longitudinal flight dynamics possess some ulgstabjtd profile

control system.
These similarities and differences lead us to consider the

following strategy when designing a robust stabilizing dmwv

ing controller. First, we will model the insect dynamics as a

Discrete Time Linear Time Invariant (DTLTI) system based ofig- 3. Definition of wing kinematic parametersteff) 3D view of

the average forces and torques over a wingbeat. This agpro/dgect body and left wing.right) top view of insect stroke plane.

is based on high frequency control theory that guaranteed go

approximation error between the original time-varyingteys

and averaged system, assuming that the wingbeat frequency i

sufficiently high [28]. Moreover, the design for the conkeol whereu = (¢,, ¢1, ¢, 1), and the lower scripts,! stand

is based on a MFI dynamics model obtained through dor right and left wing, respectively. The stroke anglés the

identification procedure that includes the approximationrs angle between the wing radial axis and thaxis of the stroke

due to the time-varying nature of the dynamics. plane. The rotation angle is defined as the angle between the
Second, we parameterize the wing kinematics with fowertical plane and the wing profile, which corresponds to the

parameters such that they can be mapped uniquely into twemplement of the angle of attaek i.e. « = 90° — |¢| (see

three mean torques (roll, pitch, yaw) and mean lift. Thiig. 3). The explicit expression of aerodynamics forces and

approach allows direct control of the torques and lift gererques as a function of wing kinematics can be found in [4].

eration, thus simplifying the control design for the atitgu The aerodynamic forces and torque are the only time-varying

and altitude of the MFI. The dynamics of the insect is theelement in Equation (1), otherwise the insect dynamics doul

linearized about the hovering condition and the originaM@ be very similar to the time-invariant nonlinear dynamicsaof

system were decoupled into four SISO subsystems. Finalglicopter. On the other hand, the wingbeat period is much

the controller is based on robust output feedback usingtinesmaller than the responsiveness of the insect body, threrefo

WING

quadratic regulator (LQR) design. intuitively speaking, only mean forces and torques arevegie
In fact, this approximation has been formalized by avemggin
V. HIGH FREQUENCY'NSECT ELIGHT CONTROL theOI’y [28] and has been Wldely used in different applica-

tions including helicopter aerodynamics [30] [22]. Retgnt
averaging theory and high-frequency periodic control reenb
As shown in [4], the insect dynamics can be written as: successfully paired with tools from geometric control ttyeo
5 “11 by TIE N i [31] [32] for trajectory tracking and approximate stakaliion
© = (IZV) [Ta(t)l We xIWe -1we] of fish and snake-like vehicles [33] [34] [35] [36] [37] [38]
p = ——p-—g+ —Rf2t) (1) [39]. In particular, these tools model the system dynamics
m m as an affine system of the forh= fo(z) + > v, fi(z)u;,
wherer? € R? and f* € R? are the torque and force vectorsvhere u; are the control inputs. Moreover, these systems
generated by wing aerodynamics applied to the insect cena¢e underactuated, i.e., the number of available inpytss
of mass. The vecto® = [ 6 |7 represents theZY X smaller than the degrees of freedom. A classical example
Euler angles (roll,pitch,yaw) relative to the inertia cdioates, of an underactuated system is a car-like vehicle; in fact
W = W(O) is the transformation matrix from body angulaeven if only steering and forward velocity can be contrglled
velocity, w®, to Euler angular velocity in inertia framé), i.e. the car can be steered to any desired configuration, i.e. x-y
O = Wuwb. T is the insect moment of inertia relative to theposition and orientation. One of the goals of geometric rmdnt
body frame,p is the positions of the center of mass relativéheory is to design suitable stabilizing time-varying itgu
to the inertia frameg = [0 0 — g]” is the gravity vectorp u; = g;(z,t) directly from the structure of the flow of the
is the linear damping coefficient, anl = ¢*¥e%%¢™ is the dynamics, i.e. from the vectors(x). For driftless systems, i.e.
rotation matrix. This notation is commonly found in spaedcr for fo(z) = 0, such conditions have been found and a number
and helicopter dynamics literature [29] [21]. of stabilizing algorithms exists [40] [41] [31]. Howevehe
The wrench, i.e. the forces and torques applied to the centignamics of most biological locomotion such as fish and
of mass, is based on a quasi-steady state model for the ing&it swimming include a drift term. The drift term greatly
aerodynamics. It is a nonlinear function of the instantaseocomplicates the controllability analysis and controllesign.
position and velocity of the wing stroke(flapping) angland Only a few tools are available to systematically synthesize
the angle of attacky of both wings, but it does not dependthe control laws for such systems and they are mainly limited
explicitly on time. The aerodynamic forces and torques cdd mechanical systems with specific geometric propertig} [4

A. Insect dynamics

be written as: [43]. This is a very active research area, but it is beyond the

b b oL P scope of this paper to review it. We address the interested
fa@) = fa(ér 1,00, 01, Ors O1, s ¢1) = folu, ) reader to the textbooks [31] and [32] for a general discussio
() = T, D1y 00 01, ey b, oy 1) = TP (u, 1) (2)  0ON geometric control theory and to the review paper [44] for



its application to fish swimming. As will be shown in the next section, the wing trajectories
Although insect flight belongs to the class of underactuategle chosen to b&™-periodic functions and are parameterized
control systems, we do not directly apply these tools bexausy a parameter vectov, i.e. v = g(v,t). The parameter
of the complexity of the aerodynamic forces and torquegector v can be interpreted as a vector of virtual inputs.
and thus the complexity of the vector flow described as Therefore, as suggested by the theorem, we will focus on the
function of the wing angles and velocities In principle, averaged dynamics given by Equations (1) where the time-
the geometrical properties of insect flight could be analyzearying wrench(f2(¢), 72(t)) is substituted with its average:
numerically and then control algorithms could be designed

T
by applying the aforementioned tools. However, this is not a o) EY l/ F2g(v,t), (v, t))dt
straightforward method since insect aerodynamics arelyhigh T Jo
nonlinear. Moreover, this purely mathematical approaslegi b A 1 /T b .
rise to a very complex description of controllers which is Ta(v) = T/o 7a(9(v,t), (v, t))dt (5)

hard to relate to the flight control mechanisms adopted o .

insect. Therefore, this direction is not pursued fur'[helreheti—)hetr‘;’:;/e\;i"’:tgueacli Y;reurlccelgt;ge}'ﬂgeﬁsgdgfm 223 d?ce%%?l??olonly
Inste_ad, we propose to parameterize the wing motion bf’f%%uts parameterFi)zed by a .set of virtual Fi)nput iS not new,
on biomimetic pn(ncu;leshto dg&gn ?ur periodic mpurt]s,. I'éand it has been used extensively in geometric control theor’y
we proposeu = g(v,t). Then, by applying averaging theory : .

to approximate the complex time-varying dynamics with th hd averaging [47] [34] [37] [43] [42]. We will then look

average time-invariant dynamics, we show that there isea:tjirfor eki(ponennallyc/i statilhzmglfcontrﬁl fiedb?Ck laNYT h,grl]) th
map between the proposed kinematic parameters and the mhjne averaged systems. If such a function exists, then the
riginal time-varying system will have a bounded error from

forces and torques. The kinematic parameters appear aalvir I] desired equilibrium point if the wingbeat pericd is

inputs in the averaged dynamics. The averaged dynamics I§,. . i I Althouah thi hd ¢ ¢
then suitable to standard controller design, similarlyhose sutticiently small. Ough this approach does not guaan
found in helicopter control. asymptotic stability for the original system, we will shohat

the error boundcT" is very small for insect flight as observed
i in true insects, and therefore irrelevant from a practicahip
B. Averaging of view.

Averaging theory and high frequency control encompass
several results and they have been applied in differentsfiee c. wing Kinematic Parametrization
areas. Recently, these results have been applied spdgifial
insect flight [45]. Here we report only some of the resultg thﬁq
we will use for the flight controller design.

Although it is currently unclear how true insects acconiplis
e control of their flight and maneuvering capabilitiesenmet
experimental work on true and robotic models has found that
Theorem 1 ([45]). Let us consider the following systems: by modulating a few kinematic parameters on each wing, such
i — f(ayud) as wing rotation timing at _the stroke reve_rsals and the wing
u _ g(v7t)’ blade angle of attack, the insect can rgadlly apply tqr_qunas o]
v _ h(T’) (3) the body and, therefore, control its attitude and positié8] [

P [2] [20] [24]. Similar considerations has also been obsgrve

g_(v’t> o g@’t +7) also in fish-like swimming [49], where the modulation of few
T = [f(z,0) fin kinematic parameters can generate large torques angsforc
flz,v) = % fOT f(z,g(v,t),g(v,t))dt (4) Based on these observations, it was suggested that a small se
v = h(z) of wing kinematics might be sufficient to generate all pdssib

flight modes, and the key point for designing any of these
modes is the capability to control the MFI's attitude [50].

In particular, the research done by Dickinson and his group
[2] [24] has suggested that the following kinematic pararset
may suffice to generate any flight maneuvaring of rotation
mean angle of attackstroke angle amplitudestroke angle
offset downstroke deviatianThere is a strong evidence that
if these parameters can be controlled independently, then i

In our setting,T" is the wingbeat period, and the systenis possible to control the torque and force generation gurin
f(z,u) is given by Equations (1) and (2), where the vectdtapping. For example, a large (small) stroke angle ampditud
u = (o, &1, pr, p1) represents the right and left wing angleswould generate a large (small) lift. An advanced (delayed)
The theorem is an application of singular perturbation theotiming of rotation at the end of the downstroke results in a
[46] [28], which studies the behavior of the dynamical sgste nose-up (nose-down) pitch torque. A larger (smaller) angle
& = ef(z,t,¢), where the vector flowf is 7-periodic in attack during the downstroke relative to the upstroke pcedu
t and ¢ is a small parameter. In fact, after the change af backward (forward) thrust. Most true insects flap theirgsin
timescaler = t¢/T the Equations (3) can be written asalong a symmetric trajectory with a stroke angle amplitude
9z — Tf(z,g(h(z),T1),g(h(z),TT)) =T f(z,7), where f around120° and mean angle of attack d@6° on both down-
is 1-periodic in its second argument. Therefore, the pericdroke and upstroke [51] [5]. However, during saccades and
T plays the role of the perturbation parameteiand should other maneuvers, they modify the wing trajectory by chaggin
not be confused with the peridd. the kinematic parameters described above [52].

wherez, z € R",u € R™, v € RP, and all functions and their
partial derivatives are continuous up to second order.

If z = 0 is an exponentially stable equilibrium point for
the averaged system (4), then there exists- 0 such that
llz(t) — Z(t)|| < KT for all t € [0, 00). Moreover the original
system (3) has a unique, exponentially stable, T-periohi o
x(t) with the property||zr(¢)|| < kT



Based on these biologically inspired arguments, the proble
to solve then is how to parameterize the wing trajectory to |
able to mimic the real insects hipndependentlycontrolling
some of the biokinematic parameters described above.
will then show how the parameters map directly to the me:
torques and forces, thus simplifying the design of a fligh
stabilizer. More specifically, the wing trajectory during ¢
wingbeat is described using the stroke angland the rotation
angle . In particular, we parameterize the wing motion o
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each wing within a wingbeat period as follows:

P(v,t) 9o (t) +v1 91(t)
(v, t) = gy(t) +v292(1)

where the functiong;(¢) are T-periodic function, i.eg;(t +

T) = gi(t), (v1,v2) are the kinematic parameters, afid

is the wingbeat period. These functions are chosen ba: ~°9
on the considerations above. In particulay(t) and gg4(t)
generate a symmetric motion with maximum lift prOdUCtionFi 4.  Wing kinematic parameterizing functions given in Equa-
g1(t) modifies only the stroke angle amplitudg(¢) modifies tioghs '(8)' 9 P 9 g q
the timing of rotation of the angle of attack at the end of the

downstroke. Based on observations of true insect flight we

choose the following functions:

, Angl

(6) \\ ,z

(7) . R
—40F S e i

0.25T (%.ST 0.75T T

Time ( T units)

(9) into Equations (5), we obtain a static mHp: R* — RS

gs(t) = ECOS(th) from the wings parameters € R* to the mean wrench

A (2. 7%) € B
®) = Tsin(2Ty) Vi

Je 4T { 4 ] =T1(v) (10)
™ . 3 T a

g1(t) = -——sin°(=t) o . .
15 T This is a nonlinear map and cannot be computed analytically

g2(t) = qi(t) (8) since the aerodynamic force and torque are complex furgtion

of wing position and velocity (see Section IV in [4]). Howeye

shown in Fig. 4, which are defined on the intervat [0, 7) 56 coig look for an affine approximation around the origin

and extended by periodicity so that(t + T) = g:(t). : )
The rationale behind the choice of functions, g was the of the wings parameters:
necessity of finding smooth curves that could modify wing fo

trajectory amplitude and timing of rotation as describedvab 7b

Fig. 5 shows a pictorial representation of wing motion and G 6xd ) .
corresponding aerodynamic forces for different choicethef Wheremo € R®, II; € R**%, andé(v) is the approximation
kinematic parameter; and v,. Note how these parametersS/Tor- Although, it is not possible to linearize analytlgal

affect the distribution of forces along the whole wingbedgduation (11) to obtainr, andII; directly, it is possible to
period. randomly select different values for the parameter vector

The wing parametrization given by Equations (8) is natubstitute it into the parametrization gjz/epbby_qu.Jatioh@d
unique and might not be optimal either, however it givedhally compute the true mean wrencf;, 7,) via simulations
rise to wing trajectories that mimic some of the trajectori¢/SiNg the exact wing aerodynamics. The approximating
observed in true insects. In fact, a positive (negative)edbr and Il can then be found by rewriting Equation (11) as a
v, results in a large (small) stroke angle amplitude; a pasitifeast square (LS) problem whefeo, I1;) are the unknowns.
(negative) value for3 results in a delayed (advanced) timingS|muI_at|on$ are performed based on thg aerodynamic model
of rotation at the end of the downstroke. If this parametiaze. d€Scribed in [4], and on the morphological body parameter
above is replicated for both wings, the wings kinematic¥ @ typical blowfly, which is the MFI target model. The
u = (¢r, b1, or, 1) CaN be written in terms of the parameter§ppr0x'mat'”9 affine map is found to be as follows:

v = (v}, v}, v}, vh) as follows:

] = 7o + v + §(v) (11)

0 0 0 -1.0 -10
u(v,t) = g(t) + G(t)v 9 0 0 0 03 —03
(v,t) = g(t) + G(t) oo ) I - N ; ;
9o 91 o=\ o | 9| 04L —04L —0.1L 0.1L
|9 | g=] 0 o 0 O 0 ~0.2L —0.2L —0.4L —0.4L
g 9o |’ 0 0 g O 0 0 0 —0.5L 0.5L
9o 0 0 0 g (12)

wherem is the mass of the insedk, is the length of the wing,
where ¢g(t) and G(¢) are aT-periodic vector and matrix, and the zero entries correspond to estimated values riagligi
respectively, whose entries are defined in Equations (8). relative to the largest entries in the matrix. This appraation

It is now possible to study the effect of the chosen paramis-quite accurate for kinematic parameters smaller thaty,uni
trization on the mean wrench. In fact, if we substitute Egumat ||v||. < 1. Fig. 6 shows that the estimated mean wrench,
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Fig. 5. Pictorial sequence of the side view of wing motions and the corresporagiragynamic forces for different choice of kinematic
parameters. Symmetric motiom; = 0,v2 = 0. Advanced rotationy; = 0,v2 = 1. Delayed rotationw; = 0,v2 = —1. Large stroke
amplitude:v; = 1, vy = 0. Small stroke amplitude:; = —1,v2 = 0. Symmetric motion is defined as a wing trajectory for which downstroke
and upstroke of a single wing are identical, i.e. the wing motion is symmetithlrespect to time instartt.57". The vectorf, represents
the aerodynamic force acting on the center of pressure of the wing.

w = my + II;v, predicts quite accurately the true mean wrendhrust can be controlled almost independently by appragyia
obtained from simulations, thus validating our approach. choosing the values for the four wing parametergiowever,

The particular structure of this map is a consequence Bere are small but non-negligible couplings between some o

the parametrization based on the biological insights desdr 1€ Wrench components. For example, a positive (negative)

at the beginning of this section. In fact, as we expect, aﬁg“‘:h torque is always associated with a positive (negative

component of the wrench depends additively or differef@rward thrust. Similarly, a positive (negative) yaw toequ
tially on two parameters, depending if the wings are movir§ @ssociate with a small positive (negative) roll torquel an
symmetrically or anti-symmetrically. Note that along the z2 Small negative (positive) lateral force. Although this is
component, the symmetrical wing motions generate a vértindesirable, it does not undermine the stabilizability g

lift sufficient to balance insect body weight. The magnitafie M°des, as we will show in the next section.

the coefficients in the map are considerable. In fact, beglue

; X . This section can be summarized by saying that, although it
force necessary to balance its weight, the insect can gene

) ; : f€ not possible to instantaneously control the insect wrenc
forward or vertical thrust in excess of in the order ff ~ pere exist wing motions that can independently control the
0.1-0.2mg, and angular torques of ordef = 0.1-0.2mLg. meanforces along the:-axis and the torques about all three
In other words, considering that the moment of inertia of &a5 \We also showed that the affine parametrization of wing
true msectgalong one of its principal axis is on the order ‘%otions given by Equations (9), based on biomimetic prin-
I'~0.1mL~ [51] and that our target wing size 5= 10mm, ¢jjjes gives rise to a simple affine map between the mean
this is equivalent to saying that E?e Insect can genera&aQﬂm wrench and the kinematic parameters. The inspection of the
accelerations of abouty, = fi/m = 029 ~ 2m/s map shows that the three mean torque components and the
a”;}' angglar accelerations of abaul,, = 7.// = g/L = \erical thrust can be controlled independently. The ing-
10”deg/s*, which are comparable with those observed in trug ,, and virtual inputv as defined in Theorem 1, correspond
Insects. in our setting to the wing angles = (¢, ¢;, ¢, ¢;) and

By inspecting the structure of this parameters-to-wrendinematic parameters = (v}, v}, v5, v}). In the next section,
map, it is apparent that the three mean torques and thealertize will show how to design stabilizing controllers for the
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Fig. 6. Predicted mean wrenchy = m + II;v (z-axis) versus

the exact mean wrenchy{axis) obtained from simulations far00  Fig. 7. Actuator voltage profile as defined in Equation (18) for 10
random values of the wings parameter vectoin the unit box, random values of parameter vectowith |[v|| < 1. The solid line
i.e. [|v]|les < 1. The spreading around diagonal lines quantifies theprresponds ta = 0, i.e. Va(t) = h(t). Note that|[Vi(t)|| <
modeling errors. 10uN for all ||v]|eo < 1.

linearized averaged dynamics. By Theorem 1, these coattsollany sequencéuv,, }2°,, wherev = (v], v}, v}, v}) is the wing

are also guaranteed to stabilize the original nonlineaetimkinematics parameter vector as defined in the previousosgcti

varying dynamics. It is also important to remark that inse¢he wing trajectory controller must track the trajectory:

flight control is being studied from a fully dynamic point of

view, although the control inputs, which are parameterized ua(t) = g(t) + G)o(?), (19)
v(t) = tenT,(n+1)T) (16)

relative to the wing kinematics, might induce the thougtatt th

the control is based only on a kinematic model. whereg(t) andG(t) are defined in Equation (9). Note that the
matrix G(t) defined in Equations (8) was specifically chosen

to have the additional property

Un,y

VI. WING TRAJECTORYTRACKING AND ACTUATOR
CONTROL

The previous section described how to design wing trajec-G(0) = G(0) = G(0) = G(T') = G(T) = G(T) =0 (17)
tories that can generate the desired mean forces and tOrqyes herefore, the trajectonyy(t) € C2 is continuous up to

during a wingbeat period. However, the wing trajectory @NNis second derivative for any sequenge, }. If we substitute

be controlled directly, and appropriate input voltages he te ; 15) into E ; 14 f Il L
thorax actuators must be devised to track the desired winguatlon (15) into Equation (14) we formally obtain:
Va(t) = h(t)+ H(t)v(t)

trajectory. As described in [4], the dynamics of the thorax-
wing structure can be approximated as a stable two degree-of o(t) = vn t € [nT, (n+ 1)T)
freedom second-order system. Given a desired wing trajecto . . ’
v 9 rove Bt) = Mi(t) + By(t) + Kg(t)
H(t) MG(t) + BG(t) + KG(t)

(¢a(t), pa(t)), we can calculate the corresponding steady-state
where h(t) and H(t) are aT-periodic vector and matrix,

input voltages by substitution:
[KMEQ} :T0‘1<M0Hd(?}+30 [?d(i)]g{o [d)dEgD respectively. Sincef (t) is simply a linear combination of
2d $a(t) $alt) vd (13) G(t) and its first and second derivatives, then it follows from
where Ty, My, By, Ko € R2%% are constant matrices, angEauation (17) thattf (0) = HO(_T) = 0. This implies that the
Vi, V, are the input voltages to the wing actuators. Let= input voltage vecto¥/;(¢) € C* is continuous for any sequence
(VH, Vi, Vi, Vi) be the input voltages for the two wings, andYnJ"

— i ; Let us consider a desired wing trajectory vectas(t)
= (¢, D1, ©r, 1), then the wing-thorax dynamics for both . = ; : L)
:/Lvinggs(ﬁca(ré]l bﬁ r((apvlv)ritten as foIIowg: y defined by Equations (9) and the corresponding feasiblet inpu

voltage vectoV;(¢t) defined by Equations (18). We define the
Mi+ Biu+ Ku=V

(14) wing trajectory tracking error to be, = u — uq, and apply
where M, B, K are matrices that depend @R, My, By, Ko, input voltageV(t), then we have:

and the dynamics is stable. As we will show in the next Mé, = —Bé,— Key,

Section, the flight _mode _stablllzer is assur_‘ne(_j to be able eu(0) = @(0) — wa(0), ew(0) =u(0) — ua(0)

to select a new wing trajectory at the beginning of every

wingbeat, from among those defined by the parametrizationvimere we used Equation (14) and the fagft) = —B1q(t) —
Equations (7) and (8). This is equivalent to saying that mivelKu,(t) + V4(t) for all ¢ € [0,00). Since the system above

(18)
(19)
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vl VIl. FLIGHT CONTROL IN HOVER

m Ly 1 v 1 0 1 = ~
g SZ 0 AN V=1 v Following the guidelines described in the previous section
v_ Il N — o || We cannow look for a stabilizing controller for hovering by
S - | -~ o, || designing a feedback law= h(x) such that the origin of the
o " averaged system is exponentially stable.
~ 4 ad 7~ A
40r /%, R ~ —_—y ]

A. ldentification

OV\/ \/Z The analysis in the previous section provides a torque
| decoupling scheme together with a set of virtual control

inputs, i.e. the wing kinematic parameters which enters

N
[S)
=
-
S
Z
1
1
<
o
|

_ ‘ —V, into the averaged system in a affine fashion. Since we are
; il Vv, interested in the insect dynamics close to the hoveringmregi
E S\ | XQA 7 Y / '\ where angular deviations and angular velocities are small,
>:_5[, \’ \/ 1 we linearize the averaged system dynamics near hover. We
> w approximate the continuous-time nonlinear system, with a
0 1 2 3 4 5 6 . . .
fime (T units) DTLTI model in the following form:
Fig. 8. Simulation of actuator control given in Equations (18) showing z(n+1) = Az(n)+ Bu(n) +d(n) (20)

asymptotically tracking of desired trajectory for a random sequence of y(n) = z(n) +n(n)
kinematic parameterév, }, wherev = (v, v2), and random initial = 3T - - a7
condition of actuator state vector, for one wing. From bottom to to&/hereax = [M Oy ¥ wo Oy Wz Pz Py Pz Uz Uy U]
actuator voltage®’, V» as given by Equation (18p6tton). Rotation 1S the vector of average roll, pitch, and yaw angles, angular

angle, ¢, (cente), and stroke angleg, (top), given by Equation velocities, positions and linear velocities over one wieafh

(14). The error between desired and true wing trajectory decays aftespectively; §(n) represents the unmodeled dynamics as

approximately 3 wingbeat periods. well as external disturbances which appear as an external
noise to the linear model. This term includes both process
noise as well as unmodeled non-linearities. The input vecto
v = [v] v} vi vb]T are the wing kinematic parameters, which
appear as virtual control inputs. The measurement vector
y =95 97 9° 9t 95 9%: 95 U5 g5 95 95 vs)" is the vector of

is stable, we have thdim, , e,(t) = 0, or equivalently measured outputs from the ocelli, halteres, magnetic cesipa

lim o u(t) = wuq(t) for any initial condition. The rate and compound eyes, with additional measurement ngiisg

of decay, 1/T4ecay. IS S€t by the poles of the wing-thoraxAs described in [4], these measurements correspond to an

mechanical system. The time constagt..,, is approximately estimate of the insect true state, ire= 7.

1 to 2 wingbeat periods for the target MFI design. This The matrice§A, B] can be obtained analytically from MFI

property guarantees that even if we cannot directly contnolorphological parameters such as mass, moment of inertia,

the wing trajectory, any initial perturbation would disagp center of mass, etc. However, these parameters are difficult

within a few wingbeats and the wing trajectory would coneergo obtain in practice. Moreover, this approach cannot model

exponentially to the steady-state solution, as shown in &ig the effect of the time varying part of the aerodynamic forces
Another approach would be to substitute the parameter-to-
wrench map into the original nonlinear dynamics and liresari

The wing trajectory tracking approach developed in this seit. Here we adopted the system identification approaehyun

tion is equivalent to a feed-forward control of wing trast a large number of experiments and record the pdit), v(n)]

during a single wingbeat. In fact, it allows trajectory chas of sensor measurements and kinematic parameters, and then

only at the beginning of every wingbeat, in such a way théihd the matrices[A, B] that best fit the data. Moreover,

this transition is smooth and there is no error between eésifurther investigation into the particular structure of theect

wing trajectory and actual wing trajectory. This is equéral dynamics given in Equation (20) results in the following

to saying that there is no error between the desired andlactajpproximate linear system to be identified:

mean wrench during the following wingbeat. This approach

has two main advantages. The first advantage is that we can 53” Tli“ 8‘”3 83X3 03BX3
assume to have direct control of the wing trajectory, and wé = O?X? 0. > If”xf” TI?X? . B=1|, 21
can neglect the wing-thorax dynamics since any perturbatio 3x3 3x3 73x3 3x3 3x3

Agr O3x3 O3x3 Aya By

would die off within a few wingbeats. The second advantage
is that it naturally leads to a discrete time (DT) system¢sinwhere T' is the wingbeat period, the matrices,, and Ay

the wing kinematic parametersare updated every seconds, account for angular and linear damping, and the matrix

i.e. at the beginning of every wingbeat. We will exploit thesaccounts for the linear accelerations due to tilted bodgroeri
two properties in the next Section by modelling the insetation. This structure is typically used in helicopter dymies
dynamics as a discrete time system where the inputs are idhentification [53] [54].

wing kinematic parameters and the state is the mean value We first estimate a model in open loop where only data
of the body linear and angular position and velocity withie t for the first several wingbeats are recorded. Since the senso
previous wingbeat. measurements provide an estimate for all the entries of the
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Position (mm)

Orientation (degs) also to take into account process disturbances and measure-

-- PEM-model

| — exact o ment noise in Equation (20), we employed a Linear Quadratic

— LS-model

Gaussian (LQG) optimal controller design.

As a first step, a state feedback LQR regulaicr — K=z
was designed to minimize the following quadratic cost func-
tion

N
I H T T
J= A}gnooE(”;x(n) Qz(n) +v(n)TRu(n))  (21)
where@ > 0 andR > 0 are the weighting matrices that define
10} R — the trade-off between regulation performance and control
effort. The controller was designed with standard diserete
time LQG software, and the diagonal entries in the weighting

z g matrices are iteratively tuned to ensure a good transient
- response without saturating the control inputs. The ab&@R L
) optimal state feedback = — Kz is then substituted with a
O iy T ey more realistic output feedback:
v(n) = —Ky(n), (22)

(Ftlr? ‘-?(- (:I(')dmlpae;iso'rt]hozl':he exacé,nlegn QS]QL?S aFfjg N?fg)gmaé VS]PE_I[EMere the outpuy is given by the sensors measurements. As
ICk solid ling with those predicted with the FEM-base described earlier, the simplified DTLTI system (20) progide
model @ashed lin, the L'S-based DTLT] modetiin solid ling and a feedback scheme to sglect the win ykinemgltic) parameter
those simulated using exact model 0%6r consecutive wingbeats. . - g p
for the next wingbeat period. The true feedback control
from sensor measurements to actuator voltages is obtained b

state vector, the model identification problem can be rec&&mbining Equation (22) with Equation (18) to give:
into a least square solution to an over-determineqq set of v, h(t) + H(t)v(t) = h(t) + H(t)Ky(t)
linear equations a¥’z = d, wherez = [a;;,...,brn]" IS h(t) + K (B)y(t) (23)
the vector of system parameters to be estimated, and yit
and by, are the nonzero entries of the matricdsand B y(t) = y(nT), tenT,(n+1)T) (24)

respectively. The matrids = E (y(-),u(-)) andd = d(y())  where the sensors measurements are sampled at the beginning
are matrices whose entries depend on the experimental dgfaeach wingbeat, and< (¢) is simply a proportionall-

The least-squared solution which minimizes the norm of theriodic matrix gain. It is remarkable that a simple propor-
error [[e||* = [|d — E2||* is given byz = E(ETE)~'E"d. {ional T-periodic feedback scheme is sufficient to stabilize
The experiments were performed on the Virtual Insect Fligi{e complex time-varying nonlinear insect dynamics inelud
Simulator (VIFS), developed by the authors to provide @g nonlinear sensor measurements, actuator dynamics, and
software testbed for insect flight [4]. The experimentaladahrocess and output noise. More importantly, this gain can be
was generated with random inputs and initial conditionsr negomputed off-line and easily stored on the computation unit
the hovering equilibrium. of the MFI.

~ Based on this least-squared-based mddelB], a stabi-  The LQR controller was finally tested on the fully non-
lizing state feedback control based on pole placement Wasear time-varying model which includes the MFI dynam-
designed and tuned, first on the nominal LTI model, angds of Equation (1), the wing-thorax dynamics of Equations
then verified on the fully nonlinear continuous time dynamic13), and the sensor models described in [4]. The simu-
provided by VIFS. Although least-squared identification igtions are based on a target MFI ©60mg and 10mm-
simple and straightforward, it does not exploit the streetof  yingspan with wingbeat frequency = 150Hz. Fig. 10

the dynamics present in Equation (20), nor does it providesgows a simulation for hovering stabilization from the idit
systematic way to estimate process and output noise. HOWEYRNGition & — (11, 0, 1w, Wy, s s Pys Prs Uas Vs V) —

it does provide a stabilizing controller which can be usett sua50, _25° 20°,0,0,0, 35mm, —25mm, 25mm, 0,0,0), and
cessively to perform closed loop system identification tigio wing state (u, @) = (¢r,¢z,<pr,<pz,</3r,¢5z,¢r,¢z) — 0. Our
prediction error method (PEM) [55]. The prediction ermoproposed controller design successfully achieved staitin
method cannot be applied directly to the system (20), sin€e ijespite sensor and process noise. The initial conditiorecor
system is unstable, which is why least-square identifioaiBo gponds to an offset from the desired position of about 3 body-
performed first. The PEM-based identified model performqgngths_ The steady state error during hovering:is/10 of
better than the least-squared-based one in predictin@tinsge phody-length for the position and 5° for the orientation.
dynamics as shown in Fig. 9. Moreover, the estimated procégge MFI requires about 50 wingbeat periods to reach the final
and measurement noise variances and biases can be usegfguration, which corresponds to abayrds of a second
design better robust controllers. for a wingbeat frequency of50H =.

B. Controller design C. Single channel identification and control design

In order to address the trade off between regulation perfor-Based on the particular structure of the mean wrench map
mance and control effort to avoid control input saturatiamg given in Equation (12), where it appears that the mean torque



11

Position (mm) Linear velocity (mm/ms) Orientation (degs) Angular Velocity (deg/ms)

— exact
—— compound eye

— exact
— ocelli

20 40 60 80

0 20 40 60 80

2]
v -
o =
Yo y S - y
1o -0.4] exact a — exact
20 — flow sensor -40) — ocelli -1
30| -0.2

0 20 40 60 80 100 0 20 40 60 80 100 (] 20 40 60 80 100 0 20 40 60 80 100
02 — exact 20 . — exact
— flow sensor —— halteres
01 = 0 0.5
\' 9 W
z° z A P e
T
-0.1 > -0.5]
-40 — exact a
; —— compass

30| -0.2
0 20 40 60 80 100 0 20 40 60 80 100 ) 20 40 60 80 100 u 0 20 40 60 80 100
Kinematic parameter Kinematic parameter Kinematic parameter Kinematic parameter
1 1 1 1
0.5 0.5] 0.5] 0.5]
UI 0 UI 0| Ur 0 Ur o
1 2 1 1
-0.5 -0.5 -0.5 -0.5|
-1 -1 -1 -1
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
Actuator voltage (uN-m Actuator voltage (uN-m Actuator voltage (uN-m
Actuator voltage (UN-m) 10 ge (u ) 1 ge (u ) 10 ge (W )
5 5 5
° |
r
V. V r
V! 20 10 Vs, 9
-5 -5| -5
-5
-10 % 5 10 15 20 xs % 5 10 15 20 s % 5 10 15 20 25
0 5 10 15, 20 25 i . i i ) i
time (T units) time (T units) time (T units) time (T units)

Fig. 10. Simulation of hovering control with sensor feedback and actuatorsnaigsa From top to bottom: insect true state and sensors
measurementsdw 1-3); kinematics parameters given by Equation (2 4); actuators voltage given by Equation (28)¢ 5) during the
first 25 wingbeats.

and the vertical thrust can be controlled almost indepethgenindicate non-negligible entries. If thés are neglected, it is
by combining, symmetrically or anti-symmetrically, then& clear that each virtual parametgrcontrols independently one
matic parameters = (v, v}, v5,v}), we can reformulate the of the three angular accelerations and the vertical actéer
flight control problem of the 6 DOF system similar to thathus justifying the single channel controller design schexn
of helicopter control, where we have decoupled the systdygpically done for a helicopter. The advantage of this appho
dynamics into longitudinal, lateral, heave, and yaw dyramiis that the feedback matrix gain is given by:

[21] [54]. In fact, if we redefine the kinematic parameters as K5 = diag{ Kiongs Kiats Kneans Kyau} 27)

follows:
S . where the matrice®(;,ng, Kiat, Kheav, Kyaw are the smaller
0 = (01,02, 03, 0a) = (v1—v1,v2Fv2, v2—v2,v1+01) = Fv (25)  sjze proportional gain matrices obtained from the decaliple

and we use these parameters as inputs for the system (20) ‘&8¢t flight dynamics, thus reducing the computationadléaor

repeat the identification process, then we obtain the fafigw When computing the feedback = Kjy. Fig. 11 shows a
matrices: comparison between the full channel controller design aed t

Ao — di single channel design. The performance using single cthanne
0as 0 22 = diag{as, az, a3}, design degrades somewhat, but it is less computationally

An = |-as 007, demanding than the full channel design, which is a clear
0 00 As = Ozxs, advantage for the limited computational unit available t6li
by 0 %0 0x0 0
BQl = 0 b2 0 % s B41 =100 O (26)
0 0b30 000 by VIIl. CONCLUSION

where the zeros entries are entries that were much smallem this paper we presented a framework for flapping flight
than the other entries in the same row, and the asteri&ks, control and navigation in biomimetic robotic insects. We
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Fig. 11. Comparison of single channel design vs full channel design.

[5

[6]
started by reviewing the neuromotor architecture present i
true flying insects, and highlighting analogies and diffexes
between insect flapping flight and helicopter flight. Insghibs
true insect neuromotor organization of flight control mecha
nisms, we proposed a three-layered hierarchical controt-st
ture that simplified flight control design while preserving
the high maneuverability and the agile navigation capgbili
exhibited by true insects. The first major contribution of
this paper was to propose a suitable parametrization of wiH§]
motion during the course of a full wingbeat and to combine
it with averaging theory arguments, thus showing that ther)
insect time-varying dynamics can be well approximated by
a discrete-time linear time-invariant (DTLTI) system wher 12]
the wing kinematic parameters appear as virtual inputs. The
second major contribution was to propose an identification-
based LQR controller design which does not require th
knowledge of an accurate model for the insect morphological
parameters, such as moment of inertia and mechanical palfs
sizes, nor an accurate model of the aerodynamics. As a result
hovering flight mode can be stabilized with a simple affings)
T-periodic proportional feedback from sensor measurements
to actuator voltages. This is very important considering ”Eles]
limited computational resources available to MFIs. Altgbu
in this paper we focused on hovering, it has been shown that
other flight modes like cruising and steering can be stailiz [17]
using a affinel’-periodic proportional feedback [56].

Several research directions can be explored. The most
important one is probably in regard to the wing parametrizg-s]
tion, which in this paper was based on the observations of
true insect wing motions. However, different wing kinernati
parameters could be chosen. Therefore, a more system
methodology to optimize the wing trajectory parametrizati
with respect to some metrics, such as aerodynamic powerl2i
maximum torque production, is sought. [21]

Another important direction emerges from wing trajectory
tracking. One of the major assumptions in our approact
was the linearity of the actuator dynamics, so that wings
trajectory tracking could be easily solved using a pseudo-
inverse method to compute the control input to the actuatoE
This assumption is true only to the first order, as shown
[57], and nonlinearities become particularly importantasd

—

(7]

(8]

n

12

wing rotations at the end of the half-strokes are necessairy f
aggressive flight maneuvers.

Finally, the methodologies proposed here need to be vali-
dated against experimental data from from MFI prototypes.
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