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Abstract— In this paper we present a novel synchronization protocol
to synchronize a network of controlled discrete-time double integrators
which are non-identical, with unknown model parameters andsubject to
additive measurement and process noise. This framework is motivated by
the typical problem of synchronizing a network of clocks whose speeds are
non-identical and are subject to variations. This synchronization protocol
is formally studied in its synchronous implementation. In particular, we
provide a completely distributed strategy that guaranteesconvergence for
any undirected connected communication graph, and we also propose an
optimal convex design strategy when the underlaying communication
graph is known. Moreover, this protocol can be readily used to study the
effect of noise and external disturbances on the steady-state performance.
Finally, some simulations including also asynchronous implementation of
the proposed algorithm are presented.

I. I NTRODUCTION

The extraordinary success of Internet and of wireless technologies
has created the opportunity to interconnect a huge number ofdevices
which can exchange information and cooperate to accomplishnew
tasks and to control the environment more effectively. One important
problem to be solved in many applications involving a network of
distributed devices, such as in wireless sensors networks (WSNs),
is to maintain them temporally synchronized. The main challenges
in time synchronization for networked clocks are due to random
communication delay among devices, to the unknown, non-identical
and often time-varying periods of each clock oscillator, and to the
unknown topology of the network. Moreover, there might not be a
reference clock in the network.

Many synchronization protocols have already been proposedand
experimentally tested, in particular for WSNs. A common approach
is to create a hierarchical structure such a directed tree where each
clock synchronizes itself with respect to its parent. The challenge
with this approach is to dynamically elect a root and reconstruct
the tree whenever nodes fail or new nodes appear, as proposedby
Ganeriwal et al. [4] and Maroti et al. [6] for example. Another
hierarchical approach is to divide the network into distinct clusters,
each with an elected cluster-head. All nodes within the samecluster
synchronize themselves with the corresponding cluster-head, and
each cluster-head synchronizes itself with a another cluster-head, as
described by Elson et al. [2]. These hierarchical approaches however
require substantial overhead to build the dynamic trees or clusters and
might not scale well for very large networks. More recently,totally
distributed synchronization protocols have been proposedwhere each
node in the network runs exactly the same algorithm irrespective of
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the size or topology of the network, such as those proposed bySolis
et al. [11] and Schenato et al. [10].

In this work we present a novel distributed synchronizationpro-
tocol which is based on a second order linear consensus algorithm.
The term consensus refers to a general class of distributed algorithms
that allow multiple agents to converge to the same quantity of
interest using only local communication. This class of algorithms
has been successfully applied to many applications such as flocking,
coordinated formation control and distributed estimation(e.g. see
[8]). As in [11] and [10] our proposed protocol is fully distributed,
however it has the advantage to use a simple linear output feedback
strategy which allows performance analysis also in the presence of
measurement and process noise. In fact, the protocol in [11], which
is based on the cascade of two distributed least-square algorithms,
and the protocol in [10], which is based on the cascade of two first
order consensus algorithms, are both nonlinear and do not lead to
simple characterization of performance in the presence of noise.

Time synchronization of clocks with different speeds provides an
interesting class of systems. In fact, each local clock can be modeled
as the output of a double integrator whose rate in not perfectly
known. Moreover this rate is slightly different from one clock to
another, therefore even if all clocks are perfectly synchronized at one
time, they will slowly diverge from each other if no compensation
or resynchronization is applied. Synchronization can be modeled as
the tracking of the average of external signals with linear growth,
namely local clocks without compensation. Work in the context of
signal tracking with consensus algorithms have been proposed, among
others, by Spanos et al. [12], Freeman et al. [3], and Zhu et. al [16].
However these works are in continuous time with no noise and do
not provide optimization strategies for the protocol parameters. The
presence of noise has been explicitly taken into account by Xiao
et al. [15], but only for first order consensus dynamics. Differently,
synchronization of networked higher order systems is a morerecent
topic of research. Most of the available results are for synchronization
of either non-identical systems which are strictly stable [5], or
identical linear systems [9],[13]. More challenging is theproblem of
stabilizing unstable systems. Specific attention has also been given to
the synchronization of double integrators which are unstable systems
with a ramp mode [7]. However these strategies strongly relyon
the assumption that all systems are identical and no optimization is
performed.

In this paper we first propose a distributed clock synchronization
protocol based on the consensus algorithm for non identicaldouble
integrators whose rates of growth are not known nor measurable. This
technique is only analyzed in the unrealistic synchronous implemen-
tation. Motivated by this application, the main contributions of the
present paper reside in the extension of the optimization techniques
proposed by Xiao et al. [15] for first order consensus protocols to
consensus protocols for double integrators. More specifically, we
propose centralized optimization algorithms for optimally designing
the protocol parameters both in terms of rate of convergenceand
in terms of steady state error in case the protocol is perturbed by
an additive noise. Interestingly, this last optimization problem shows
that the optimal design strategy requires the optimizationof a convex
function of all the consensus matrix eigenvalues, thus being quite
different from the standard procedure which suggests to minimize
the second largest eigenvalue of the consensus matrix. Finally, we
include some simulations where we compare the performance of
the synchronous implementation with a randomized asynchronous
implementation. These simulations seem to suggest that thesolution
we propose is effective also in its more realistic asynchronous version,
even though we do not have at the moment any theoretical evidence
of this fact.
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II. M ODELING AND MOTIVATIONS

Assume we haveN units and that each uniti has a clock which
is an oscillator able to periodically increment a register by one unit,
commonly known as tick. We assume that the periods∆i of these
oscillators are unknown, but are “perturbed” values of a “nominal”
and known period∆. Therefore, the value of thei-th register is
τi(t) = ⌊ t−t0i

∆i
⌋, where the “floor”⌊a⌋ indicates the largest integer

smaller than or equal toa, andt0i denotes the time when the clock
has been started. The unit has to use these ticks in order to estimate
time. Since only the nominal clock period∆ is known, the natural
time estimate is

yi(t) = ∆τi(t) + yi(t0i) (II.1)

whereyi(t0i) is the initial offset which is an estimate oft0i. Since
the ∆i’s are all different, then each clock will drift away from the
others even under the ideal situation in which they are all initially
synchronized, i.e.,yi(0) = yj(0) for all i, j. Therefore some sort of
information exchange and clock control must be enforced to obtain
and maintain synchronization among all nodes. If we assume that
the nodes periodically exchange their clock readingsyi(t) at times
t = hT , where h = 0, 1, . . . and T ∈ R is the synchronization
period, then they can use them to adjust their clock estimateyi(t) so
that eventually all nodes will be synchronized, i.e.,yi(t) ≃ yj(t) for
all i, j. A natural approach to achieve synchronization is to control
the nominal clock period∆ and the clock offsetyi(0) based on the
information received from the neighboring nodes. As a preliminary
step, let us observe that the evolution ofyi(hT ) in (II.1) can be
described through the following iterative algorithm

xi((h + 1)T ) =

»

1 ∆δi(h)
0 1

–

xi(h), xi(0) =

»

yi(0)
1

–

yi(hT ) =
ˆ

1 0
˜

xi(hT )

wherexi(hT ) ∈ R
2 and whereδi(h) := τi((h + 1)T ) − τi(hT ). If

x′
i andx′′

i denote the two components ofxi, thenx′
i gives the time

estimate, while∆x′′
i gives the oscillator period estimate. For sake of

conciseness, with no loss of generality we will assume in thesequel
that T = 1.

Each node can use any information it receives from the neighboring
nodes at timehT = h to insert a control in the previous iterative
algorithm

xi(h+1) =

»

1 ∆δi(h)
0 1

–

xi(h)+ui(h) (II.2)

yi(h) =
ˆ

1 0
˜

xi(h). (II.3)

Notice thatδi(h) = τi((h + 1)T ) − τi(hT ) = 1/∆i + ǫ(h) where
−1 < ǫ(h) < 1 and soǫ(h) can be neglected if1/∆i >> 1 which
will be assumed in the sequel. Notice moreover that the previous
system corresponds to the output of a second order integrator with
unknown parameter, since∆i is not known. Moreover, the dynamics
of each clock is different since in general∆i 6= ∆j .

We propose here a linear control law of the following structure

ui(h) = −F
N

X

j=1

kij(h)yj(h) (II.4)

where kij(h) is the i − j entry of the matrixK(h) ∈ R
N×N ,

F ∈ R
2×1, and we assume that communication and computational

delays are negligible. Notice that at timehT the protocol requires
the transmission of the outputyj(h) from the nodej to the nodei
if and only if kij(h) 6= 0. The problem is to determine the matrix
F and the matricesK(h) such that all theyi(h)’s converge to the
same ramp shaped function.

Assume now thatK(h) = K for all h and thatK1 = 0, where1
is theN -dimensional column vector with all entries equal to1. With-
out loss of generality we can assumeF = [f1 f2]

T = [1 α]T since
f1 can be absorbed intoK so thatα := f2/f1. Introduce finally the
2N dimensional vectorx(h) havingx′(h) := [x′

1(h), . . . , x′
N (h)]⊤

as the firstN entries and havingx′′(h) := [x′′
1 (h), . . . , x′′

N(h)]⊤ as
the secondN entries. Then the previous equations can be collected
in the following

x(h + 1) = ADx(h), x(0) =

»

x′(0)
1

–

AD :=

»

I − K D
−αK I

– (II.5)

whereI ∈ R
N×N is the identity matrix,D = diag{ ∆

∆1
, . . . , ∆

∆N
},

and x′(0) ∈ R
N . Our objective is to findK and α such that the

synchronization error defined as:

e(h) = [Ω 0]x(h) (II.6)

with Ω = I − 1
N
11

∗, converges to zero while the com-
ponents of x′(h) follow asymptotically a ramp function, i.e.
limh→∞[x′(h) − (ah + b)1] = 0 for somea ∈ R

+, b ∈ R.
Therefore the problem we tackle in this paper can be formulated

as follows. DetermineK andα such that:

a) system (II.5) has one eigenvalue in1 with algebraic multiplicity
2 and geometric multiplicity1. This ensures that the state
trajectories contains the modes of the formah + b;

b) the two modes associated with the eigenvalue1 are unobserv-
able with respect to outpute defined in (II.6);

c) all the other eigenvalues are inside the open unit disk;
d) possibly some cost function (depending onK and α) is

minimized.

For conditions a) and b) observe that, if we letv :=
ˆ

1
⊤ 0

˜⊤

andw :=
ˆ

0 1
⊤D−1

˜⊤
then we have that

(AD − I)w = v (AD − I)v = 0

showing in this way thatv and w are respectively an eigenvector
and a generalized eigenvector ofAD in (II.5) associated with the
eigenvalue1. Notice moreover that[Ω 0]w = [Ω 0]v = 0, which
shows that they are both unobservable.

Remark 2.1:The strategy proposed by Scardovi and Sepulchre in
[9] for obtaining consensus for higher order systems is not applicable
for time synchronization. Indeed for their method we have that in the
non ideal case in whichD 6= I , the eigenvalue1 becomes observable
and so we do not obtain consensus.

We need now to find methods able to giveK and α satisfying
conditions c) and d) of the previous list. Observe preliminarily that
often the∆i’s are slightly different and can be seen to be a small
perturbation of the nominal value∆. Therefore the dynamics of
Eqn. (II.5) can be seen as the perturbation of the system where
D = I . Concerning condition c), observe that, since the eigenvalues
are continuous function of the matrix elements, if we find a solution
satisfying condition c) lettingD = I , this solution will continue
to satisfy that condition even in case thatD is a small enough
perturbation ofI . Similarly for condition d), if the cost function to
be minimized is continuous inD, then the optimal solution found
assumingD = I will have approximately the same cost of the
optimal solution obtained starting from the trueD. For these reasons,
in the stability analysis and in the optimization problems which will
follow, we will assume thatD = I . We will use the symbolAI for
the matrixAD in (II.5) when D = I .



3

III. STABILITY ANALYSIS

The aim of this section is to study under which conditions onK
andα the proposed synchronization algorithm yieldse(h) converging
to zero; this is equivalent to require thatAI := AD|D=I in (II.5)
has two eigenvalues in1, as as seen before, while all the other
eigenvalues belong to the open unit disc. For simplicity, inthe sequel
we will assume thatK is symmetric. LetU be an orthogonal matrix
formed with the eigenvectors ofK, i.e., such thatU∗KU = Λ where
Λ = diag {λ1, λ2, . . . , λN} is the diagonal matrix containing the
eigenvaluesλi of K. SinceK1 = 0, without loss of generality we
will assume thatλ1 = 0.

Proposition 3.1: Consider the system (II.5) in the case whereD =
I . Then the remaining2N − 2 eigenvalues of this system are inside
the open unit disk if and only if

0 < α < 1 (III.1)

0 < λh <
4

2 − α
, 2 ≤ h ≤ N. (III.2)

Proof: Using the change of variable x̄(h) :=
diag {U∗, U∗}x(h) we see that the eigenvalues ofAI in (II.5) are
the eigenvalues of the matrix

»

I − Λ I
−αΛ I

–

(III.3)

Its characteristic polynomial is
QN

i=1(z − 1)2 + λi(z − 1 + α). For
i = 1 the previous polynomial gives the double eigenvalue1. It
remain to determine under which conditions the polynomials(z −
1)2 +λi(z−1+α), i = 2, . . . , N are Shur-stable (i.e., have all roots
inside the open unit disc). Using the bilinear transformation it can
be seen that this happens if and only if conditions (III.1) and (III.2)
hold true.

The previous proposition implies thatK needs to be positive
semidefinite. Assume now that we are given a graphG = (V, E)
whereV = {1, . . . , N} and whereE ⊆ V × V . Assume theG is
undirected, namely that(i, j) ∈ E implies that(i, j) ∈ E . This graph
describes the communication topology, namely a nodej can transmit
information to the nodei if and only if (j, i) ∈ E . For this reason, we
will say that a matrixK is compatible withG if and only if Kij 6= 0
implies (j, i) ∈ E . We will denote withK the set of rankN − 1,
symmetric, positive semidefinite matrices compatible withthe given
graph and such thatK1 = 0. Without loss of generality we assume
the eigenvaluesλ1, . . . , λN are ordered such that

0 = λ1 < λ2 ≤ · · · ≤ λN .

One may wonder how difficult it is to construct a matrixK and to
find α meeting the conditions of Proposition 3.1. The next proposition
shows that, indeed,K andα guaranteeing stability can be constructed
in a completely distributed way.

Proposition 3.2: Let G be a connected undirected graph and define
P as the Metropolis stochastic matrix associated with the graph, i.e.,

Pij =

8

<

:

1
max{di,dj}+1

if (i, j) ∈ E and i 6= j

1 − P

j 6=i
Pij if i = j

0 otherwise
(III.4)

where di denotes the number of neighbors of the nodei, i.e., the
cardinality of the setNi = {j : (i, j) ∈ E , i 6= j}. ThenK := I−P
andα = 1

2
meet the conditions of Proposition 3.1 thus guaranteeing

stability.
Proof: Note thatP is a stochastic symmetric matrix. By the

Perron-Frobenius theorem, the conectivity ofG implies that only one
eigenvalue ofP is 1 and the others are in the open interval]− 1, 1[.
Then the matrixK := I − P and α = 1/2 satisfy the second
condition in Proposition 3.1.

Of course, other distributed strategies are possible for designing
the matrixK, such as the Laplacian matrix [8].

IV. CONVERGENCE RATE OPTIMIZATION

In the previous section we have seen that synchronization for a
family of double integrators can be solved by properly choosing the
matrix K and the parameterα, i.e., there existK andα such that all
systems, asymptotically, are synchronized. Of course one would like
to go one step further asking whether it is possible to optimize K
and α with respect to a specific performance index. In this section
we consider the problem of obtainingK and α yielding the fastest
convergence rate, which amounts to pushing the eigenvaluesof the
systems (II.5), i.e., the roots of(z − 1)2 + λi(z − 1 + α) = 0, as
close as possible to zero. Figure 1 displays a graphical representation
of the root locus of(z − 1)2 + λ(z − 1 + α) = 0 for α = 1/3 and
for λ that varies in the interval[λ2, λN ] = [1, 1.9].

For small values ofλ (λ < 4α) the roots are complex conjugate,
while for largeλ (λ > 4α) the roots are real. Forλ = 4α there are
2 coincident roots inz = 1 − λ

2
= 1 − 2α. Optimizing for fastest

convergence is equivalent to minimizing the absolute valueof the
largest eigenvalue in absolute value. We define

r(λ, α) := max{|z| : (z − 1)2 + λ(z − 1 + α) = 0}, (IV.1)

i.e., the maximum modulus of the two roots of the characteristic
polynomial associated with the system (II.5). An explicit expression
for r(λ, α) can be easily found. Indeed it is easy to see that

r(λ, α) =

( √
1 − λ + αλ if λ < 4α

max
n

|1 − λ/2
“

1 ±
p

1 − 4α/λ
”

|
o

if λ > 4α

As mentioned above, we have to minimize the largest of ther(λ, α)’s
as λ varies inσ(K) \ 0, whereσ(K) denotes the spectrum ofK.
Hence we define

R(K, α) := max
λ∈σ(K)\0

r(λ,α) (IV.2)

The optimal values ofα andK are the solution of the optimization
problem

{Kopt, αopt} ∈ arg min
K∈K, α∈(0,1)

R(K,α) (IV.3)

where we recall thatK is the set of rankN − 1, symmetric, positive
semidefinite matrices compatible with the given graph and such that
K1 = 0. Being of rankN −1 is equivalent to the fact thatλ2(K) >
0. Notice that only matrices inK can yield stabilizing controllers
and that, as observed in Proposition 3.2, such a set is nonempty if
the supporting graph is connected. Define nowKN as the subset
of K formed only by the matrices such thatλ2(K) = 1. Notice
thatK =

S

β>0 βKN . This implies that the previous optimization is
equivalent to the following one

{K̄opt, αopt, βopt} ∈ arg min
K̄∈KN , α∈(0,1), β>0

R(βK̄, α) (IV.4)

since αopt here is the same as in Eqn. (IV.3) and sinceKopt =
βoptK̄opt. The optimization problem (IV.4) will now be considered.

Tedious but straightforward computations yield to the following
results which are summarized as a lemma.

Lemma 4.1:The following facts hold true:

a) The functionr(λ, α) is decreasing inλ for λ < 4α and it is
increasing inλ for λ > 4α.

b) The value ofR(K, α) depends onK only through its smallest
λ2 and largestλN nonzero eigenvalues. More precisely we have

R(K, α) = max{r(λ2, α), r(λN , α)} =: F (α, λ2, λN )
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Fig. 1. Root locus of(z − 1)2 + λ(z − 1 + α) = 0 for α = 1/3 as a
function of λ ∈ [λ2, λN ].

c) For fixed α and λ2, the function F (α, λ2, λN ) is non-
decreasing inλN .

Since, for anyK̄ ∈ KN , α ∈ (0, 1) and β > 0 the condition
R(βK̄, α) = F (α, β, βλN (K̄)) holds, then a direct consequence of
item (c) in the previous lemma is that̄Kopt in (IV.4) is given by

K̄opt ∈ arg min
K̄∈KN

λN(K̄). (IV.5)

Note that the setKN is not convex but (IV.5) can be equivalently
reformulated as the following convex optimization problem1

K̄opt ∈ arg min
K̄∈K, λ2(K̄)≥1

λN(K̄). (IV.6)

Note thatλ2(K̄opt) = 1. If this was not true, i.e.λ2(K̄opt) > 1,
then the matrixK̄

′

opt := K̄opt/λ2(K̄opt) would give a lower cost
λN(K̄

′

opt) = λN (K̄opt)/λ2(K̄opt) < λN (K̄opt) andλ2(K̄
′

opt) = 1,
against the optimality assumption of̄Kopt.

Thus the optimization problem (IV.4) is decoupled into the cascade
of (IV.6) above followed by

{αopt, βopt} ∈ arg min
α∈(0,1),β>0

F (α, β, βλN (K̄opt)). (IV.7)

Problem (IV.6) is a convex optimization problem since (i) the
objectiveλN(K̄) is a convex and symmetric spectral function (see
e.g. [1]) and (ii) the set{K̄ ∈ K, λ2(K̄) ≥ 1} is convex set. In
particular (IV.6) can be formulated as a semi-definite program (SDP)
for which standard and efficient software is available.

OnceK̄opt has been found, we need to findαopt andβopt solving
(IV.7). To this aim, notice that

F (α,β, βλN(K̄opt)) = max{r(β, α), r(βλN (K̄opt), α)}

and so, for fixedα and as a function ofβ, it is the maximum between
r(β, α) and its stretched versionr(βλN(K̄opt), α) (see Figure 2).
For the properties of the functionr(λ, α) mentioned in Lemma 4.1,
this function is minimized for the uniqueβ such thatr(β, α) =
r(βλN(K̄opt), α) and so this equation givesβopt(α) which can be
found for instance using a bisection method. Finally, the optimal value
of α can be found via a linear search forα ranging in the interval
(0, 1).

V. NOISY MODEL

In this section we will consider a noisy version of Eqn. (II.5). First
of all, we allow for noisy measurementsy(h) of the form x′(h) −

1This optimization it can performed using the techniques proposed in [14].
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Fig. 2. The graphs ofr(β, α) and ofr(βλN (K̄opt), α) with α = 0.3 and
λN (K̄opt) = 1.5

y(h) = v(h) so that, inserting the control (II.4) in equations (II.2)
and (II.3), a term of the form

»

K
αK

–

v(h)

has to be added on the right hand side of (II.5). In addition weallow
for a model noise to act on the second component of the state2, thus
obtaining

x(h + 1) = AIx(h) +

»

K
αK

–

v(h) +

»

0
I

–

n(h), (V.1)

wherev(h) and n(h) are assumed to be uncorrelated white noises
with zero mean and covariancesE

ˆ

n(t)n⊤(τ )
˜

= qIδ(t − τ ) and
E [v(t)v∗(τ )] = rIδ(t − τ ). We will also assume that, for allh ≥
0, both n(h) and v(h) are uncorrelated from the initial condition
x(0), which is assumed to be random. For clearness of exposition,
a motivation of the model noisen(h) in the clock synchronization
problem will be given in Appendix A.

Clearly the presence of the noise prevents in general thate(h) → 0.
Therefore, in order to evaluate how much the performance of the
algorithm degrades, we introduce the cost functional

J(K, α) :=
1

N
lim sup

h→∞
E

ˆ

‖e(h)‖2
˜

(V.2)

where the expectation is taken over the initial condition and the
realizations of the noises. The costJ can be expressed as a function
of α and of the eigenvaluesλi as formalized in the following lemma.

Lemma 5.1:Let J be defined as in (V.2) and letλ1, . . . , λN be
the eigenvalues ofK. Under the conditions (III.1) and (III.2) in
Proposition 3.1 the costJ(K, α) satisfies:

J(K, α) =
1

N

N
X

h=2

„

(α2 − 3α + 2)λh + 2α

(1 − α)(4 − (2 − α)λh)
r+

+
(α − 1)λh + 2

α(1 − α)(4 − (2 − α)λh)λ2
h

q

«

(V.3)

Proof: As we have seen in Section II the system (II.5) has
an unobservable component with two eigenvalues in1. Under the
assumptions of Proposition 3.1, all other eigenvalues are stable. Thus,
restricting to the (stable) observable component of the state, the proof
follows from a rather standard application of Ljapunov equations to
compute the steady state covariance in linear state space models and
is omitted in the interest of space.

2It should be observed that since we consider a double integrator, it would
make little sense to add a model noise term also in the first component of the
state.
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The goal now is to designK and to chooseα in order to minimize
J(K, α), i.e. to solve

arg min
α∈(0,1), K ∈K

J(K, α), (V.4)

where K is the set of symmetric positive semidefinite matrices
introduced in the previous section. Observe that, from the proof of
Lemma 5.1 it follows that, if the conditions (III.1) and (III.2) are not
satisfied, thenJ(K, α) := +∞. Now, givenα, let

K(α) = {K ∈ K : λN < 4/(2 − α)} . (V.5)

In other wordsK(α) is the set of positive semidefinite matrices
compatible with the graph structure, satisfyingK1 = 0 and ensuring
that, givenα such that0 < α < 1, the cost functionalJ(K, α) is
finite. The minimization problem (V.4) can be treated in the following
way. We start by observing that

min
α∈(0,1), K ∈K

J(K, α) = min
α∈(0,1)

J
`

Kopt(α), α
´

,

whereKopt(α) ∈ arg minK ∈K(α) J(K, α). Assume nowα fixed.
We have the following proposition.

Proposition 5.2: Fix α ∈ (0, 1) and let K(α) be defined as
in (V.5). Then the functionJ(K, α) defined onK(α) is a convex
function.

Proof: Consider the functionf : B → R defined as

f(x1, . . . , xN) =

N
X

h=2

„

(α2 − 3α + 2)xh + 2α

(1 − α)(4 − (2 − α)xh)
r+

+
(α − 1)xh + 2

α(1 − α)(4 − (2 − α)xh)x2
h

q

«

(V.6)

where B =
˘

x ∈ R
N : 0 < xi < 4/(2 − α)

¯

. We show that
f(x1, . . . , xN) is convex. To this aim consider theh-th term
in the summation in the right-hand side of (V.6). Observe that
(α2−3α+2)xh+2α

(1−α)(4−(2−α)xh)
is a convex hyperbola forxh ∈ ]0, 4/(2 − α)[.

Moreover

(α − 1)xh + 2

α(1 − α)x2
h(4 − (2 − α)xh)

=
1

α(1 − α)

»

α

8xh

+
1

2x2
h

+

+
(2 − α)α

8(4 − (2 − α)xh)

–

where each term of the summation in the right-hand side of theabove
expression is convex forxh ∈ ]0, 4/(2 − α)[. Hence the functionf
is convex inB. Finally observe that the functionf is symmetric, i.e.,
it is invariant to any permutation of the vector entriesxh . Hence, it
follows from the theory of convex spectral functions [1] that alsoJ
is a convex function.
From the above proposition, and from the fact that the setK(α) is
a convex set, it follows that the minimization problem

Kopt(α) ∈ arg min
K ∈K(α)

J(K, α) (V.7)

is a convex optimization problem. In particular the solution of (V.7)
can be obtained by suitable numerical algorithms. Once (V.7) has
been solved, one is left with

arg min
α ∈ (0,1)

J
`

Kopt(α), α
´

which reduces to a linear search overα and is easily solved.

VI. N UMERICAL EXAMPLES

In this section we provide two examples illustrating the approach
proposed in this paper. Specifically, in Example 6.1 we simulate the
algorithm described in Section II in a time-varying setup, while in

Example 6.2 we deal with the minimization problems formulated in
Section IV and in Section V.

Example 6.1:In Section II the convergence properties of the
synchronization algorithm illustrated in Section II have been char-
acterized, under the assumption thatK is time-invariant. The goal
of this example is to show the effectiveness of this synchronization
algorithm also in a time-varying setup. To do so, we propose acom-
parison between the synchronous implementation given in (II.5) and
a randomized asynchronous implementation, based on a broadcast
communication protocol, that we describe next.

Let G be a generic undirected graph. To the graphG we can
associate the doubly stochastic (Metropolis) matrixPMetr, built as
illustrated in Eqn. (III.4), and the corresponding matrixKMetr :=
I − PMetr. Assume now that at each time instant a node ofG is
randomly chosen with a probability1/N . Without loss of generality
let i be the node chosen at timeh and let us denote byNi the set
of its neighbors inG. At time h, nodei broadcasts the valuex′

i(h)
to all the nodes inNi. The neighboring nodesj ∈ Ni update their
state using the input

uj(h) := [1 α]T kji(x
′
j(h) − x′

i(h)),

wherekji denotes the element of thej-th row andi-th column of
KMetr. For all nodesℓ which are not neighbors of nodei, i.e.ℓ /∈ Ni

we setuℓ(h) = 0. In more compact form the matrixK(h) can be
written as

K(h) =
X

j∈Ni

kji

“

eje
T
j − eje

T
i

”

. (VI.1)

Observe thatE[K(h)] = N−1KMetr.
In Figure 3, we show the behavior of the synchronization error

both for the synchronous implementation given in (II.5) andfor
the asynchronous implementation described above for a connected
random geometric graph generated by choosingN = 15 points
uniformly distributed in the unit square and by connecting with
an edge each pair of points at distance less than0.4. Notice that
in the asynchronous implementation only one node transmitsits
information at each time instant. For this reason, in order to make
a fair comparison, when analyzing the asynchronous implementation
we sample the value of the synchronization error everyN iterations
of the algorithm. To be more precise, in Figure 3, we plot in dashed
line the quantityJs(h) := log 1√

N
‖es(h)‖, where es denotes the

synchronization error for the synchronous implementation, in solid
line the quantityJa(h) := log 1√

N
‖ea(Nh)‖, where ea denotes

the synchronization error for the asynchronous implementation. The
synchronous algorithm in (II.5) has been implemented withK =
KMetr and α = αMetr, whereαMetr = minα∈(0,1) R(KMetr, α).
In the asynchronous algorithm we builtK(h) as in (VI.1) and we
fixed α = αMetr/N . The factor1/N in α used in the asynchronous
implementation is related to the fact that theN asynchronous steps
should be compared with one synchronous, as discussed above. As far
as the initial condition is concerned, the speeds of the clocks (i.e., the
elements of the matrixD) and the initial local time (i.e., the values
x′

i(0), i ∈ {1, . . . , N}) have been chosen randomly in the intervals
[0.9, 1.1] and [0, 100], respectively. Moreover the plot reported is
the result of the average over1000 Monte Carlo runs, randomized
with respect to both the graph and the initial conditions. The results
obtained show the effectiveness of the randomized asynchronous
implementation whose performance turns out to be comparable with
the performance of the synchronous one.

Example 6.2:In this example we analyze numerically the opti-
mization problems formulated in (IV.4) and in (V.4). To thisaim, we
introduce the following nomenclature. Given a connected undirected
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Fig. 3. Behavior of the synchronization error both for the synchronous
implementation and asynchronous implementation.

graphG, let

ROpt = min
α∈(0,1)

K∈K

R(K, α), JOpt = min
α∈(0,1)

K∈K

J(K, α),

whereR andJ have been defined in (IV.2) and in (V.3), respectively.
Now, we associate with the graphG the matrix PMetr, built as
illustrated in (III.4). LetKMetr := I − PMetr and define

RMetr := R(KMetr, α = 1/2)

JMetr := J(KMetr, α = 1/2).

which correspond to the performance of the totally distributed design
strategy proposed in Proposition 3.2. We run30 experiments. At each
experiment, we generated a connected random geometric graph, as
in the previous example. For all the experiments we set the value of
the parametersq andr, i.e., the variances ofni(t) andvi(t), equal to
1. We plotted the points(JOpt, JMetr) and the points(τOpt, τMetr)
whereτOpt = log 0.05

log ROpt
, τMetr = log 0.05

log RMetr

3 in the upper figure and
in the lower figure of Figure 4, respectively. In order to facilitate the
comparison we also plot the bisector straight lines. As expected, in
both cases, all the points lie above these lines. Moreover, observe
that, in most cases, the improvement gained by choosing the optimal
matrix K is considerable for both cost functionals.

VII. C ONCLUSIONS

We have presented a second-order consensus algorithm for a family
of non-identical double integrators which borrows tools from standard
control theory and consensus algorithms. The main motivation comes
from clock synchronization in a network of agents. The optimal
controller for fastest rate of convergence in this class canbe for-
mulated as a convex optimization problem. Linearity also allows to
perform a rather simple analysis of the effect of the noise onthe
asymptotic performance. While the analysis has been performed for
a synchronous algorithm, numerical simulations show that an asyn-
chronous implementation of the same algorithm has a comparable
performance to the synchronous one. Indeed an important research
direction is the theoretical analysis of asynchronous algorithms and
their testing in real networks of clocks.

APPENDIX A

In the context of clock synchronization the process noisen(h) in
(V.1) can be justified as follows. Assuming that the clock’s periods∆i

3Note that, given an positive real numberǫ, the quantity log ǫ

log ROpt
(respec-

tively the quantity log ǫ

log RMetr
) gives the asymptotic number of steps for the

synchronization error decreasing of a factorǫ whenK = KOpt (respectively
whenK = KMetr).
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Fig. 4. Plot of the points(JOpt, JMetr) (upper). Plot of the points
(τOpt, τMetr) (lower).

are time varying functions, it is reasonable to writeD in Eqn. (II.5)
as

D(h) = I + S(h)

where S(h) = diag {Si(h)}i=1,..,N , Si(h) := ∆−∆i

∆i
. It is rea-

sonable to model the termsSi(h) as a random walk, i.e.Si(h) =
Si(h − 1) + ni(h). The noisesni(h) enters in the model in a
multiplicative manner sinceSi(h) multiplies the second state com-
ponentx′′

i (h). Howeverx′′
i is always approximately equal to one4

and hence it is reasonable to assumeSi(h)x′′
i (h) ≃ Si(h). Under

this approximation, and redefining the second component of the state
asx′′

i (h) + Si(h), we obtain the term
»

0
I

–

n(h)

on the right hand side of (V.1), whereni(h) is the i-th component
of n(h).
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