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Abstract— In this paper we present a novel synchronization protocol
to synchronize a network of controlled discrete-time douk# integrators
which are non-identical, with unknown model parameters andsubject to
additive measurement and process noise. This framework is ativated by
the typical problem of synchronizing a network of clocks whae speeds are
non-identical and are subject to variations. This synchroiization protocol
is formally studied in its synchronous implementation. In particular, we
provide a completely distributed strategy that guaranteesconvergence for
any undirected connected communication graph, and we alsorppose an
optimal convex design strategy when the underlaying commuoation
graph is known. Moreover, this protocol can be readily used ¢ study the
effect of noise and external disturbances on the steady-d&performance.
Finally, some simulations including also asynchronous impmentation of
the proposed algorithm are presented.

|. INTRODUCTION

The extraordinary success of Internet and of wireless tolies
has created the opportunity to interconnect a huge numbaewates
which can exchange information and cooperate to accompiésin
tasks and to control the environment more effectively. Onpartant
problem to be solved in many applications involving a netwof
distributed devices, such as in wireless sensors netwdikSNGS),
is to maintain them temporally synchronized. The main emajes
in time synchronization for networked clocks are due to cend
communication delay among devices, to the unknown, nontiick
and often time-varying periods of each clock oscillatord @ the
unknown topology of the network. Moreover, there might net&
reference clock in the network.

Many synchronization protocols have already been propesed
experimentally tested, in particular for WSNs. A common rapgh
is to create a hierarchical structure such a directed tresrevbach
clock synchronizes itself with respect to its parent. Thalleinge
with this approach is to dynamically elect a root and reauoicst

the size or topology of the network, such as those proposeSioliy
et al. [11] and Schenato et al. [10].

In this work we present a novel distributed synchronizatiwo-
tocol which is based on a second order linear consensusitalgor
The term consensus refers to a general class of distriblgedtams
that allow multiple agents to converge to the same quantfty o
interest using only local communication. This class of &tgms
has been successfully applied to many applications sucloesrfy,
coordinated formation control and distributed estimatieny. see
[8]). As in [11] and [10] our proposed protocol is fully didiuted,
however it has the advantage to use a simple linear outpdbée
strategy which allows performance analysis also in thegmes of
measurement and process noise. In fact, the protocol in yatich
is based on the cascade of two distributed least-squareitaigs,
and the protocol in [10], which is based on the cascade of tvgb fi
order consensus algorithms, are both nonlinear and do adt te
simple characterization of performance in the presenceoisien

Time synchronization of clocks with different speeds pded an
interesting class of systems. In fact, each local clock @mbdeled
as the output of a double integrator whose rate in not pdyfect
known. Moreover this rate is slightly different from one ckoto
another, therefore even if all clocks are perfectly synotzed at one
time, they will slowly diverge from each other if no competisa
or resynchronization is applied. Synchronization can beletenl as
the tracking of the average of external signals with lineawgh,
namely local clocks without compensation. Work in the crntef
signal tracking with consensus algorithms have been pesh@nong
others, by Spanos et al. [12], Freeman et al. [3], and Zhul §16&
However these works are in continuous time with no noise and d
not provide optimization strategies for the protocol paeters. The
presence of noise has been explicitly taken into account iap X
et al. [15], but only for first order consensus dynamics. @&#htly,
synchronization of networked higher order systems is a mecent
topic of research. Most of the available results are for Byoization
of either non-identical systems which are strictly stabig, [or
identical linear systems [9],[13]. More challenging is fr@blem of
stabilizing unstable systems. Specific attention has aso Ilgiven to
the synchronization of double integrators which are urstapstems
with a ramp mode [7]. However these strategies strongly cely

the tree whenever nodes fail or new nodes appear, as propysedpe assumption that all systems are identical and no opaioiz is
Ganeriwal et al. [4] and Maroti et al. [6] for example. Anathe performed.

hierarchical approach is to divide the network into distidlisters,
each with an elected cluster-head. All nodes within the seluster
synchronize themselves with the corresponding clustadhend
each cluster-head synchronizes itself with a another exiistad, as
described by Elson et al. [2]. These hierarchical apprcatioavever
require substantial overhead to build the dynamic treesustars and
might not scale well for very large networks. More recentbtally

distributed synchronization protocols have been propedezte each
node in the network runs exactly the same algorithm irresmeof
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In this paper we first propose a distributed clock synchmation
protocol based on the consensus algorithm for non identicable
integrators whose rates of growth are not known nor meakurahis
technique is only analyzed in the unrealistic synchronouyslémen-
tation. Motivated by this application, the main contrilouis of the
present paper reside in the extension of the optimizatiohnigues
proposed by Xiao et al. [15] for first order consensus prdtoto
consensus protocols for double integrators. More speliyficare
propose centralized optimization algorithms for optimalkesigning
the protocol parameters both in terms of rate of convergemmk
in terms of steady state error in case the protocol is pestutty
an additive noise. Interestingly, this last optimizatiaokdem shows
that the optimal design strategy requires the optimizatioa convex
function of all the consensus matrix eigenvalues, thus dejuite
different from the standard procedure which suggests tanniie
the second largest eigenvalue of the consensus matrixIyinae
include some simulations where we compare the performaifice o
the synchronous implementation with a randomized asymcu®
implementation. These simulations seem to suggest thagaiion
we propose is effective also in its more realistic asynchusrversion,
even though we do not have at the moment any theoretical reséde
of this fact.



II. MODELING AND MOTIVATIONS Assume now thaf(h) = K for all h and thatK'1l = 0, wherel
is the N-dimensional column vector with all entries equalltoNith-
out loss of generality we can assurfie= [f1 f2]* = [1 o] since
f1 can be absorbed intA” so thata := f2/f1. Introduce finally the
2N dimensional vector:(h) havingz' (k) := [z} (h), ...,z (h)]"

Assume we haveV units and that each unithas a clock which
is an oscillator able to periodically increment a registgrone unit,
commonly known as tick. We assume that the periddsof these
oscillators are unknown, but are “perturbed” values of anfiral” ) . :

P as the firstV entries and having” (k) := [z (h),...,z%(h)]" as

and known periodA. Therefore, the value of théth register is th dV entries. Then th : ti b lected
Ti(t) = L—“At?ij, where the “floor” |« | indicates the largest integer. € secondy entries. Then the previous equations can be collecte

smaller than or equal ta, andto; denotes the time when the clock™ the following

has been started. The unit has to use these ticks in ordetinuaés 2'(0)
time. Since only the nominal clock periafl is known, the natural z(h+1) = Apz(h), =z(0)=|",
time estimate is I-K D (1.5)
yi(t) = A7i(t) + yi(to:) (I.1) Ap = { —aK I ]
wherey; (to:) is the initial offset which is an estimate of;. Since \\here7 ¢ RN*N s the identity matrix,D = diag{-2- A
¥ - Ayt An I

the A;’s are all different, then each clock will drift away from the
others even under the ideal situation in which they are dtlaity
synchronized, i.ey;(0) = y;(0) for all 4, j. Therefore some sort of

and z'(0) € RY. Our objective is to findk and o such that the
synchronization error defined as:

information exchange and clock control must be enforcedbtaio e(h) = [Q 0]z (h) (11.6)
and maintain synchronization among all nodes. If we assume t
the nodes periodically exchange their clock readipgs) at times with Q = — %1{1*, converges to zero while the com-

t = hT, whereh = 0,1,... and T € R is the synchronization ponents of z’(h) follow asymptotically a ramp function, i.e.
period, then they can use them to adjust their clock estimdtg SO  limy, .. [z'(h) — (ah + b)1] = 0 for somea € R*, b € R.

that eventually all nodes will be synchronized, i (t) ~ y;(t) for Therefore the problem we tackle in this paper can be forradlat
all 4, 7. A natural approach to achieve synchronization is to contrgs follows. Determings’ and « such that:

the nominal clock period\ and the clock offsey;(0) based on the
information received from the neighboring nodes. As a prilary

step, let us observe that the evolution w{A7") in (11.1) can be

described through the following iterative algorithm

a) system (11.5) has one eigenvaluelimwith algebraic multiplicity
2 and geometric multiplicityl. This ensures that the state
trajectories contains the modes of the fouin + b;

b) the two modes associated with the eigenvaluee unobserv-

_ _ |1 Adi(h)| oy | wi(0) able with respect to output defined in (11.6);
zi((h+1)T) = {O 1 ] i(h), 2:(0) = { 1 c) all the other eigenvalues are inside the open unit disk;
yi(hT) = [ 1 0 ]:cz-(hT) d) p(_)s_sib_ly some cost function (depending @t and «) is
minimized.
2 — .
wherez; (hT') € R* and wheres;(h) := 7i((h + 1)T) — 7:(hT). If For conditions a) and b) observe that, if wedet=[ 1" 0 }T

25 andz! denote the two components of, thenx) gives the time
estimate, whileAz gives the oscillator period estimate. For sake
conciseness, with no loss of generality we will assume insdguel (Ap —Dw=v (Ap — v =0
thatT = 1.

Each node can use any information it receives from the neigid  showing in this way that and w are respectively an eigenvector
nodes at timehT' = h to insert a control in the previous iterativegnd a generalized eigenvector dfp in (11.5) associated with the

Offmdw =[0 1'D" }T then we have that

algorithm eigenvaluel. Notice moreover thaf2 0jw = [Q 0Jv = 0, which
1 Asi(h) shows that they are both unobservable.
zi(h+1) = {0 1 ]mi(h)'l'ui(h) (1.2) Remark 2.1:The strategy proposed by Scardovi and Sepulchre in

[9] for obtaining consensus for higher order systems is pptieable
vi(h) = [ Lo }xi(h)' (11.3) for time synchronization. Indeed for their method we ha\a th the
Notice thatd; (h) = 7:((h + 1)T) — 7:(hT) = 1/A; + ¢(h) where non ideal case in whiclb # I, the eigenvalué becomes observable
—1 < e(h) < 1 and soe(h) can be neglected if/A; >> 1 which and so we do not obtain consensus.
will be assumed in the sequel. Notice moreover that the puavi We need now to find methods able to givé and o satisfying
system corresponds to the output of a second order integratio  conditions c) and d) of the previous list. Observe prelimilgahat
unknown parameter, sinc&; is not known. Moreover, the dynamicsoften the A;’s are slightly different and can be seen to be a small
of each clock is different since in generdl; # A;. perturbation of the nominal valué\. Therefore the dynamics of
We propose here a linear control law of the following stroetu  Edn. (I1.5) can be seen as the perturbation of the systemewher
D = I. Concerning condition c), observe that, since the eigeiegal
are continuous function of the matrix elements, if we find ktson
satisfying condition c) lettingD = I, this solution will continue
to satisfy that condition even in case thBX is a small enough
where k;;(h) is the i — j entry of the matrix K (h) € RY*Y,  perturbation off. Similarly for condition d), if the cost function to
F € R**!, and we assume that communication and computatiortzé¢ minimized is continuous i, then the optimal solution found
delays are negligible. Notice that at tinkd" the protocol requires assumingD = I will have approximately the same cost of the
the transmission of the outpyt (k) from the nodej to the nodei  optimal solution obtained starting from the triie For these reasons,
if and only if k;;(h) # 0. The problem is to determine the matrixin the stability analysis and in the optimization problemisick will
F and the matriceds(h) such that all they;(h)’'s converge to the follow, we will assume thatD = I. We will use the symboW; for
same ramp shaped function. the matrixAp in (I1.5) when D = 1.

N
ui(h) = —F > kis (h)y; () (1.4)



I1l. STABILITY ANALYSIS Of course, other distributed strategies are possible fsigding

The aim of this section is to study under which conditionsfon the matrix K, such as the Laplacian matrix [8].
anda the proposed synchronization algorithm yietds) converging
to zero; this is equivalent to require that; := App—; in (I1.5) IV. CONVERGENCE RATE OPTIMIZATION

has two eigenvalues i, as as seen before, while all the other |, 1o previous section we have seen that synchronizatiora fo
elgenyalues belong to.the open umt disc. For simplicityhim seque] family of double integrators can be solved by properly cigghe
we will assume thats” is symmetric. Let/ be an orthogonal matrix mauix K and the parameter, i.e., there exis& anda such that all
formed with the eigenvectors df, i.e., such thal" KU = A where g qtamg asymptotically, are synchronized. Of course anddlike
A = diag{A1, A2, ..., An} is the diagonal matrix containing the, g5 one step further asking whether it is possible to optini
eigenvalues\; of K. Since K'1 = 0, without loss of generality we anq , with respect to a specific performance index. In this section
will assume that\; = 0._ ) we consider the problem of obtaining and o yielding the fastest
Proposition 3.1: Consider the system (I1.5) in the case whére= convergence rate, which amounts to pushing the eigenvalfiése
I. Then the remainin@ N — 2 eigenvalues of this system are insideSystems (I.5), i.e., the roots @f — 1) + Ai(z — 1 + ) = 0, as
the open unit disk if and only if close as possible to zero. Figure 1 displays a graphicaéseptation
0O<a<l (in.1)  of the root locus of(z — 1) +ANz—1+a)=0fora=1/3 and

4 for X that varies in the interval\z, An] = [1, 1.9].
0<n< 2o’ 2<h=N. (n.2) For small values of\ (A < 4«) the roots are complex conjugate,
Proof: Using the change of variableZ(h) .— Wwhile for large X (A > 4«) the roots are real. Fox = 4« there are
diag {U*,U*}x(h) we see that the eigenvalues 4f in (I1.5) are 2 coincident roots inz = 1 — % = 1 — 2a.. Optimizing for fastest
the eigenvalues of the matrix convergence is equivalent to minimizing the absolute vaitiehe
I_A I largest eigenvalue in absolute value. We define
{ —ah T ] (n-3) r(Aa) = max{]z]: (s = 2+ Az —140a) =0}, (V1)

Its characteristic polynomial iHZI.\’Zl(z — 1?4+ X(2—1+a). For ie., the maximum modulus of the two roots of the charadferis
¢ = 1 the previous polynomial gives the double eigenvaluelt polynomial associated with the system (I1.5). An explicipeession
regnain to determine under which conditions the polynomials- for r()\, o) can be easily found. Indeed it is easy to see that
D*+Xi(z—14+a),i=2,...,N are Shur-stable (i.e., have all roots — .

inside the open unit disc). Using the bilinear transforomatit can r(\a) = 1-A+al !f A <da
be seen that this happens if and only if conditions (I11.19l &Hl.2) ' max {|1 —A/2 (1 + 41— 40/)\) |} if A > 4o
hold true.

The previous proposition implies thak needs to be positive
semidefinite. Assume now that we are given a grgph= (V,¢&)
whereV = {1,...,N} and where€ C V x V. Assume thej is
undirected, namely thdt, j) € € implies that(z, j) € £. This graph R(K,0):= max r(\a) (IV.2)
describes the communication topology, namely a npdan transmit A€o (K)\O
information to the node if and only if (4,4) € £. For this reason, we The optimal values of and K are the solution of the optimization
will say that a matrixK is compatible withG if and only if K;; #0  problem
implies (j,7) € £. We will denote withK the set of rankVv — 1, {Kopt, topt} € argmin  R(K,a) (IV.3)
symmetric, positive semidefinite matrices compatible wiité given KEKR, a€(0,1)
graph and such thakl = 0. Without loss of generality we assume,yhere we recall thak is the set of rankV — 1, symmetric, positive
the eigenvalues\ ..., Ay are ordered such that semidefinite matrices compatible with the given graph areh ¢hat

0=X <Ao< - <An. K1 = 0. Being of rankN —1 is equivalent to the fact that; (K') >
0. Notice that only matrices iC can yield stabilizing controllers

One may wonder how difficult it is to construct a matfikand to  and that, as observed in Proposition 3.2, such a set is ndpeimp
find meeting the conditions of PrOpOSition 3.1. The next prd]InJSI the Supporting graph is connected. Define nkix as the subset
shows that, indeed{” and« guaranteeing stability can be constructeéf 1 formed only by the matrices such thag(K) = 1. Notice

in a completely distributed way. that K = (J 4., K. This implies that the previous optimization is
Proposition 3.2: Let G be a connected undirected graph and defingguivalent to the following one

P as the Metropolis stochastic matrix associated with thelgrae.,

As mentioned above, we have to minimize the largest of-{bea)’s
as \ varies ino(K) \ 0, whereo(K) denotes the spectrum df.
Hence we define

{Kopt, Copt; Bopt } € arg min R(BK, ) (IV.4)

mmqa e () €€ andi# ReKy, a€(0,1), B>0
Pij=9q 1=2bu ifi :j (In.4) since aop: here is the same as in Eqn. (IV.3) and sinkg,: =
0 otherwise Bopt Kopt. The optimization problem (1V.4) will now be considered.

where d; denotes the number of neighbors of the nddeée., the ~ Tedious but straightforward computations yield to the daihg
cardinality of the setV; = {j : (i,5) € £,i # j}. ThenK := [ — P  results which are summa.mzed as a lemma.
anda = 1 meet the conditions of Proposition 3.1 thus guaranteeingLemma 4.1:The following facts hold true:

stability. a) The functionr(A, «) is decreasing im\ for A < 4o and it is
Proof: Note thatP is a stochastic symmetric matrix. By the increasing in\ for A > 4a.

Perron-Frobenius theorem, the conectivitydoimplies that only one  b) The value ofR(K, ) depends or only through its smallest

eigenvalue ofP is 1 and the others are in the open interyal 1, 1]. A2 and largesh x nonzero eigenvalues. More precisely we have

Then the matrixK := I — P and a = 1/2 satisfy the second
condition in Proposition 3.1. = R(K,a) = max{r(Az,a),r(Ay,a)} =: F(a, A2, An)
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Fig. 1. Root locus of(z — 1)2 + A(z — 1+ a) = 0 for a« = 1/3 as a Fig. 2. The graphs of (3, a) and ofr(BAn (Kopt), o) with o = 0.3 and
function of X € [A2, An]. AN (Kopt) = 1.5

c) For fixed a and M., the function F(a, A2, An) is non- y(h) = v(h) so that, inserting the control (I1.4) in equations (I1.2)

decreasing iM\n. and (I1.3), a term of the form
Since, for anyK € Ky, a € (0,1) and 3 > 0 the condition K

R(BK,a) = F(a, 3, 8An(K)) holds, then a direct consequence of { oK } v(h)

item (c) in the previous lemma is th#&f,,. in (IV.4) is given by
B B has to be added on the right hand side of (I.5). In additioralieav
Kopt € arg min Ay (K). (IV.5)  for a model noise to act on the second component of the?sthtes

Keky obtaining
Note that the sefCn is not convex but (IV.5) can be equivalently % 0
reformulated as the following convex optimization problem z(h+1) = Arx(h)+ { oK } v(h) + { 7 } n(h), (V.1)

Kopt €  arg min /\N(R'). (IV.6)

ReK., Ap(R)>1 wherev(h) andn(h) are assumed to be uncorrelated white noises

B B with zero mean and covarianc&[n(t)n' ()] = ¢Ié(t — 7) and
Note thatAs(Kop) = 1. If this was not true, i.eAa(Kopr) > 1, E[v(t)o*(7)] = r15(t — 7). We will also assume that, for all >

then the matrixi<,,; := Kopt/A2(Kopt) would give a lower cost 0, both n(h) and v(h) are uncorrelated from the initial condition
AN(Kope) = AN (Kopt) /A2 (Kopt) < An (Kopt) andAa(K,,;) =1, z(0), which is assumed to be random. For clearness of exposition,

against the optimality assumption &f,,;. a motivation of the model noise(k) in the clock synchronization
Thus the optimization problem (IV.4) is decoupled into thseade problem will be given in Appendix A.
of (IV.6) above followed by Clearly the presence of the noise prevents in generak{that— 0.
) _ Therefore, in order to evaluate how much the performancehef t
{aopt; Bopt} € agfoglr;l;lloF(avﬂv BAN (Kopt))- (IV.7) algorithm degrades, we introduce the cost functional
Problem (IV.6) is a convex optimization problem since (ig th J(K,a) = %liinsupE [lle(R)]?] (V.2)

objective Ay (K) is a convex and symmetric spectral function (see

e.g. [1]) and (i) the se{ K € K, \2(K) > 1} is convex set. In where the expectation is taken over the initial conditiord ahe
particular (IV.6) can be formulated as a semi-definite prog(SDP) realizations of the noises. The cobtcan be expressed as a function

for which standard and efficient software is available. of o and of the eigenvalues; as formalized in the following lemma.

Once K, has been found, we need to find,; and3,,: solving Lemma 5.1:Let J be defined as in (V.2) and let;, ..., An be
(IV.7). To this aim, notice that the eigenvalues ofK. Under the conditions (l1l.1) and (l11.2) in

_ _ Proposition 3.1 the cosI(K, «) satisfies:
F(O{, /87 BAN(KOZ’t)) = max{r(ﬂ, Oé), T(/B)‘N(Kopt)7 a)} N
2
. . . . 1 (Oé —3a+2))\h+2a

and so, for fixedv and as a function a8, it is the maximum between J(K,a) = N I-—@d—-2—-an )H-
r(83,a) and its stretched version(BAn (Kopt), ) (see Figure 2). h=2 "
For the properties of the functior(\, «) mentioned in Lemma 4.1, (0 —=DAp +2

. L L . + 5q (V.3)
this function is minimized for the uniqug such thatr(8,a) = a(l —a)(4—(2—a) )}
T(BAN (Kopt), o) and so this equation gives,,: () which can be Proof: As we have seen in Section Il the system (I.5) has

found for instance using a bisection method. Finally, thénogl value a1y unobservable component with two eigenvalued.iunder the
of a can be found via a linear search farranging in the interval assumptions of Proposition 3.1, all other eigenvaluestatses Thus,
(0,1). restricting to the (stable) observable component of the stiae proof
follows from a rather standard application of Ljapunov dopres to

V. NOISY MODEL compute the steady state covariance in linear state spadelsnand

. ) . . . . . is omitted in the interest of space. ]
In this section we will consider a noisy version of Eqn. (J1.Birst P

H /
of all, we allow for noisy measurementgh) of the formx’(h) — 2|t should be observed that since we consider a double integiawould

make little sense to add a model noise term also in the firspooent of the
1This optimization it can performed using the techniqueppsed in [14]. state.



The goal now is to desighk” and to chooser in order to minimize
J(K, a), i.e. to solve

arg min
ag(0,1), Kek

J(K, @),

introduced in the previous section. Observe that, from tlu®fpof
Lemma 5.1 it follows that, if the conditions (Ill.1) and () are not
satisfied, then/(K, «) := +oo. Now, givena, let

Kla)={K € K : Ax <4/(2—a)}. (V.5)

Example 6.2 we deal with the minimization problems formedain
Section IV and in Section V.

Example 6.1:In Section 1l the convergence properties of the
synchronization algorithm illustrated in Section Il haveeh char-
acterized, under the assumption thgtis time-invariant. The goal
Bf this example is to show the effectiveness of this syndzadion
algorithm also in a time-varying setup. To do so, we proposer-
parison between the synchronous implementation givenl.i) @&nd
a randomized asynchronous implementation, based on a dastad
communication protocol, that we describe next.

Let G be a generic undirected graph. To the graphwe can

In other wordsKC(«) is the set of positive semidefinite matrices,qqqciate the doubly stochastic (Metropolis) ma#fix.:, built as

compatible with the graph structure, satisfyihlgl = 0 and ensuring
that, givena such that0 < o < 1, the cost functional/ (K, «) is
finite. The minimization problem (V.4) can be treated in tbkofving
way. We start by observing that

J(K,a) = min J (K"
(K, o) i (K" (), ),

min
a€c(0,1), Ke K
where K°?!(a) € arg Min g ¢ i (o) J (K, @). Assume nowe fixed.
We have the following proposition.

Proposition 5.2:Fix a € (0,1) and let («) be defined as
in (V.5). Then the function/(K, «) defined onkC(«) is a convex
function.

Proof: Consider the functiorf : B — R defined as

N
B (0 —3a + 2)z, + 20
flar,. o an) = g((l_a>(4—(zla)xh>r+
(a—1)xzp + 2
Oé(l _ Oé)(4 — (2} — a)mh)m% q) (V6)

where B {zeRY : 0<2; <4/(2—a)}. We show that
f(x1,...,xzN) is convex. To this aim consider thé-th term
in the summation in the right-hand side of (V.6). Observet th

Lo tatdmntio s a convex hyperbola for, € 10,4/(2 — o).

+

Moreover
(a—1)zp + 2 _ 1 e 1
al—a)(d— 2 —a)zn)  a(l—a) |8zn T 22 "
(2 - o)

Ra—-2-amm
where each term of the summation in the right-hand side oéliowe
expression is convex far, € ]0,4/(2 — «)[. Hence the functiory
is convex inB. Finally observe that the functiofiis symmetric, i.e.,
it is invariant to any permutation of the vector entrigs . Hence, it
follows from the theory of convex spectral functions [1] ttladso J
is a convex function. u
From the above proposition, and from the fact that theSgt) is
a convex set, it follows that the minimization problem

K" () € arg min J(K, «)
KeK(a)

(V.7)

is a convex optimization problem. In particular the solotif (V.7)
can be obtained by suitable numerical algorithms. Once) (Wa&
been solved, one is left with

arg min J (K% (a), @)
a € (0,1)

which reduces to a linear search overand is easily solved.

VI.

In this section we provide two examples illustrating the rapgh
proposed in this paper. Specifically, in Example 6.1 we sateuthe
algorithm described in Section Il in a time-varying setufile in
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illustrated in Eqn. (1ll.4), and the corresponding matlct, :=
I — Paretr. Assume now that at each time instant a nodejois
randomly chosen with a probability/N. Without loss of generality
let i be the node chosen at tinteand let us denote by; the set
of its neighbors inG. At time h, node: broadcasts the value;(h)
to all the nodes inV;. The neighboring nodes € N; update their
state using the input

u;(h) = [1 o] kyi(x(h) — zi(h)),

where k;; denotes the element of theth row andi-th column of
Krerr. For all noded which are not neighbors of nodei.e./ ¢ N;
we setuy(h) = 0. In more compact form the matrik'(h) can be

written as
K(h) = z kjs (ejejr — ejeZT) .
JEN;

(VI.1)

Observe thafl[K (h)] = N ' Kretr.
In Figure 3, we show the behavior of the synchronization rerro
both for the synchronous implementation given in (I.5) aod

the asynchronous implementation described above for aecoeah

random geometric graph generated by choosvMg= 15 points
uniformly distributed in the unit square and by connectinghw
an edge each pair of points at distance less thadn Notice that
in the asynchronous implementation only one node transitsts
information at each time instant. For this reason, in ordemeke
a fair comparison, when analyzing the asynchronous impiatien
we sample the value of the synchronization error ev&rjterations
of the algorithm. To be more precise, in Figure 3, we plot inhdal
line the quantityJ,(h) := log ;—N||es(h)||, where e, denotes the
synchronization error for the synchronous implementatiansolid
line the quantity J,(h) := log #Hea(Nh)H, where e, denotes
the synchronization error for the asynchronous implentemtaThe
synchronous algorithm in (I1.5) has been implemented with=
Kpetr and o = ansetr, Whereansetr = minge(o,1) R(Kasetr, ¢v).
In the asynchronous algorithm we bui€ (k) as in (VI.1) and we
fixed @ = aarerr/N. The factorl/N in « used in the asynchronous
implementation is related to the fact that theasynchronous steps
should be compared with one synchronous, as discussed. dkofar
as the initial condition is concerned, the speeds of theksl¢ice., the
elements of the matriXD) and the initial local time (i.e., the values
z;(0), 2 € {1,..., N}) have been chosen randomly in the intervals
[0.9,1.1] and [0,100], respectively. Moreover the plot reported is
the result of the average ovén00 Monte Carlo runs, randomized
with respect to both the graph and the initial conditionse Tésults
obtained show the effectiveness of the randomized asynobso
implementation whose performance turns out to be companatih
the performance of the synchronous one.

Example 6.2:In this example we analyze numerically the opti-
mization problems formulated in (IV.4) and in (V.4). To tkisn, we
introduce the following nomenclature. Given a connectedireated
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where R andJ have been defined in (IV.2) and in (V.3), respectively. 0 ‘ s
Now, we associate with the grapf the matrix Pasesr, built as 0 20 Topt 40 60

illustrated in (I1l.4). Let Kpretr := I — Paretr and define

Ryetr := R(Kpfetr,a = 1/2)
Inetr = J(Knretr, o0 = 1/2).

which correspond to the performance of the totally distebudesign
strategy proposed in Proposition 3.2. We Binexperiments. At each
experiment, we generated a connected random geometrib,gaap
in the previous example. For all the experiments we set theevaf
the parameterg andr, i.e., the variances of;(¢) andv;(t), equal to
1. We plotted the point$.Jo,:, Jarerr) and the points7op:, Taretr)
yvhereTopt = 12?512;?;7@16" — 101;%2%3 in the upper figure and
in the lower figure of Figure 4, respectively. In order to fidate the
comparison we also plot the bisector straight lines. As ebgik in
both cases, all the points lie above these lines. Moreosserve
that, in most cases, the improvement gained by choosingptimal
matrix K is considerable for both cost functionals.

VII. CONCLUSIONS

We have presented a second-order consensus algorithméfonilg f
of non-identical double integrators which borrows tootsfrstandard
control theory and consensus algorithms. The main mobdratomes

from clock synchronization in a network of agents. The optim

controller for fastest rate of convergence in this class lsanfor-
mulated as a convex optimization problem. Linearity aldoved to
perform a rather simple analysis of the effect of the noisettan
asymptotic performance. While the analysis has been peedrfor
a synchronous algorithm, numerical simulations show thaasyn-

chronous implementation of the same algorithm has a corbfgara

performance to the synchronous one. Indeed an importaaanes
direction is the theoretical analysis of asynchronous rittyos and
their testing in real networks of clocks.

APPENDIXA

In the context of clock synchronization the process neigk) in
(V.1) can be justified as follows. Assuming that the cloclesipdsA;

loge
log Ropt

3Note that, given an positive real numbegithe quantity
log e

(respec-

Fig. 4.  Plot of the points(Jopt, Jaretr) (upper). Plot of the points
(TOptyT]Met'r) (Im)

are time varying functions, it is reasonable to wridein Eqn. (11.5)
as
D(h) =1+ S(h)

A=8i |t s rea-

where S(h) = diag {Si(h)}izlv_ﬁj\f, Sz(h) A

sonable to model the ternss; (k) as a random walk, i.eS;(h) =
Si(h — 1) + n;(h). The noisesn;(h) enters in the model in a
multiplicative manner since; (k) multiplies the second state com-
ponentz} (h). Howeverz! is always approximately equal to dhe
and hence it is reasonable to assuféh)z; (h) ~ S;(h). Under
this approximation, and redefining the second componertieostate

asz?(h) + Si(h), we obtain the term

] n(h)

on the right hand side of (V.1), where; (h) is the i-th component
of n(h).
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