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Abstract— Motivated by navigation and tracking applications
within sensor networks, we consider the problem of performing
Kalman filtering with intermittent observations. When data
travel along unreliable communication channels in a large,
wireless, multi-hop sensor network, the effect of communication
delays and loss of information in the control loop cannot be
neglected. We address this problem starting from the discrete
Kalman filtering formulation, and modelling the arrival of the
observation as a random process. We study the statistical conver-
gence properties of the estimation error covariance, showing the
existence of a critical value for the arrival rate of the observations,
beyond which a transition to an unbounded state error covariance
occurs. We also give upper and lower bounds on this expected
state error covariance.

I. I NTRODUCTION

Advances in VLSI and MEMS technology have boosted
the development of micro sensor integrated systems. Such
systems combine computing, storage, radio technology, and
energy source on a single chip [1], [2]. When distributed over
a wide area, networks of sensors can perform a variety of
tasks that range from environmental monitoring and military
surveillance, to navigation and control of a moving vehicle [3],
[4], [5]. A common feature of these systems is the presence
of significant communication delays and data loss across the
network. From the point of view of control theory, significant
delay is equivalent to loss, as data needs to arrive to its desti-
nation in time to be used for control. In short, communication
and control become tightly coupled such that the two issues
cannot be addressed independently.

Consider, for example, the problem of navigating a vehicle
based on the estimate from a sensor web of its current position
and velocity. The measurements underlying this estimate can
be lost or delayed due to the unreliability of the wireless
links. What is the amount of data loss that the control
loop can tolerate to reliably perform the navigation task?
Can communication protocols be designed to satisfy this
constraint? At Berkeley, we have faced these kind of questions
in building sensor networks for pursuit evasion games as part
of the Network of Embedded Systems Technology (NEST)
project [2]. Practical advances in the design of these systems
are described in [6]. The goal of this paper is to examine
some control-theoretic implications of using sensor networks
for control. These require a generalization of classical control
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Fig. 1. Overview of the system.We study the statistical convergence of
the expected estimation error covariance of the discrete Kalman filter, where
the observation, travelling over an unreliable communication channel, can be
lost at each time step with probability1− λ.

techniques that explicitly take into account the stochastic
nature of the communication channel.

In our setting, the sensor network provides observed data
that are used to estimate the state of a controlled system, and
this estimate is then used for control. We study the effect of
data losses due to the unreliability of the network links. We
generalize the most ubiquitous recursive estimation technique
in control—the discrete Kalman filter [7]—modelling the ar-
rival of an observation as a random process whose parameters
are related to the characteristics of the communication channel,
see Figure 1. We characterize the statistical convergence of the
expected estimation error covariance in this setting.

The classical theory relies on several assumptions that
guarantee convergence of the Kalman filter. Consider the
following discrete time linear dynamical system:

xt+1 = Axt + wt

yt = Cxt + vt, (1)

wherext ∈ <n is the state vector,yt ∈ <m the output vector,
wt ∈ <p andvt ∈ <m are Gaussian random vectors with zero
mean and covariance matricesQ ≥ 0 andR > 0, respectively.
wt is independent ofws for s < t. Assume that the initial state,
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x0, is also a Gaussian vector of zero mean and covarianceΣ0.
Under the hypothesis of stabilizability of the pair(A,Q) and
detectability of the pair(A,C), the estimation error covariance
of the Kalman filter converges to a unique value from any
initial condition [8].

These assumptions have been relaxed in various ways.
Extended Kalman filtering [8] attempts to cope with nonlinear-
ities in the model; particle filtering [9] is also appropriate for
nonlinear models and additionally does not require the noise
model to be Gaussian. Recently, more general observation
processes have been studied. In particular, in [10], [11]
the case in which observations are randomly spaced in time
according to a Poisson process has been studied, where the
underlying dynamics evolve in continuous time. These authors
showed the existence of a lower bound on the arrival rate of
the observations below which it is possible to maintain the
estimation error covariance below a fixed value, with high
probability. However, the results were restricted to scalar SISO
systems.

We approach a similar problem within the framework of
discrete time, and provide results for generaln-dimensional
MIMO systems. In particular, we consider a discrete-time
system in which the arrival of an observation is a Bernoulli
process with parameter0 < λ < 1, and, rather than asking
for the estimation error covariance to be bounded with high
probability, we study the asymptotic behavior (in time) of its
average. Our main contribution is to show that, depending
on the eigenvalues of the matrixA, and on the structure of
the matrixC, there exists a critical valueλc, such that if the
probability of arrival of an observation at timet is λ > λc, then
the expectation of the estimation error covariance is always
finite (provided that the usual stabilizability and detectability
hypotheses are satisfied). Ifλ ≤ λc, then the expectation of
the estimation error covariance is unbounded. We give explicit
upper and lower bounds onλc, and show that they are tight
in some special cases.

Philosophically this result can be seen as another manifes-
tation of the well knownuncertainty threshold principle[12],
[13]. This principle states that optimum long-range control of
a dynamical system with uncertainty parameters is possible if
and only if the uncertainty does not exceed a given threshold.
The uncertainty is modelled as white noise scalar sequences
acting on the system and control matrices. In our case, the
result is for optimal estimation, rather than optimal control,
and the uncertainty is due to the random arrival of the
observation, with the randomness arising from losses in the
network.

Studies on filtering with intermittent observations can be
tracked back to Nahi [14] and Hadidi [15]. More recently,
this problem has been studied using jump linear systems
(JLS) [16]. JLS are stochastic hybrid systems characterized
by linear dynamics and discrete regime transitions modelled
as Markov chains. In the work of Costa et al. [17] and Nilsson
et al. [18], [19] the Kalman filter with missing observations
is modelled as a JLS switching between two discrete regimes:
an open loop configuration and a closed loop one. Follow-
ing this approach, these authors obtain convergence criteria
for the expected estimation error covariance. However, they

restrict their formulation to the steady state case, where the
Kalman gain is constant, and they do not assume to know
the switching sequence. The resulting process is wide sense
stationary [20], and this makes the exact computation of the
transition probability and state error covariance possible. Other
work on optimal, constant gain filtering was done by Wang
et al. [21], who included the presence of system parameters
uncertainty besides missing observations, and Smith et al. [22],
who considered multiple filters fusion. Instead, we consider
the general case oftime varyingKalman gain. In presence of
missing observations, this filter has a smaller linear minimum
mean square error (LMMSE) than its static counterpart, as it
is detailed in Section II.

The general case of time-varying Kalman filter with in-
termittent observations was also studied by Fortmann et al.
[23], who derived stochastic equations for the state covari-
ance error. However, they do not statistically characterize
its convergence and provide only numerical evidence of the
transition to instability, leaving a formal characterization of
this as an open problem, which is addressed in this paper. A
somewhat different formulation was considered in [24], where
the observations arrival have a bounded delay.

Finally, we point out that our analysis can also be viewed as
an instance of Expectation-Maximization (EM) theory. EM is a
general framework for doing Maximum Likelihood estimation
in missing-data models [25]. Lauritzen [26] shows how EM
can be used for general graphical models. In our case, however,
the graph structure is a function of the missing data, as there
is one graph for each pattern of missing data.

The paper is organized as follows. In section II we formalize
the problem of Kalman filtering with intermittent observations.
In section III we provide upper and lower bounds on the
expected estimation error covariance of the Kalman filter, and
find the conditions on the observation arrival probabilityλ
for which the upper bound converges to a fixed point, and
for which the lower bound diverges. Section IV describes
some special cases and gives an intuitive understanding of
the results. In section V we compare our approach to previous
ones [18] based on jump linear systems. Finally, in section VI,
we state our conclusions and give directions for future work.

II. PROBLEM FORMULATION

Consider the canonical state estimation problem. We define
the arrival of the observation at timet as a binary random
variableγt, with probability distributionpγt(1) = λt, and with
γt independent ofγs if t 6= s. The output noisevt is defined
in the following way:

p(vt|γt) =
{ N (0, R) : γt = 1
N (0, σ2I) : γt = 0,

for someσ2 . Therefore, the variance of the observation at time
t is R if γt is 1, andσ2I otherwise. In reality the absence
of observation corresponds to the limiting case ofσ → ∞.
Our approach is to re-derive the Kalman filter equations using
a “dummy” observation with a given variance when the real
observation does not arrive, and then take the limit asσ →∞.



3

First let us define:

x̂t|t
∆= E[xt|yt, γt] (2)

Pt|t
∆= E[(xt − x̂t)(xt − x̂t)′|yt, γt] (3)

x̂t+1|t
∆= E[xt+1|yt, γt] (4)

Pt+1|t
∆= E[(xt+1 − x̂t+1)(xt+1 − x̂t+1)′|yt, γt] (5)

ŷt+1|t
∆= E[yt+1|yt, γt], (6)

where we have defined the vectorsyt
∆= [y0, . . . , yt]′ and

γt
∆= [γ0, . . . , γt]′. It is easy to see that:

E[(yt+1 − ŷt+1|t)(xt+1 − x̂t+1|t)′|yt, γt+1] = CPt+1|t (7)

E[(yt+1 − ŷt+1|t)(yt+1 − ŷt+1|t)
′|yt, γt+1] = CPt+1|tC

′+

+γt+1R + (1− γt+1)σ
2I, (8)

and it follows that the random variablesxt+1 and yt+1,
conditioned on the outputyt and on the arrivalsγt+1, are
jointly gaussian with mean

E[xt+1, yt+1|yt, γt+1] =
(

x̂t+1|t
Cx̂t+1|t

)
,

and covariance

COV (xt+1, yt+1|yt, γt+1) =

=

(
Pt+1|t Pt+1|tC

′

CPt+1|t CPt+1|tC
′ + γt+1R + (1− γt+1)σ

2I

)
.

Hence, the Kalman filter equations are modified as follows:

x̂t+1|t = Ax̂t|t (9)

Pt+1|t = APt|tA
′ + Q (10)

x̂t+1|t+1 = x̂t+1|t + Pt+1|tC
′(CPt+1|tC

′ + γt+1R +

+(1− γt+1)σ
2I)−1(yt+1 − Cx̂t+1|t) (11)

Pt+1|t+1 = Pt+1|t − Pt+1|tC
′(CPt+1|tC

′ + γt+1R +

+(1− γt+1)σ
2I)−1CPt+1|t. (12)

Taking the limit asσ → ∞, the update equations (11) and
(12) can be rewritten as follows:

x̂t+1|t+1 = x̂t+1|t + γt+1Kt+1(yt+1 − Cx̂t+1|t) (13)

Pt+1|t+1 = Pt+1|t − γt+1Kt+1CPt+1|t, (14)

where Kt+1 = Pt+1|tC ′(CPt+1|tC ′ + R)−1 is the Kalman
gain matrix for the standard ARE. Note that performing this
limit correspondsexactly to propagating the previous state
when there is no observation update available at time t. We
also point out the main difference from the standard Kalman
filter formulation: bothx̂t+1|t+1 andPt+1|t+1 are now random
variables, being a function ofγt+1, which is itself random.

It is important to stress that Equations (13)-(14)
give the minimum state error variance filter given the
observations {yt} and their arrival sequence{γt}, i.e.
x̂tm

t = E[xt|yt, . . . , y1, γt, . . . , γ1]. As a consequence, the
filter proposed in this paper is necessarily time-varying and
stochastic since it depends on the arrival sequence. The filters
that have been proposed so far using JLS theory [17], [19] give
the minimum state error variance filters assuming that only the
observations{yt} and the knowledge on the last arrivalγt are

available, i.e.̂xJLS
t = E[xt|yt, . . . , y1, γt]. Therefore, the filter

given by Equations (13)-(14) gives a better performance than
its JLS counterparts, since it exploits additional information
regarding the arrival sequence.

Given the new formulation, we now study the Riccati
equation of the state error covariance matrix in the specific
case when the arrival process of the observation is time-
independent, i.e.λt = λ for all time. This will allow us to
provide deterministic upper and lower bounds on its expecta-
tion. We then characterize the convergence of these upper and
lower bounds, as a function of the arrival probabilityλ of the
observation.

III. C ONVERGENCE CONDITIONS AND TRANSITION TO

INSTABILITY

It is easy to verify that the modified Kalman filter formula-
tion in Equations (10) and (14) can be rewritten as follows:

Pt+1 = APtA
′+Q−γt APtC

′(CPtC
′+R)−1CPtA

′, (15)

where we use the simplified notationPt = Pt|t−1. Since the
sequence{γt}∞0 is random, the modified Kalman filter itera-
tion is stochastic and cannot be determined off-line. Therefore,
only statistical properties can be deduced.

In this section we show the existence of a critical value
λc for the arrival probability of the observation update, such
that for λ > λc the mean state covarianceE[Pt] is bounded
for all initial conditions, and forλ ≤ λc the mean state
covariance diverges for some initial condition. We also find a
lower boundλ, and upper boundλ, for the critical probability
λc, i.e., λ ≤ λc ≤ λ. The lower bound is expressed in closed
form; the upper bound is the solution of a linear matrix
inequality (LMI). In some special cases the two bounds
coincide, giving a tight estimate. Finally, we present numerical
algorithms to compute a lower bound̄S, and upper bound̄V ,
for limt→∞ E[Pt], when it is bounded.

First, we define the modified algebraic Riccati equation
(MARE) for the Kalman filter with intermittent observations
as follows,

gλ(X) = AXA′+Q−λ AXC ′(CXC ′+R)−1CXA′. (16)

Our results derive from two principal facts: the first is that
concavity of the modified algebraic Riccati equation for our
filter with intermittent observations allows use of Jensen’s
inequality to find an upper bound on the mean state covariance;
the second is that all the operators we use to estimate upper
and lower bounds are monotonically increasing, therefore if a
fixed point exists, it is also stable.

We formally state all main results in form of theorems.
Omitted proofs appear in the Appendix. The first theorem
expresses convergence properties of the MARE.

Theorem 1. Consider the operator
φ(K, X) = (1 − λ)(AXA′ + Q) + λ(FXF ′ + V ), where
F = A + KC, V = Q + KRK ′. Suppose there exists a
matrix K̃ and a positive definite matrix̃P such that

P̃ > 0 and P̃ > φ(K̃, P̃ )

Then,
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(a) for any initial conditionP0 ≥ 0, the MARE converges,
and the limit is independent of the initial condition:

lim
t→∞

Pt = lim
t→∞

gt
λ(P0) = P

(b) P is the unique positive semidefinite fixed point of the
MARE.

The next theorem states the existence of a sharp transition.

Theorem 2. If (A,Q
1
2 ) is controllable,(A, C) is detectable,

and A is unstable, then there exists aλc ∈ [0, 1) such that

lim
t→∞

E[Pt] = +∞ for 0 ≤ λ ≤ λc and ∃P0 ≥ 0 (17)

E[Pt] ≤ MP0 ∀t for λc < λ ≤ 1 and ∀P0 ≥ 0 (18)

whereMP0 > 0 depends on the initial conditionP0 ≥ 01.

The next theorem gives upper and lower bounds for the
critical probabilityλc.

Theorem 3. Let

λ = arginfλ[∃Ŝ | Ŝ = (1− λ)AŜA′ + Q] = 1− 1

α2
(19)

λ = arginfλ[∃(K̂, X̂) | X̂ > φ(K̂, X̂)] (20)

whereα = maxi |σi| and σi are the eigenvalues ofA. Then

λ ≤ λc ≤ λ. (21)

Finally, the following theorem gives an estimate of the limit
of the mean covariance matrixE[Pt], when this is bounded.

Theorem 4. Assume that(A, Q
1
2 ) is controllable,(A,C) is

detectable andλ > λ, whereλ is defined in Theorem 4. Then

0 < St ≤ E[Pt] ≤ Vt ∀ E[P0] ≥ 0 (22)

wherelimt→∞ St = S̄ and limt→∞ Vt = V̄ , whereS̄ and V̄
are solution of the respective algebraic equations
S̄ = (1− λ)AS̄A′ + Q and V̄ = gλ(V̄ ).

The previous theorems give lower and upper bounds for both
the critical probabilityλc and for the mean error covariance
E[Pt]. The lower boundλ is expressed in closed form. We
now resort to numerical algorithms for the computation of the
remaining boundsλ, S̄ and V̄ .

The computation of the upper boundλ can be reformulated
as the iteration of an LMI feasibility problem. To establish
this we need the following theorem:

Theorem 5. If (A,Q
1
2 ) is controllable and(A,C) is de-

tectable, then the following statements are equivalent:

(a) ∃X̄ such that X̄ > gλ(X̄)
(b) ∃K̄, X̄ > 0 such that X̄ > φ(K̄, X̄)
(c) ∃Z̄ and 0 < Ȳ ≤ I such that

Ψλ(Y, Z) =


Y
√

λ(Y A + ZC)
√

1− λY A√
λ(A′Y + C′Z′) Y 0√

1− λA′Y 0 Y


 > 0.

1We use the notationlimt→∞At = +∞ when the sequenceAt ≥ 0 is
not bounded; i.e., there is no matrixM ≥ 0 such thatAt ≤ M,∀t.

Proof: (a)=⇒(b) If X̄ > gλ(X̄) exists, thenX̄ > 0 by
Lemma 1(g). LetK̄ = KX̄ . Then X̄ > gλ(X̄) = φ(K̄, X̄)
which proves the statement.
(b)=⇒(a) ClearlyX̄ > φ(K̄, X̄) ≥ gλ(X̄) which proves the
statement.
(b)⇐⇒(c) Let F = A + KC, then:

X > (1− λ)AXA′ + λFXF ′ + Q + λKRK ′

is equivalent to
[

X − (1− λ)AXA′
√

λF√
λF ′ X−1

]
> 0,

where we used the Schur complement decomposition and the
fact thatX−(1−λ)AXA′ ≥ λFXF ′+Q+λKRK ′ ≥ Q > 0.
Using one more time the Schur complement decomposition on
the first element of the matrix we obtain

Θ =




X
√

λF
√

1− λA√
λF ′ X−1 0√

1− λA′ 0 X−1


 > 0.

This is equivalent to

Λ =




X−1 0 0
0 I 0
0 0 I


 Θ




X−1 0 0
0 I 0
0 0 I


 > 0

=




X−1
√

λX−1F
√

1− λX−1A√
λF ′X−1 X−1 0√

1− λA′X−1 0 X−1


 > 0.

Let us consider the change of variableY = X−1 > 0 and
Z = X−1K, in which case the previous LMI is equivalent to:

Ψ(Y, Z) =

=




Y
√

λ(Y A + ZC)
√

1− λY A√
λ(A′Y + C′Z′) Y 0√

1− λA′Y 0 Y


 > 0.

SinceΨ(αY, αK) = αΨ(Y,K), thenY can be restricted to
Y ≤ I, which completes the theorem.

Combining theorems 3 and 5 we immediately have the
following corollary

Corollary 1. The upper boundλ is given by the solution of
the following optimization problem,

λ = argminλΨλ(Y, Z) > 0, 0 ≤ Y ≤ I.

This is a quasi-convex optimization problem in the variables
(λ, Y, Z) and the solution can be obtained by iterating LMI
feasibility problems and using bisection for the variableλ, as
shown in [27].

The lower boundS̄ for the mean covariance matrix can be
easily obtained via standard Lyapunov Equation solvers. The
upper boundV̄ can be found by iterating the MARE or by
solving a semidefinite programming (SDP) problem as shown
in the following.

Theorem 6. If λ > λ, then the matrixV̄ = gλ(V ) is given
by:

(a) V̄ = limt→∞ Vt; Vt+1 = gλ(Vt) whereV0 ≥ 0
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(b)

argmaxV Trace(V )

subject to

[
AV A′ − V

√
λAV C ′√

λCV A′ CV C′ + R

]
≥ 0, V ≥ 0

Proof: (a) It follows directly from Theorem 1.
(b) It can be obtained by using the Schur complement

decomposition on the equationV ≤ gλ(V ). Clearly the
solution V̄ = gλ(V̄ ) belongs to the feasible set of the
optimization problem. We now show that the solution of
the optimization problem is the fixed point of the MARE.
Suppose it is not, i.e.,̂V solves the optimization problem but
V̂ 6= gλ(V̂ ). Since V̂ is a feasible point of the optimization

problem, thenV̂ < gλ(V̂ ) = ˆ̂
V . However, this implies that

Trace(V̂ ) < Trace( ˆ̂
V ), which contradicts the hypothesis

of optimality of matrix V̂ . ThereforeV̂ = gλ(V̂ ) and this
concludes the theorem.

IV. SPECIAL CASES AND EXAMPLES

In this section we present some special cases in which upper
and lower bounds on the critical valueλc coincide and give
some examples. From Theorem 1, it follows that if there exists
a K̃ such thatF is the zero matrix, then the convergence
condition of the MARE is forλ > λc = 1 − 1/α2, where
α = maxi |σi|, andσi are the eigenvalues ofA.

• C is invertible. In this case a choice ofK = −AC−1

makesF = 0. Note that the scalar case also falls under
this category. Figure (2) shows a plot of the steady state
of the upper and lower bounds versusλ in the scalar
case. The discrete time LTI system used in this simulation
has A = −1.25, C = 1, with vt and wt having zero
mean and varianceR = 2.5 andQ = 1, respectively. For
this system we haveλc = 0.36. The transition clearly
appears in the figure, where we see that the steady state
value of both upper and lower bound tends to infinity
as λ approachesλc. The dashed line shows the lower
bound, the solid line the upper bound, and the dash-dot
line shows the asymptote.

• A has a single unstable eigenvalue. In this case, re-
gardless of the dimension ofC (and as long as the pair
(A,C) is detectable), we can use Kalman decomposition
to bring to zero the unstable part ofF and thereby obtain
tight bounds. Figure (3) shows a plot for the system

A =




1.25 1 0
0 0.9 7
0 0 0.6


, C =

(
1 0 2

)

with vt andwt having zero mean and varianceR = 2.5
andQ = 20·I3×3, respectively. This time, the asymptotic
value for trace of upper and lower bound is plotted versus
λ. Once againλc = 0.36.

In generalF cannot always be made zero and we have
shown that while a lower bound onλc can be written in
closed form, an upper bound onλc is the result of a LMI.
Figure (4) shows an example where upper and lower bounds
have different convergence conditions. The system used for
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Fig. 2. Example of transition to instability in the scalar case. The dashed
line shows the asymptotic value of the lower bound (S̄), the solid line the
asymptotic value of the upper bound (V̄ ), and the dash-dot line shows the
asymptote (λc).
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Fig. 3. Example of transition to instability with a single unstable eigenvalue
in the MIMO case. The dashed line shows the asymptotic value of the trace
of lower bound (̄S), the solid line the asymptotic value of trace of the upper
bound (̄V ), and the dash-dot line shows the asymptote (λc).

this simulation isA =
(

1.25 0
1 1.1

)
, C =

(
1 1

)

with vt andwt having zero mean and varianceR = 2.5 and
Q = 20 · I2×2, respectively.

Finally, in Figure (5) we report results of another experi-
ment, plotting the state estimation error for the scalar system
used above at two similar values ofλ, one being below and one
above the critical value. We note a dramatic change in the error
at λc ≈ 0.36. The figure on the left shows the estimation error
with λ = 0.3. The figure on the right shows the estimation
error for the same system evolution withλ = 0.4. In the
first case the estimation error grows dramatically, making
it practically useless for control purposes. In the second
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Fig. 4. Transition to instability in the general case, with arbitrary A and C.
In this case lower and upper bounds do not have the same asymptote.
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Fig. 5. Estimation error forλ below (left) and above (right) the critical value

case, a small increase inλ reduces the estimation error by
approximately three orders of magnitude.

V. STATIC VERSUS DYNAMIC KALMAN GAIN

In this section we compare the performance of filtering with
static and dynamic gain for a scalar discrete system. For the
static estimator we follow the jump linear system approach
of [18]. The scalar static estimator case has been also worked
out in [28].

Consider the dynamic state estimator

x̂d
t+1 = Ax̂d

t + γtK
d
t (yt − ŷt)

Kd
t = APtC

′(CPtC
′ + R)−1

Pt+1 = APtA
′ + Q− γtK

d
t CPtA

′ (23)

where the Kalman gainKd
t is time-varying. Also consider

the static state estimator

x̂s
t+1 = Ax̂d

t + γtKs(yt − ŷt) (24)

where the estimator gainKs is constant. If no data arrives, i.e.
γt = 0, both estimators simply propagate the state estimate of
the previous time-step.

The performance of the dynamic state estimator (23) has
been analyzed in the previous sections. The performance of
static state estimator (24), instead, can be readily obtained
using jump linear system theory [16], [18]. To do so, let us
consider the estimator errores

t+1
∆= xt+1 − x̂s

t+1. Substituting
Equations (1) forxt+1 and (24) for x̂s

t+1, we obtain the
dynamics of the estimation error:

es
t+1 = (A− γtKsC)es

t + vt + γtKswt. (25)

Using the same notation of Chapter 6 in Nilsson [18], where
he considers the general system:

zk+1 = Φ(rk)zk + Γ(rk)ek,

the system (25) can be seen as jump linear system switching
between two statesrk ∈ {1, 2} given by:

Φ(1) = A−KsC Γ(1) = [1 Ks]
Φ(2) = A Γ(2) = [1 0],

where the noise covarianceE[eke′k] = Re, the transition prob-
ability matrix Qπ and the steady state probability distribution
π∞ are given by:

Re =
[

Q 0
0 R

]
Qπ =

[
λ 1− λ
λ 1− λ

]
π∞ =

[
λ 1− λ

]
.

Following the methodology proposed in Nilsson [18] is pos-
sible to show that the system above is mean square stable, i.e.
limt→∞ E[(es

t )′es
t ] = 0 if and only if the transition probability

is

λ < λs =
1

1− (
1− KsC

A

)2

(
1− 1

A2

)
. (26)

If the system is mean square stable, the steady state error
covarianceP s

∞ = limt→∞ E[es
t (es

t )′] is given by:

P s
∞ =

Q + K2
s R

1− λ(A−KsC)2 − (1− λ)A2
. (27)

Calculations to obtain Equations (26) and (27) are tedious but
straightforward, therefore they are omitted.

It is immediately evident that the critical transition probabil-
ity λs of the estimator (24) using a static gain is always greater
then the critical transition probabilityλc of the estimator (23)
which adopts a dynamic gain, in fact

λs = λc
1

1− (
1− KsC

A

)2

and the two probabilities are equal only whenKs = A
C .

A natural choice for the static estimator gainKs is the
steady state Kalman gainKSS of the closed loop system
(r = 1), which is always different fromA

C . For the scalar
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system considered in the previous section, whereA = −1.5,
C = 1, Q = 1, R = 2.5, this is given byKSS = −0.70,
while the gain for largest mean square stability range is
Ks = A

C = −1.25. In the special case when the arrival
probability is known, another natural choice for the estimator
gainK is obtained by substituting the error covariance solution
of P̄ = gλ(P̄ ) into the equation for the Kalman filter gain
Kλ = AP̄C ′(CP̄C ′+R)−1. For example, assumingλ = 0.6,
then P̄ = 7.32 and Kλ = −0.93. Figure 6 shows all of
these cases, comparing them with the upper bound on the
state error covariancēV of the dynamic estimator (23) that
can be computed as indicated in Theorem 6. The steady state
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Fig. 6. Error covariance bound̄V for dynamic predictor obtained from our
theory and steady state error covariance for three natural static predictors
obtained from JLS theory.

error covariance of the static predictor for the three different
gains is always greater then our upper boundV̄ . This is not
surprising, since the dynamic estimator is optimal over all
possible estimators as shown in Section II. Note that the static
predictor with static gainKλ (designed forλ = 0.6) achieves
the same state error covariance predicted by our upper bound
for the optimal dynamic filter whenλ = 0.6. However, the
empirical error state covariance is on average better then the
static filter, as shown in Figure 7. This is to be expected, since
the solution of MARE gives only an upper bound of the true
expected state covariance of the time-varying filter. Moreover,
it is worth stressing that if the arrival probability is different
from the one used to design the static gain, the performance
of the static filter will degrade considerably, while the time-
varying filter will still perform optimally since it does not
require knowledge ofλ. From this example, it seems that the
upper bound for the dynamic estimatorV̄ gives en estimate
of the minimum steady state covariance that can be achieved
with a static estimator for any given arrival probability if the
static gainKs is chosen optimally. Then the MARE could be
used to find the minimum steady state covariance and then
the corresponding steady state modified Kalman gain, thus
providing an useful tool for optimal static estimator design.
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Fig. 7. Empirical state error covariance of our time-varying filter and the
linear mimimum mean square error estimator (LMMSEE) [17] obtained by
using the optimal static kalman gainKλ. The curves are obtained by averaging
10000 Monte Carlo simulations fort = 1, . . . , 300, with the values of the
input noise(vt, wt) and the arrival sequenceγt generated randomly. Both
filters were compared under the same conditions.

Future work will explore this possibility.

VI. CONCLUSIONS

In this paper we have presented an analysis of Kalman filter-
ing in the setting of intermittent observations. We have shown
how the expected estimation error covariance depends on the
tradeoff between loss probability and the system dynamics.
Such a result is useful to the system designer who must assess
the relationship between the dynamics of the system whose
state is to be estimated and the reliability of the communication
channel through which that system is measured.

Our motivating application is a distributed sensor network
that collects observations and sends them to one or more
central units that are responsible for estimation and control.
For example, in a pursuit evasion game in which mobile
pursuers perform their control actions based on the current
estimate of the positions of both pursuers and evaders, the
sensing capability of each pursuer is generally limited, and an
embedded sensor network is essential for providing a larger
overall view of the terrain. The results that we have presented
here can aid the designer of the sensor network in the choice
of the number and disposition of the sensors.

This application also suggests a number of interesting direc-
tions for further work. For example, although we have assumed
independent Bernoulli probabilities for the observation events,
in the sensor network there will generally be temporal and
spatial sources of variability that lead to correlations among
these events. While it is possible to compute posterior state
estimates in such a setting, it would be of interest to see if
a priori bounds of the kind that we have obtained here can
be obtained in this case. Similarly, in many situations there
may be correlations between the states and the observation
events; for example, such correlations will arise in the pursuit
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evasion game when the evaders move near the boundaries of
the sensor network. Finally, the sensor network setting also
suggests the use of smoothing algorithms in addition to the
filtering algorithms that have been our focus here. In particular,
we may be willing to tolerate a small amount of additional
delay to wait for the arrival of a sensor measurement, if that
measurement is expected to provide a significant reduction
in uncertainty. Thus we would expect that the tradeoff that
we have studied here between loss probability and the system
dynamics should also be modulated in interesting ways by the
delay due to smoothing.

We also remark that the assumption of modelling the arrival
of observations as a bernoulli i.i.d. process can be clearly
improved upon. For example, one can imagine situations
where some of the sensing is done locally and therefore
measurements are available at all sampling times, while mea-
surements taken at distant locations are available at irregular
intervals. This would translate in different dropping rates for
different channels. We have focused on providing a basic
result upon which more sophisticated models can be built and
analyzed.
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VIII. A PPENDIX A

In order to give complete proofs of our main theorems, we
need to prove some preliminary lemmas. The first one shows
some useful properties of the MARE.

Lemma 1. Let the operator

φ(K,X) = (1− λ)(AXA′ + Q) + λ(FXF ′ + V ) (28)

where F = A + KC, V = Q + KRK ′. AssumeX ∈
S = {S ∈ Rn×n|S ≥ 0}, R > 0, Q ≥ 0, and (A,Q

1
2 ) is

controllable. Then the following facts are true:

(a) With KX = −AXC ′ (CXC ′ + R)−1, gλ(X) =
φ(KX , X)

(b) gλ(X) = minK φ(K, X) ≤ φ(K, X), ∀K
(c) If X ≤ Y , thengλ(X) ≤ gλ(Y )
(d) If λ1 ≤ λ2 thengλ1(X) ≥ gλ2(X)
(e) If α ∈ [0, 1], then
gλ(αX + (1− α)Y ) ≥ αgλ(X) + (1− α)gλ(Y )

(f) gλ(X) ≥ (1− λ)AXA′ + Q

(g) If X̄ ≥ gλ(X̄), thenX̄ > 0
(h) If X is a random variable, then
(1− λ)AE[X]A′ + Q ≤ E[gλ(X)] ≤ gλ(E[X])

Proof: (a) DefineFX = A + KXC, and observe that

FXXC ′ + KXR = (A + KXC)XC ′ + KXR =
= AXC ′ + KX(CXC ′ + R) = 0.

Next, we have

gλ(X) = (1− λ)(AXA′ + Q) +

+λ(AXA′ + Q−AXC′
(
CXC′ + R

)−1
CXA′)

= (1− λ)(AXA′ + Q) +

+λ(AXA′ + Q + KXCXA′)

= (1− λ)(AXA′ + Q) + λ(FXXA′ + Q)

= (1− λ)(AXA′ + Q) +

+λ(FXXA′ + Q) + (FXXC′ + KXR)K′

= φ(KX , X)

(b) Let ψ(K,X) = (A + KC)X(A + KC)′ + KRK ′ + Q.
Note that

argminKφ(K, X) = argminKFXF ′+V = argminKψ(X,K).

Since X, R ≥ 0, φ(K, X) is quadratic and convex in the
variableK, therefore the minimizer can be found by solving
∂ψ(K,X)

∂K = 0, which gives:

2(A + KC)XC′ + 2KR = 0 =⇒ K = −AXC′
(
CXC′ + R

)−1
.

Since the minimizer corresponds toKX defined above, the
fact follows from fact (1)

(c) Note thatφ(K,X) is affine in X. SupposeX ≤ Y .
Then

gλ(X) = φ(KX , X) ≤ φ(KY , X) ≤ φ(KY , Y ) = gλ(Y ).

This completes the proof.
(d) Note thatAXC ′(CXC ′ + R)−1CXA ≥ 0. Then

gλ1(X) = AXA′ + Q− λ1 AXC ′(CXC ′ + R)−1CXA

≥ AXA′ + Q− λ2 AXC ′(CXC ′ + R)−1CXA

= gλ2(X)

(e) Let Z = αX + (1 − α)Y whereα ∈ [0, 1]. Then we
have

gλ(Z) = φ(KZ , Z)
= α(A + KZ C)X(A + KZ C)′+

+(1− α)(A + KZ C)Y (A + KZ C)′+
+(α + 1− α)(KZ R K ′

Z + Q)
= αφ(KZ , X) + (1− α)φ(KZ , Y )
≥ αφ(KX , X) + (1− α)φ(KY , Y )
= αgλ(X) + (1− α)gλ(Y ).

(f) Note thatFXXF ′X ≥ 0 andKRK ′ ≥ 0 for all K and
X. Then

gλ1(X) = φ(KX , X) =

= (1− λ)(AXA′ + Q) + λ(FXXF ′X + KXRK′
X + Q)

≥ (1− λ)(AXA′ + Q) + λQ = (1− λ)AXA′ + Q.

(g) From fact (f) it follows that
X̄ ≥ gλ1(X̄) ≥ (1− λ)AX̄A′ + Q. Let X̂ such that
X̂ = (1 − λ)AX̂A′ + Q. Such X̂ must clearly exist.
ThereforeX̄ − X̂ ≥ (1− λ)A(X̄ − X̂)A′ ≥ 0. Moreover the
matrix X̂ solves the Lyapunov Equation̂X = ÃX̂Ã′ + Q
whereÃ =

√
1− λA. Since(Ã,Q

1
2 ) is detectable, it follows

that X̂ > 0 and soX̄ > 0, which proves the fact.
(h) Using fact (f) and linearity of expectation we have

E[gλ(X)] ≥ E[(1− λ)AXA′ + Q] = (1− λ)AE[X]A′ + Q.
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Fact (e) implies that the operatorgλ() is concave, therefore
by Jensen’s Inequality we haveE[gλ(X)] ≤ gλ(E[X]).

Lemma 2. Let Xt+1 = h(Xt) and Yt+1 = h(Yt). If h(X) is
a monotonically increasing function then:

X1 ≥ X0 ⇒ Xt+1 ≥ Xt, ∀t ≥ 0
X1 ≤ X0 ⇒ Xt+1 ≤ Xt, ∀t ≥ 0
X0 ≤ Y0 ⇒ Xt ≤ Yt, ∀t ≥ 0

Proof: This lemma can be readily proved by induction.
It is true for t = 0, sinceX1 ≥ X0 by definition. Now assume
that Xt+1 ≥ Xt, thenXt+2 = h(Xt+1) ≥ h(Xt+1) = Xt+1

because of monotonicity ofh(·). The proof for the other two
cases is analogous.

It is important to note that while in the scalar caseX ∈
R either h(X) ≤ X or h(X) ≥ X; in the matrix case
X ∈ Rn×n, it is not generally true that eitherh(X) ≥ X
or h(X) ≤ X. This is the source of the major technical
difficulty for the proof of convergence of sequences in higher
dimensions. In this case convergence of a sequence{Xt}∞0 is
obtained by finding two other sequences,{Yt}∞0 , {Zt}∞0 that
boundXt, i.e., Yt ≤ Xt ≤ Zt, ∀t, and then by showing that
these two sequences converge to the same point.

The next two Lemmas show that when the MARE has a
solution P̄ , this solution is also stable, i.e., every sequence
based on the difference Riccati equationPt+1 = gλ(Pt)
converges toP̄ for all initial positive semidefinite conditions
P ≥ 0.

Lemma 3. Define the linear operator

L(Y ) = (1− λ)(AY A′) + λ(FY F ′)

Suppose there existsY > 0 such thatY > L(Y ).
(a) For all W ≥ 0,

lim
k→∞

Lk(W ) = 0

(b) Let U ≥ 0 and consider the linear system

Yk+1 = L(Yk) + U initialized at Y0.

Then, the sequenceYk is bounded.

Proof: (a) First observe that0 ≤ L(Y ) for all 0 ≤ Y .
Also, X ≤ Y impliesL(X) ≤ L(Y ). Choose0 ≤ r < 1 such
thatL(Y ) < rY . Choose0 ≤ m such thatW ≤ mY . Then,

0 ≤ Lk(W ) ≤ mLk(Y ) < mrkY .

The assertion follows when we take the limitr → ∞, on
noticing that0 ≤ r < 1.

(b) The solution of the linear iteration is

Yk = Lk(Y0) +
k−1∑
t=0

Lt(U)

≤
(

mY0r
k +

k−1∑
t=0

mUrt

)
Y

≤
(

mY0r
k +

mU

1− r

)
Y

≤
(

mY0 +
mU

1− r

)
Y ,

proving the claim.

Lemma 4. Consider the operatorφ(K, X) defined in Equa-
tion (28). Suppose there exists a matrixK and a positive
definite matrixP such that

P > 0 and P > φ(K, P ).

Then, for anyP0, the sequencePt = gt
λ(P0) is bounded, i.e.

there existsMP0 ≥ 0 dependent ofP0 such that

Pt ≤ M for all t.

Proof: First define the matricesF = A + KC and
consider the linear operator

L(Y ) = (1− λ)(AY A′) + λ(FY F
′
)

Observe that

P > φ(K, P ) = L(P ) + Q + λKRK
′ ≥ L(P ).

Thus,L meets the condition of Lemma 3. Finally, using fact
(b) in Lemma 1 we have

Pt+1 = gλ(Pt) ≤ φ(K, Pt) = LPt+Q+λKRK
′
= L(Pt)+U.

SinceU = λKRK
′
+ Q ≥ 0, using Lemma 3, we conclude

that the sequencePt is bounded.
We are now ready to give proofs for Theorems 1-4.

A. Proof of Theorem 1

(a) We first show that the modified Riccati difference
equation initialized atQ0 = 0 converges. LetQk = gk

λ(0).
Note that0 = Q0 ≤ Q1. It follows from Lemma 1(c) that

Q1 = gλ(Q0) ≤ gλ(Q1) = Q2.

A simple inductive argument establishes that

0 = Q0 ≤ Q1 ≤ Q2 ≤ · · · ≤ MQ0 .

Here, we have used Lemma 4 to bound the trajectory. We
now have a monotone non-decreasing sequence of matrices
bounded above. It is a simple matter to show that the sequence
converges, i.e.

lim
k→∞

Qk = P .

Also, we see thatP is a fixed point of the modified Riccati
iteration:

P = gλ(P ),

which establishes that it isa positive semi-definite solution of
the MARE.

Next, we show that the Riccati iteration initialized at
R0 ≥ P also converges, and to the same limitP . First define
the matrices

K = −APC ′
(
CPC ′ + R

)−1
, F = A + KC

and consider the linear operator

L̂(Y ) = (1− λ)(AY A′) + λ(FY F
′
).

Observe that

P = gλ(P ) = L(P ) + Q + KRK
′
> L̂(P ).
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Thus, L̂ meets the condition of Lemma 3. Consequently, for
all Y ≥ 0,

lim
k→∞

L̂k(Y ) = 0.

Now supposeR0 ≥ P . Then,

R1 = gλ(R0) ≥ gλ(P ) = P .

A simple inductive argument establishes that

Rk ≥ P for all k.

Observe that

0 ≤ (Rk+1 − P ) = gλ(Rk)− gλ(P )
= φ(KRk

, Rk)− φ(KP , P )
≤ φ(KP , Rk)− φ(KP , P )
= (1− λ)A(Rk − P )A′ +

+λFP (Rk − P )F ′
P

= L̂(Rk − P ).

Then,0 ≤ limk→∞(Rk+1 − P ) ≤ 0, proving the claim.
We now establish that the Riccati iteration converges to

P for all initial conditions P0 ≥ 0. Define Q0 = 0 and
R0 = P0 + P . Consider three Riccati iterations, initialized at
Q0, P0, andR0. Note that

Q0 ≤ P0 ≤ R0.

It then follows from Lemma 2 that

Qk ≤ Pk ≤ Rk for all k.

We have already established that the Riccati equationsPk and
Rk converge toP . As a result, we have

P = lim
k→∞

Pk ≤ lim
k→∞

Qk ≤ lim
k→∞

Rk = P ,

proving the claim.
(b) Finally, we establish that the MARE has a unique pos-

itive semi-definite solution. To this end, considerP̂ = gλ(P̂ )
and the Riccati iteration initialized atP0 = P̂ . This yields the
constant sequence

P̂ , P̂ , · · ·
However, we have shown that every Riccati iteration converges
to P . ThusP = P̂ .

B. Proof of Theorem 2

First we note that the two cases expressed by the theorem
are indeed possible. Ifλ = 1 the modified Riccati difference
equation reduces to the standard Riccati difference equation,
which is known to converge to a fixed point, under the
theorem’s hypotheses. Hence, the covariance matrix is always
bounded in this case, for any initial conditionP0 ≥ 0. If λ = 0
then we reduce to open loop prediction, and if the matrixA is
unstable, then the covariance matrix diverges for some initial
condition P0 ≥ 0. Next, we show the existence of a single
point of transition between the two cases. Fix a0 < λ1 ≤ 1
such thatEλ1 [Pt] is bounded for any initial conditionP0 ≥ 0.

Then, for anyλ2 ≥ λ1 Eλ2 [Pt] is also bounded for allP0 ≥ 0.
In fact we have

Eλ1 [Pt+1] = Eλ1 [APtA
′ + Q +

−γt+1APtC
′(CPtC

′ + R)−1CPtA]
= E[APtA

′ + Q +
−λ1APtC

′(CPtC
′ + R)−1CPtA]

= E[gλ1(Pt)]
≥ E[gλ2(Pt)]
= Eλ2 [Pt+1],

where we exploited fact (d) of Lemma 1 to write the above
inequality . We can now choose

λc = {inf λ∗ : λ > λ∗ ⇒ Eλ[Pt]is bounded, for allP0 ≥ 0},
completing the proof.

C. Proof of Theorem 3

Define the Lyapunov operatorm(X) = ÃXÃ′ + Q where
Ã =

√
1− λA. If (A,Q

1
2 ) is controllable, also(Ã,Q

1
2 ) is

controllable. Therefore, it is well known that̂S = m(Ŝ) has
a unique strictly positive definite solution̂S > 0 if and only
if maxi |σi(Ã)| < 1, i.e.

√
1− λ maxi |σi(A)| < 1, from

which follows λ = 1 − 1
α2 . If maxi |σi(Ã)| ≥ 1 it is also

a well known fact that there is no positive semidefinite fixed
point to the Lyapunov equation̂S = m(Ŝ), since(Ã,Q

1
2 ) is

controllable.
Let us consider the difference equationSt+1 = m(St),

S0 = 0. It is clear thatS0 = 0 ≤ Q = S1. Since the operator
m() is monotonic increasing, by Lemma 2 it follows that the
sequence{St}∞0 is monotonically increasing, i.e.St+1 ≥ St

for all t. If λ < λ this sequence does not converge to a finite
matrix S̄, otherwise by continuity of the operatorm we would
have S̄ = m(S̄), which is not possible. Since it is easy to
show that a monotonically increasing sequenceSt that does
not converge is also unbounded, then we have

lim
t→∞

St = ∞.

Let us consider now the mean covariance matrixE[Pt]
initialized atE[P0] ≥ 0. Clearly 0 = S0 ≤ E[P0]. Moreover
it is also true thatSt ≤ E[Pt] implies:

St+1 = (1− λ)AStA
′ + Q

≤ (1− λ)AE[Pt]A′ + Q

≤ E[gλ(Pt)]
= E[Pt+1],

where we used fact (h) from Lemma 1. By induction, it is
easy to show that

St ≤ E[Pt] ∀t, ∀E[P0] ≥ 0 =⇒ lim
t→∞

E[Pt] ≥ lim
t→∞

St = ∞.

This implies that for any initial conditionE[Pt] is unbounded
for any λ < λ, thereforeλ ≤ λc, which proves the first part
of the Theorem.
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Now consider the sequenceVt+1 = gλ(Vt), V0 = E[P0] ≥ 0.
ClearlyE[Pt] ≤ Vt implies:

E[Pt+1] = E[gλ(Pt)]
≤ gλ(E[Pt])
≤ [gλ(Vt)]
= Vt+1,

where we used facts (c) and (h) from Lemma 1. Then a
simple induction argument shows thatVt ≥ E[Pt] for all t. Let
us consider the caseλ > λ, therefore there existŝX such that
X̂ ≥ gλ(X̂). By Lemma 1(g)X̄ > 0, therefore all hypotheses
of Lemma 3 are satisfied, which implies that

E[Pt] ≤ Vt ≤ MV0 ∀t.
This shows thatλc ≤ λ and concludes the proof of the
Theorem.

D. Proof of Theorem 4

Let us consider the sequencesSt+1 = (1− λ)AStA
′ + Q,

S0 = 0 andVt+1 = gλ(Vt), V0 = E[P0] ≥ 0. Using the same
induction arguments in Theorem 3 it is easy to show that

St ≤ E[Pt] ≤ Vt ∀t.
From Theorem 1 it also follows thatlimt→∞ Vt = V̄ ,
where V̄ = gλ(V ). As shown before the sequence
St is monotonically increasing. Also it is bounded since
St ≤ Vt ≤ M . Thereforelimt→∞ St = S̄, and by continuity
S̄ = (1− λ)AS̄A′ + Q, which is a Lyapunov equation. Since√

1− λA is stable and(A,Q
1
2 ) is controllable, then the

solution of the Lyapunov equation is strictly positive definite,
i.e. S̄ > 0. Adding all the results together we get

0 < S̄ = lim
t→∞

St ≤ lim
t→∞

E[Pt] ≤ lim
t→∞

Vt = V̄ ,

which concludes the proof.
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