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Abstract— When data are transmitted to an estimation-control Why not have real time alarm systems for catastrophic, yet
unit over a network, and control commands are issued to predictable events, such as tsunamis, landslides, trashes?
subsystems over the same network, both observation and cowfr What we used to regard as unforeseeable events are merely

packets may be lost or delayed. This process can be modeled by L
assigning probabilities to successfully receive packets. Determin- combinations of other events that we can now observe. Why

ing the impact of this uncertainty on the feedback-loop requires Not have efficient controllers for electric grids, exchamggioad

a generalization of classical control theory. This paper presents information between local stations, to optimize delivenda

the foundations of such new theory. _ avoid costly and dangerous blackouts? A main issue thatsneed
Motivations and overview of the efforts of different research to be addressed to realize this vision is the the development

groups are described first. Then, novel contributions of the fth tical f dati f i trol dbab
authors are presented. These include showing threshold behay- O theoretical foundations ot remote control over unr

iors which are governed by the uncertainty parameters of the Networks. We can fully benefit from the ability to collect an
communication network: for network protocols where successfl  enormous amount of data from the physical world only if
transmissions of packets is acknowledged at the receiver (e.g.we can analyze the behavior of control processes acting over
TCP-like protocols), there exists critical probabilities for the networks.

successful delivery of packets, below which the optimal controlte . . . .
fails to stabilize the system. Furthermore, for these protocols, The benefits (_)f pervaswe net\/\_/orklr?g and sensing are clear.
the separation principle holds and the optimal LQG control is For example buildings, both residential and commerciaf, ca
a linear function of the estimated state. In stark contrast, it greatly benefit from the use of sensor networks, by decrgasin
is shown that when there is no acknowledgement of successfulconstruction and operating costs, while improving comfort
delivery of control packets (e.g. UDP-like protocols), the LQG and safety. Today, more than half of the cost of an Heating
optimal controller is in general nonlinear. - . L - o '
Ventilation, Air Conditioning (HVAC) system in a building
is represented by installation and most of it is wiring. Wire

I. INTRODUCTION less communication could sensibly lower this cost [4][5].

The increasing|y fast convergence of Sensing, Computih@)reover, Combining wireless teChnOIOgy with Micro Electr
and wireless communication on cost effective, low powelechanical Systems (MEMS) technology could reduce the
thumb-size devices, is quickly enabling a surge of new contrcost further, allowing sensors to be embedded in products su
applications. In recent years, we have already witnessed &6 ceiling tiles and furniture, and enable improved control
wireless infrastructure overshadowing its wired couraerp Of the indoor environment[6]. On the operating cost, such
in all applications where it could be securely and reliabl§ystems could dramatically improve energy efficiency. The
implemented. Glamorous is the case of cellular telephoryhited States is the bigger consumer of energy with 8.5
that is progressively substituting wireline telephony. lgas duadrillion British Thermal Units (BTU). Commercial and
happened to LAN access, now dominated by WI-FI. Doomé@sidential sectors account for abdats of total consumption,
to fall next is wired broadband access, such as DSL, with tR&cording to a study conducted by the Energy Information
advent of WIMax and 3G wireless data services. The proceddministration in March 2004. With oil and gas prices rising
is likely to continue with the advent of sensor technologgnd not likely to decrease anytime soon, it is imperative to
Everything is getting “sensed:” vehicles, roads, buildingfind ways to decrease consumption by avoiding useless waste.
airspaces, environment, and so on. This ability to colletad Another example where pervasive wireless technology will
over a network at a very fine temporal and spatial granularifyave a high impact is Supervisory Control And Data Ac-
and the ability to process such data in real-time and thégisition (SCADA) networks. These networks, were origi-
perform appropriate control actions, opens to the devedﬂ'r]m na.”y dEVE|0ped in the 1960s, and are used for industrial
of new applications [1][2][3]. measurement, monitoring, and control systems, espediglly

electricity and natural gas utilities, water and sewagktias,
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pumps, track switches, and traffic signals. modus operandi is revealed, which is typical of networked
SCADA systems typically implement a distributed systeroontrol systems. Data is sent from possibly multiple sensor
whose elements are called points. A point can be a singte one or more computing units, using a communication
input or output value, monitored or controlled by the systdm network. Such data is then processed to estimate the state
variety of host computers allow for “supervisory level” ¢amt of a dynamical phenomenon, and control inputs are sent to
of the remote site. Great part of the control takes place attuators, again through the network. Both measuremeqdts an
distributed locations called Remote Terminal Units (RTUs)nputs have very stringent time constraints, dependinghen t
RTUs connects to physical equipment such as switches, punsgstem dynamics, that the network needs to be able to satisfy
and other devices, and monitor and control these devic®acing a communication network in the control loop raises
SCADA systems often have Distributed Control System (DC®)any issues. One of the key parameters in digital control
components. In this case smart RTUs are employed, capgstems design is the selection of a fixed sampling period. Th
ble of performing autonomous control and decision withoig mainly a function of the system dynamics, and it places a
the intervention of the master computers. The role of hosard constraint on the time necessary to receive obsengtio
computers is generally restricted to supervisory leveltrmbn estimate the state, compute an input, and transmit it to the
Data acquisition begins at the RTU level and includes metactuators. All of this needs to happen within one sampling
readings and equipment statuses that are communicated toitierval. Computing power of modern machines, combined
SCADA as required. Data is then compiled and formatted imith usually wired, dedicated interconnection betweerfedif
such a way that a control room operator using the SCADA camt parts of the system, guarantees that such constramts ar
make appropriate supervisory decisions that may be retjuimet. When closing the loop around wireless sensor networks,
to over-ride normal RTU controls. SCADA systems have trdhe assumption of data availability does not hold anymore,
ditionally used combinations of different infrastructioemeet as packets are randomly dropped and delayed. While system
communication requirements. The existence of a conselidatand control theory provide a wealth of analytical results t
wired legacy infrastructure hinders the development ofnop@ssumptions that the theory is traditionally based uponado n
systems based on wireless technology, that would provitield true in this setting, and neglecting these phenomena ma
superior performance and lower costs, easier maintenartte gield to catastrophic system performance. A notion of time,
upgradability. Most of the remote monitoring and contragither global or local, is needed to order and combine physsib
application could run over the wireless infrastructure,levh different sensor data for state estimation. The estimateds
components could be easily swapped without any servite know what to do when observations are not arriving, and
interruption. the controller needs to design an input using uncertaire stat
A third example of application of wireless sensor technokstimates, not knowing whether its previous input has been
ogy is represented by in-car networks. Electronics is duicksuccessfully received by the actuators.
becoming a main differentiator in the automotive industry, More generally, the use of networks in control systems
with companies offering electronic services, from Global P imposes a paradigm shift in the engineer’s mentality. Deter
sitioning System (GPS) in-vehicle safety and securityesyst ministic methods need to be replaced by stochastic ones, as
to DVD, to drive-by-wire systems. These enhancements siich is the nature of the network phenomena. This argument
course come at a price. Electronic systems now account foisgparticularly true in wireless networks, where the use of a
sizeable part of the cost and weight of a vehicle. Cars haskared channel with random disturbances and noise cannot be
over 50 embedded computers running a variety of applicgtiomodelled deterministically.
from safety-critical to pure entertainment. In additiohege  This paper attempts to place the theoretical foundations fo
applications consist of sensors, actuators and contsolleat the design of estimation and control systems over networks.
are spatially distributed in the vehicle. These components
communicate using dedicated wires, bringing the length of Il. CONTROL OVERNETWORKS
wires in high-end luxury cars to amount for more than three )
miles and adding over two hundred pounds of weight to tHe Foundations
vehicle. As electronics is only likely to in increase in cawith There are a number of basic problems that arise when at-
new services and applications, this design scheme will got tempting to realize the vision of pervasive wireless nekivay
sustainable for long. In vehicle networking will becomeesss described above. Wireless networks are inherently legsbtel
tial and a prime application of networked embedded systemsd secure than their wired counterparts. Penetration r&-wi
theory. As many applications concur in sharing computing) atess technology in modern society will be limited by these tw
communication resources, issues of scheduling, netwddydefactors. For example, car manufacturers today are reltictan
and data loss will need to be dealt with. to put wireless networks in cars, especially if connecting
Beyond these examples there is a whole new and unexplokeghly critical systems, e.g. braking, steering, accdilegaetc.
terrain, where any engineer can exploit his/her imagimatioLoss of data may have a disastrous effect on the behavior of
There is a surge of new startups trying to carve a niche in néiae vehicle. Similarly, in SCADA systems, which represent
markets, and established companies trying to take adwafagthe standard control infrastructure in industrial proessand
the new technology to improve their offerings while cregtinalso in some experimental facilities such as nuclear fysion
new products and services. communication is ethernet based, and it is likely to remain s
By looking at all applications mentioned above, a commamtil we can guarantee acceptable performance and security



In short, applications need to be designed robust enough 1 TCP-like :
cope with unreliability in the network. E protocols |

Issues of communication delay, data loss, and time "% Actators || Pt || Semsors | 77ooooooe
synchronization play critical roles. In particular, conmmiu S I e B R
cation and control are tightly coupled and they cannot b COMM. NETWORK "
addressed independently. Specific questions that aristhare »=0} ,, —; ACK  ELAY ' y=1l |
following. What is the amount of data loss that the controploo ly’ =1 % =0
can tolerate to reliably perform its task? Can communicatio o
protocols be designed to satisfy this constraint? The gbal e ] uf
this paper is to provide some first steps in answering suc ! State T Estimator Yt
questions by examining the basic system-theoretic imiiica feedback fxyt
of using unreliable networks for control. This requires ¢
generalization of classical control techniques that ebi 7777 OPTIMALLQG CONTROLLER
takes into account the stochastic nature of the commuaitati EUDP-like :
channel. ! protocols !

Plant Sensors | —=--------

. C
In order to understand the complex coupling between cor ~ "%£] Actuators SRPTINE B A
. . . uf = vpuf M “e+1 =A% Ut T W yr = Cay + vy
munication and control it is necessary to place the four T SR

dations first. We start by addressing some simple canonic v
problems that will shed some light on the real system b(”tzguz=1 COMM'NETWStRil |
havior. We shall consider the following abstractions. Rack | 78 =0
networks communication channels typically use one of tw °©

fundamentally different protocols: TCP-like or UDP-likin > L ui

the first case there is acknowledgement of received packe ‘ State Tt Estimator

while in the second case no-feedback is provided on tt feedback ’vyiyt
communication link. The well known Transmission Contro

(TCP) and User Datagram (UDP) protocols used in the Internc. 7777 OFTIMAL LQG CONTROLLER

are specific examples of our more general notion of TCP-like
and UDP-like communication protocol classes. We want fdg. 1.  Architecture of the closed loop system over a commtioica
study the effec of data losses due 10 the unrelabiity af " der TP ke proocasy g UDPe potocosn e
network links under these two general protocol abstrastioruccessfully.
Accordingly, we model the arrival of both observations and
control packets as random processes whose parameters are
related to the characteristics of the communication chlanne
Two independent Bernoulli processes are considered, withk without assuming any statistical model for the dataslos
parametersy and 7, that govern packet losses between thgrocess. In [9], Smithet al. considered a suboptimal but
sensors and the estimation-control unit, and between ttez lacomputationally efficient estimator that can be applied nhe
and the actuation points, see Figure 1. We point out théie arrival process is modeled as a Markov chain, which is
using Bernoulli processes is clearly an idealization ttsat imore general than a Bernoulli process. Other works include
chosen for mathematical tractability. The networking comp Nilssonet al. [10][11] who present the LQG optimal regulator
nent obviously has an additional impact on the performanwgth bounded delays between sensors and controller, and
of the closed loop systems. Routing and congestion contlgtween the controller and the actuator. In this work, bsund
mechanisms would affect the packet arrival probability &nd for the critical probability values are not provided andréhis
is necessary in practice to estimate this probability tojmat® no analytic solution for the optimal controller. The caseeveh
the optimal control law. The presence of correlations in trdropped measurements are replaced by zeros is considered
packet loss process can be taken into account, in principhy, Hadjicostis and Touri [12], but only in the scalar case.
at the cost of complicating the mathematical analysis. OGther approaches include using the last received sample for
foundations are instead based on simple abstractions wdchcontrol [11], or designing a dropout compensator [13], Wwhic
we shall see, already reveal useful design guidelines and cambines estimation and control in a single process. Horyeve
explain real system behaviors that are observed in practicethe former approach does not consider optimal control and
the latter is limited to scalar systems. ¥ al. [14] studied
) the design of an optimal controller with a single control
B. Previous Work channel and deterministic dropout rates. Se#eral. [15]
Study of stability of dynamical systems where componentensidered Bernoulli packet losses only between the plant
are connected asynchronously via communication channated the controller and posed the controller design ag/an
has received considerable attention in the past few yeats aptimization problem. Other authors [16] [17] [18] [19] medd
our contribution can be put in the context of the previousetworked control systems with missing packets as Markovia
literature. In [7] and [8], the authors proposed to place gamp linear systems (MJLSs), however this approach gives
estimator, i.e. a Kalman filter, at the sensor side of thmuboptimal controllers since the estimators are statjonar



Finally, Elia [20][21] proposed to model the plant and thef the Bernoulli arrival processes, and 7, outside which a
controller as deterministic time invariant discrete-tigystems transition to instability occurs and the optimal controlfails
connected to zero-mean stochastic structured uncertdingy to stabilize the system.

variance of the stochastic perturbation is a function of the These results are visually summarized in Figure 2, where
Bernoulli parameters, and the controller design is posednanour stability bounds are depicted for a scalar system. The
optimization problem to maximize mean-square stabilitthef stability regions are the regions above those bounds. &lotic
closed loop system. This approach allows analysis of Meltipthat for TCP-like protocols there exist critical arrivalopa-
Input Multiple Output (MIMO) systems with many differentbilities for the control and observation packets below Jhic
controller and receiver compensation schemes [20], haweviae system is in the unstable region. These critical values a
it does not include process and observation noise and thdependent of each other, which is another consequence of
controller is restricted to be time-invariant, hence spkiroal. the fact that the separation principle holds for these palto
There is also an extensive literature, inspired by Shamnon’

results on the maximum bit-rate that a channel with noise ¢

reliably carry, whose goal is to determine the minimum bi 1 ‘\
rate that is needed to stabilize a system through feedb&ik [ R
[23] [24] [25] [26] [27] [28] [29] [30] [31]. This approach 0.8} N
is somewhat different from ours as we consider bits to

grouped into packets that form single entities which can | 06

lost. Nonetheless there are several similarities that ate/et

fully explored. >
Compared to previous works, this paper considers tl 0.4}

alternative approach where the external compensatorrfged

the controller is the optimal time varying Kalman gain. More

over, this paper considers the general Multiple Input Nbleti 02V _[TCPrstable

Output (MIMO) case, and gives some necessary and sulffici : y

conditions for closed loop stability. The work of [32] is ntos 0 1, C ‘ ‘

closely related to this paper. However, we consider the mc 0 0.2 04 _ 06 0.8 1
general case when the matiix is not the identity and there Y

is noise in the observation and in the process. In additio . . . .
. p. . . 1§. 2. Stability regions for TCP-like protocols and UDRéiprotocols for a
we also give stronger necessary and sufficient conditions Qajar unstable system. These bounds are tight (i.e. negessa sufficient)

existence of the solution in the infinite horizon LQG control in the scalar case. The dashed line corresponds to the byuofia weaker
(sufficient) condition on the stability region for UDP-lilggotocols as recently
reported in [32].

C. Our Contribution

We study the effect of data losses due to the unreliability In contrast, for UDP-like protocols the critical arrivalgtr-
of the network links under two different classes of protscolabilities for the control and observation channels are tlp
In our analysis, the distinction between the two classes afd the stability domain boundary assumes a curved form. The
protocols will reside exclusively in the availability of geet performance of the optimal controller degrades considgrab
acknowledgement. Adopting the framework proposed by Imethen compared to TCP-like protocols, as the stability negio
et al. [32], we will refer therefore to TCP-like protocols if of UDP is strictly contained into the one of TCP. Finally, the
packet acknowledgement is available and to UDP-like protfigure also reports the boundary of a weaker condition on the
cols otherwise. stability region for UDP-like protocols as reported in [32]
We show that, for the TCP-like case, the classic separatiaich is indicated with a dashed line.
principle holds, and consequently the controller and estim
can be designed independently. Moreover, the optimal con- I1l. PROBLEM FORMULATION
troller is a linear function of the state. In sharp contrést, Consider the following linear stochastic system with inter
the. UDP-like case, a counter-example demonstrates' that mﬁtent observation and control packets:
optimal controller is in general non-linear. In the speciase
when the state is fully observable and the observation noise Trr1 = Axp+ Bup + wy D)
is zero the optimal controller is indeed linear. We explycit W= vl 2)
note that a similar, but slightly less general special case
was previously analyzed in [32], where both observation and
process noise are assumed to be zero and the input coefficienérew is the control input to the actuatar;, is the desired
matrix to be invertible. control input computed by the controllefx, wg,v,) are
Our final set of results relate to convergence in the infini®aussian, uncorrelated, white, with mgag, 0, 0) and covari-
horizon. Here, results on estimation with missing obsémat ance(Fy, Q, R) respectively, and~, v;) are i.i.d. Bernoulli
packets [33] [34] are extended to the control case. We shomndom variables withP(vy, = 1) =5 and P(v, = 1) = b.
the existence of a critical domain of values for the paramsetelhe stochastic variable, models the loss packets between

ye = Cxp+ vg, 3



the controller and the actuator: if the packet is correctlyQG controllers and to estimate their closed-loop perforcea
delivered thenuf = uf, otherwise if it is lost then the for both TCP-like and UDP-like protocols.

actuator does nothing, i.e; = 0. This compensation scheme
is summarized by Equation (2). This modeling choice is
not unique: for example if the control packet, is lost,
the actuator could employ the previous control value, i.e.\We start defining the following variables:
uf = uf_,, as suggested in [11]. The analysis of this scheme

IV. OPTIMAL ESTIMATION

requires a different problem formulation and is not conside Ty 2 Elxy | Zi),

here. However both schemes are sensible compensatiom and i Cxlk A o @
Section VII an empirical comparison seems to suggest tleat th A ,

zero-input scheme indeed outperforms the hold-input sehem Poe = Elewjpely | Zel.

The stochastic variable,, models the packet loss betweerhgriyations below will make use of the following facts:
the sensor and the controller: if the packet is deliveresh the | emma 4.1: The following facts are true [35]:

yr = Cx + v, While if the packet is lost the controller @ E[(zk — 2x)2) | Ta] = E [erd) | Te] =0

. . . . . - k - k -
reads pure noise, i.ey, = wvg. This observation model is (b) E [24Sx | Te] = & Six + trace (SPyy) ,¥S > 0
summarized by Equation (3). A different observation formal  (c) E[E[ g(zps1) [Zesa] | Ze] = E [g(zrsr) | Ze], Yg(-).
ism was proposed in [33], where the missing observation wasye now make the following computations which we use to
modeled as an observation for which the measurement noi§&ive the optimal LQG controller.
had infinite covariance. It is possible to show that both node
are equivalent, but the one considered in this paper has the E[z} Sy 1 | Zi] = E[z) A'SAxy | Zi]+ ®)
advantage of simpler analysis. This is because at times when — +vuj,B'SBuy + 2vuj B'SA &y, + trace(SQ)

packets are not delivered, the optimal estimator ignores th .
. . L where both the independence:qf, wy, xx, and the zero-mean
observationy;, therefore its value is irrelevant.

. o . ] property ofwy are exploited. The previous expectation holds
Let us define the following information sets: true for both the information sets, .8, — ;. or Ty — G.

s { Fo & {yhAhr) ToPdike 0 A
k= A . .

G = {y". "}, UDP-like Eley s Texn | Zn] = trace(TE[exrey s | Zx])
wherey” = (yi, yr—1,--- 1), ¥ = (Y, V-1, - -, 71), and trace(T'Pyjy), VT 2 0.
b = (Vkﬂ/k—h .. -71/1)-

The equations for the optimal estimator are different
whether TCP-like or UDP-like communication protocols are
J]\[(uN_l7 xo, PO) = E[Z‘GVWNQJN-‘F (5) used

+ Ziv;(l)(x%kak—i—uku;Ukuk) | ulNt, :EO,PO]

Consider also the following cost function:

where V! = (uy_1,un_2,...,u;). Note that we are A. Estimator design under TCP-like protocols

weighting the input only if it is successfully received atth . . . . .
o . ) Equations for optimal estimator are derived using argusient
plant. In the event it is not received, the plant applies zerg

: . . similar to those used in standard Kalman filtering. The inno-
input and therefore there is no energy expenditure.

, . vation step is given by:
We now seek a control input sequengg’~! as a function PISg y
of the admissible information séf, i.e. ux = gi(Zy), that

L : . . : ! L = AE[zy|F Buy, = Az, +viBu, (9
minimizes the functional defined in Equation (5), i.e. Thet 1k A el Fil+viBus e v Bur )
(o po A eVl s © Chtilk = Tkl — Tpy1jp = Aegr +wi (10)

o, = min u , 0, ,
~(Zo, o) e N ( 0, Fo) Pri1ji E E[ek+1\ke;c+1\k"/kv}—k]:APk|kA/+Q (11)

where 7, = {F%, Gk} is one of the sets defined in Equawnere the independence af, and F;, and the requirement
tion (4). The setF corresponds to the information providedhat «; is a deterministic function ofF,, are used. Since
under an acknowledgement-based communication protocpls 1, 7Vk+1, wr andFy are independent, the correction step is
(TCP-like) in which successful or unsuccessful packeteeyi  9iven by:

at the receiver is acknowledged to the sender within the same

. . . . . z = Zpnkt K —Ciy 12
sampling time period. The sgtcorresponds to the information SR A HHE A%H bt (gna brlk) (12)
available at the controller under communication protodols Ch+llktl =  Thit—Tpnjen (13)
which the sender receives no feedback about the delivetheof t = =K Oepn ik — 1o Krnven
transmitted packet to the receiver (UDP-like). The UDR-lik Povigrr = Preapp =70 Kt C P (14)
schemes are simpler to implement than the TCP-like schemes K 2 Poy1jkC' (CPoyrxC' + R) ™! (15)

from a communication standpoint. Moreover UDP-like proto-

cols includes broadcasting which is not feasible under TC®here we simply applied the standard derivation for the time
like protocols. However, UDP-like protocols provide a lean varying Kalman filter using the following time varying syste
information set. The goal of this paper is to design optimahatrices: A, = A, Ci, = vC, andCov(v;) = R.



B. Estimator design under UDP-like protocols with initial values Sy = Wy and ¢y = 0. Moreover the

We derive the equations for the optimal estimator usir‘f@;mim""I control input is given by:
similar arguments to the standard Kalman filtering equation wp = —(B'Sps1 B+ Up) "' B'Sji1 A Frik = Li dxpi (25)

The innovation step is given by: Proof: The proof employs an induction argument. The

A claim is clearly true fork = N with the choice of parameters

Tppe = Elreg1|Ge] = E[Azy + v Bug + wi|Gi] Sy = Wy andey = 0. Suppose now that the claim is true for
_ A — k+1,ie. Vk+1(xk+1) = E[ x; 1Sk+1xk+1 | karﬂ + Ck+1-
N ALy + 7 Buy (16) " The value function at time stapis the following:

e = =z -

K1)k k1~ Ttk Vi(ze) = minE[z, Wiz + veu,Usur + Vg1 (Teg1) | Frl

= Aeklk + (v — v)Bug + wy, a7) Uk
N ) = minEzWizr + veurUsur + | Fi] +

Pepe = Elegsapelge (9 b

— APy A +9(1— 0Byl B +Q  (18) +E[E,[”;““S’“““fl i | Fieri] 7]
min E[z), Wiz +viug Ugtur + T Skept Tyt + ot | Fie)
U

where we used the independence and zero-mean, ofv;, —

o / ’oal

), and G, and the fact thaty, is a deterministic function = EfexWiak + op A Spp1 Ak | Fi] + (26)

of the information seiG,. Note how under UDP-like com- Ftrace(Sk+1Q) + Eler+1 | Fi] +

munication, differently from TCP-like, the error covaran +7 min (u;@(Uk+B'Sk+1B)uk+2u§€B'Sk+1Aﬁk‘k)
U

P11, depends explicitly on the control inpuf,. This is the

main difference with control feedback systems under T&e-liwhere we used Lemma 1(c) to get the third equality, and

protocols. Equation (8) to obtain the last equality. The value function
is a quadratic function of the input, therefore the minimize

can be simply obtained by solvin@X—’; = 0, which gives

Equation (25). The optimal feedback is thus a simple linear

The correction step is the same as for the TCP case:

Trerfeer = Eras Vet Keen When — Cligr) function of the estimated state. If we substitute the miméni
Peyiprr = Pepe — w1 K1 C Py, (19) back into Equation (26) we get:
A N
Kk‘-i-l - Pk:+1\kC/(CPk+l|kC, + R) 1a (20) Vk(l'k) = E[l‘;kak -+ x;A/Sk+1Axk ‘ Ik] -+

+trace(Sk+1Q) + Elck41 | Zi] —

where again we considered a time varying system wlith= DT , L, A
— U A" Sk+1B(Ug + B'Sp+1B) ™ B Spy1 AL

A and Cy, = v,C as we did for the optimal estimator under

TCP-like protocols. = ElzyWizk + 04 A'Ser1 Az —
—0xy A" Sy B(Ug+ B’ Sy BY ' B'Sa Axy, | Ti] +
V. OPTIMAL CONTROL UNDERTCP-LIKE PROTOCOLS Ftrace(Sk+1Q) + Elewr | Ze] +

+ trace(A'Si1 B(Ux+B'Sia B) ™' B Spi1 Paji
Derivation of the optimal feedback control law and the (A4S B b B) bt Fige)

corresponding value for the objective function will followwhere we used Lemma 1(b). Therefore, the claim given by
the dynamic programming approach based on the cost-tofgguation (22) is satisfied also for time stefor all x;, if and

iterative procedure. only if the Equations (23) and (24) are satisfied. ]
Define the optimal value functioki, () as follows: Since Jy (Zg, Py) = Vo(xo), from the lemma it follows
that the cost function for the optimal LQG using ACK-based
V(zx) A Elz’y Wy | Fy] protocols is given by:
Vi(zy) 2 ming, B[z, Wiz + v, Ugup+ (1) J% = By SoTo + trace(SoPo) + YN ! trace(Sky1Q)+ @)
Vit 1 (@p41)[Fk]- + 30, trace((A'Sr1A + Wi — Si)E, [Prji])
wherek = N —1,..., 1. Using dynamic programming theorywhere we used the fa&[x(,Syxo] = Z(SoTo + trace(SoFp),
[36], one can show thaliy, = Vy(zo). Under ACK-based andE,[-] explicitly indicates that the expectation is calculated
protocols the following lemma holds true: with respect to the arrival sequen¢ey }.

Lemma 5.1: The value functionV}(z;) defined in Equa- It is important to remark that the error covariance matrices
tions (21) for the system dynamics of Equations (1)-(3) mnd@P,f‘k}}CV:O are stochastic since they depend on the sequence
ACK-based protocols can be written as: {7 }. Moreover, since the matrif, ;41 is a nonlinear
, function of the previous time step matrix covariangg;,, as

Vi(zr) = B 23 Spen | Fi] +en, k=N,...,0  (22) can be observed from Equations (11) and (15), the exact ex-
where the matrixS), and the scalar;, can be computed Pected value of these matricds, [Py, cannot be computed
recursively as follows: analytically, as shown in [3_3]. Hovv_e_ver, they can be bounded

by computable deterministic quantities, as shown in [38irfr
Sy = A'Si 1 A+Wy — which we can derive the following lemma:
DA S B(B'Sun BAUW ' B'Su A (23)  Lemma5.2([33]): The expected error covariance matrix

E. [P .| satisfies the following bounds:
c, = trace ((A’SkHA + Wy — Sk)Pk\k) + oy [Pr) k] g
Ftrace(Sk+1Q) + Elcxtr | Fi (24) P < By [Ppi] < Pag VE > 0, 28)



where the matrices‘s%,C andﬁk‘k can be computed as follows:was introduced by [38] and studied in [39], [33] and [21],
~ ~ , where the nonlinear operatdk(-) is defined as follows:
Poiie = APy A +Q — A
— "yAPk‘k,,lC'(CPk‘k.,lC'+R)710Pk‘k.,1A' (29) H(SvAaBaQ»Rv V) = AILSLA—’— W— (36)
~ ~ —vA'SB(B'SB+U) 'B'SA
Py = Pyjr—1 — . _ _
_ 713k|k_10'(0f’k\k_10' I R)—lcﬁk‘k_l (30) !n particular, Equation .(23), I.69% 11 = H(Sk,A,B,W_, U,v), .
B (1_ AR v 31 is the dual of the estimator equation presented in [33], i.e.
krik = ( _Y)~ kp-1 4+ Q (31) Py =1I(P,, A',C",Q, R,7). The results about the MARE
Pug = (1=7)Prjp— (32)  are summarized in the following lemma
Lemma 5.4: Consider the modified Riccati equation defined
iar& Equation (36). LetAd be unstable(A, B) be controllable,
and (A4, Wz) be observable. Then:

(@) The MARE has a unique strictly positive definite
solution S, if and only if v > v., wherev, is the critical

where the initial conditions ar@mo = ?OIO = P.

Proof: The argument is based on the observation th
the matricesP; ), and Py, are concave and monotonic
functions of P;—,. The proof is offered in [33] and is thus

omitted. _ o n arrival probability defined as:
From this lemma it follows that also the minimum achiev-
able costJy,, given by Equation (27), cannot be computed v 2 inf{l0<v<1|S=1IS, A B,W,U,v),S > 0}.
analytically, but can bounded as follows: v
TR <IN S IR (33) (b) The critical probabilityv. satisfy the following ana-
JWeT = 70 SoZo +trace(SoPo)+ZkN;étrace(Sk+1Q)>+ (34) lytical bounds:
+ X0 trace ((A'Sua A+ Wi — 5P Prmin < Ve < Pas
, A
J = 26S0Z0 +trace(SoPo)+Ef€\:étrace(sk+1Q)+ Dmin =1 — m

N—-1 / D (35) A
+> ., trace ((A Skr1 A+ Wy — Sk)Pk‘k) Prmas = 1 — W
where A\¥(A) are the unstable eigenvalues .4f More-
over, v. = pmin When B is square and invertible, and

Ve = Pmaz When B is rank one.
(c) The critical probability can be numerically computed

The results derived above can be summarized as follows:
Theorem 5.3: Consider the system (1)-(3) and consider the
problem of minimizing the cost function (5) within the clasfs

admissible policies., = f(F}), whereF; is the information via the solution of the following quasi-convex LMIs
available under ACK-based schemes, given in Equation (4). optimization problem:
Then: ve = argmin, ¥, (Y,Z) >0, 0<Y <1I.
(a) The separation principle still holds for ACK-based v, (Y,Z) =
communication, since the optimal estimator, given by Y ) V(YA + ZB') V1 —vY A’
Equations (9),(11),(12),(14) and (15), is independent of = W%A@Z) 15 3

the control inputuy,.

(b) The optimal estimator gait;, is time-varying and
stochastic since it depends on the past observation arrival (d) If v > v, thenlim, ., S = S, for all initial
sequencey; }h_,. conditionsSy > 0, whereSy, 11 = II(Sy, A, B,W, U, v).

(c) The optimal control input, given by Equations (25)he proof of facts (a),(c), and (d) can be found in [33]. The
and (23) with initial conditionSy = Wy, is a linear Proofv. = pm,:, whenB is square and invertible can be found
function of the estimated statdy;, i.e. uy, = Lydy, N [38], and the proot. = pya, whenB is rank one in [21].
and is independent of the process sequercgsy }. In [33] statistical analysis of the optimal estimator was

The infinite horizon LQG can be obtained by taking th&iven, which we report here for convenience:
limit for N — 400 of the previous equations. However, Theorem 55 ([33]): Consider the system (1)-(3) and the
as explained above, the matricé®,;,} depend nonlinearly optimal estimator under ACK-based protocols, given by Equa
on the specific realization of the observation sequefigg, tions (9),(11),(12),(14) and (15). Assume that,Q2) is
therefore the expected error covariance matriggsP,, ;] and controllable, (A, C) is observable, and! is unstable. Then
the minimal COSTJ}(T cannot be Computed ana|ytica||y and ddhere exists a critical observation arrival probablw such
not seem to have limit [33]. Differently from standard LQ@hat the expectation of estimator error covariance is bednd
0pt|ma| regu|at0r [37], the estimator gain does not Comerg and Only if the observation arrival probablllty is greatban
to a steady state value, but is strongly time-varying due tge critical arrival probability, i.e.
its dependence on the arrival procgss }. Moreover, while . [Poe] < M VE iff 5> .

the standard LQG optimal regulator always stabilizes the . " . . )

original system, in the case of observation and control mclnghereM is a positive definite matrix possibly dependent on

losses, the stability can be lost if the arrival probateifiti o Moreover, it is possible to compute a lower and an upper
' y ca _ pre bound for the critical observation arrival probability, i.e.

v,7 are below a certain threshold. This observation comgs,. < ~, < ~,... < pmaes, Where:

from the study of existence of solution for a Modified Riccati A .
Algebraic Equation (MARE)S = I1(S, A, B, W,U,v), which ~ Vmas = inf{0 <y < 1 [P =TI(P, A", ", Q, R, y), P 2 0)},



wherep,,;» andp,,.., are defined in Lemma 5.4. A = /T=7A. Such solution clearly exists singgl — 7 <

The proof of the previous theorem can be found in [33]. pin = o |1>\,”(A)| and thus the matriXd is strictly stable.

Using the previous theorem and the results from the prgrom Equations (30) and (32) it follows thiiiy,_. ;.o 13k|k _

vious section, we can prove the following theorem for t =T B —1P . _
infinite horizon optimal LQG under ACK-based protocols: hﬁm_ ﬁ)fooC,;\I(s?ljlz,iijg‘k+?§in?:jf:gzlmSZ|kFT
Th_eorem 56 Consllder the same system as defined in Wweally frorrC;O Equations (33) - (35) and the previous observetio
previous theorem with the following additional hypothesi
Wy = W, = W and U, = U. Moreover, let(A, B) and
(A,Qz) be controllable, and letA, C) and (4, Wz) be ob-
servable. Moreover, suppose that- v. andy > ..., where

. . , VI. OPTIMAL CONTROL UNDERUDP-LIKE PROTOCOLS
Ve and .. are defined in Lemma 5.4 and in Theorem 5.5, i ) i
respectively. Then we have: In this section, we show that the optimal LQG controller,

(a) The infinite horizon optimal controller gain is constanﬁgnder UDP.'“ke communlcatlo.n protocols, is in genenaﬂ. a
inear function of the state estimate. Consequently, egton
lergO Ly = Lo =—(B'SeB+U) 'B'SxA (37) and controller design cannot be treated independently. For
o ] ) ] ] this, we construct a counter-example considering a simple
(b) The infinite horizon optimal estimator gaifi, given  gcaiar system and we proceed using the dynamic programming

by Equation (15), is stochastic and time-varying Sincgpproach. Consider the scalar system whdre= 1,B —
it depends on the past observation arrival sequenge~ _ LWy = W, = 1,Uy = O,R = 1,Q = 0.

Sollow the claim.
| ]

k . .
{3 )=1- . Analogously to the TCP case, we define the value function,

(c) The 'egp.ected m|n|mu.m cost can be bounded by ™9 (z1,), as in Equations (21) where we just need to substitute
deterministic sequences: the information sefF;, with G;,. Fork = N, the value function

1 min 1 1 is given byVN(IN) = E[I/ WyzN | Q’N] = E[I’2 | Q’N] For
- < _JF < _— jmax N N
N‘]N = N‘]N— N‘]N (38) k= N —1 we have:
where J*", Ji* converge to the following values: Vn_i(zy_1) = Elvml E[z%_, + Va(zn) | Gn-1]
max A . 1 max .7
S IR = i (El2oh |G- +
- tracf((AISwf W= Sw)(fw N +uk g+ 20uN 1B N1 N—1),
—JPsC'(CPxC' 4+ R) " 'CPx)) + _
where we used the independencevgf | andGy_1, and the
+trace(S-Q) . L . - .
A , 1o fact thatuy_, is a deterministic function of the information
Joo = NLHEOO NJN setGy_1. The cost is a quadratic function of the inpLy_1,

B _ , ~ therefore the minimizer can be simply obtained by finding
= (1 —79)trace ((A Soc A+ W — S°°)P°°) T % = 0, which is given byuy_; = —Zn_qn_1. If we
Ftrace(SeQ), substitute back:}, , into the value function we have:

and the matricesS,., P.., P, are the positive definite

h . . VN _1) = E[222 1] — vz
solutions of the following equations: Noi(ena) 225 1[Gy 1] = PEy_y vy

= E[(2—0)aX_1|Gn-1] + "Pn_1|n_1

oo = A,SOO,A W . 1 where we used Lemma 4.1(b).
_ 7ZA ij’B(B SoB+U)" B'S0d Using the previous equations we proceed to compute the
Poo = APcA'+Q— _ value function fork = N — 2:
—5 AP C'(CPoC’ + R) 'CP A
P = (1-9)AP A +Q Vv-2(en—2) =
= min B[z} o+ VN-1(zn-1) | Gn 2]
Proof:  (a) Since by hypothesisy > 1., from =E[3 - 2)a_5 | Gn-o] + 7 + PPy _on_2 +

Lemma 5.4(d) follows thatimy_, -~ Sk = So. Therefore

(1 —~)Pn_oN—
Equation (37) follows from Equation (25). +7( V)PN—2iN—2+

(b) This follows from the dependence on the arrival se- -+ min (17(2 — D)ui_y +20(2 — V)UN—2ZN_2|N—2
quence{y; } of the optimal state estimator given by Equations ZV_Z - o
(9),(11),(12),(14) and (15). 77 (1 =) (1 = )uy_p +

(c) Equation (29) can be written in terms of the MARE + oy 1 ) (39)
as Py = H(Pyp—1, 4", C",Q, R,), therefore sAince*y > Py_on—o+0(1—p)ug_,+1
Ymae from Lemma 5.4(d) it follows thatimy .o Prjx—1 = Detailed derivations of previous equations can be found in
P, Where P is the solution of the MAREP. = [40]. The first three terms within parenthesis are convex

(Poo, A',C", Q. R, 7). AlsOlimy, 4o Pyi—1 = P, Where quadratic functions of the control inputy_, however the last
Pyjk—1 is defined in Equation (31) an®,, is the solu- term is not. Therefore, the minimizer;,_, is, in general, a
tion of the Lyapunov equatiol®,, = AP, A’ + Q, where non-linear function of the information séf.. The nonlinearity



of the optimal controller arises from the fact that the cotican VII. NUMERICAL EXAMPLES

error covariance matriky1jx+1 is @ non-linear function of |, this section we show some applications of the theoretical
the innovation error covariancg}. ., as it can be seen in,q5 developed in the previous sections to evaluate thierper

Equations (19) and (20). The only case WhBR, k41 1S mance of typical control systems for different communizati
linear in ;.11 is when measurement noise covariaite: 0 rchitectures and protocols.

and the observation matri€ is square and invertible, from
which follows that the optimal control is linear in the estited
states. It is important to remark that the separation placi
still does not hold even for this special case, since therobnt
input affects the estimator error covariance.

We can summarize these results in the following theorem:

Theorem 6.1: Let us consider the stochastic system defined
in Equations (1) with horizonV > 2. Then:

(a) The separation principle does not hold since the esti-
mator error covariance depends on the control input, as
shown in Equation (18).

(b) The optimal control feedbacly, = g;:(Gx) that min-
imizes the cost functional defined in Equation (5) under
UDP-like protocols is, in general, a nonlinear function of
information setgy.

(c) The optimal control feedback, = g;(Gy) is a linear
function of the estimated statgy;,, i.e. ur, = LTk,
if and only if the matrix C is invertible and there is
no measurement noise [40][32]. In the infinite horizon
scenario the optimal state-feedback gain is constant, i.e.
L; = L%, and can be computed as the solution of a

convex optimization problem. A necessary condition f

stability of the closed loop system is:

C)Igig. 3. Photo of Pendubot. Courtesy of Mechatronic Systents, |

|AP(7 + 0 —290) < 5 + 0 — 290 (40) As a first example we consider the pendubot: a control
laboratory experiment consisting of two-link planar roladgth
where|A| = max; |A\;(A)| is the largest eigenvalue of thetorque actuation only on the first link as shown in Fig. 3.
matrix A. This condition is also sufficient iB is square We are interested in designing a controller that stabilizes
and invertible [40]. the pendubot in up-right position, corresponding to urlstab
Proof: (a) This statement clearly true by inspectingquilibrium pointf; = —7/2, 65 = 0, where the angleg,, 6,
Equation (18), since the definition of separation betweete defined as shown in Fig. 3. We address the interested reade
control and estimation the error estimate must not depetwl[41] for more details and references on the pendubot. The
on the input. (b) This claim was proved by the previoustate space representation of the system linearized abeut t
counterexample. (c) As the proof of this claim is long anthe unstable equilibrium point and discretized with sangli
rather technical we moved it to the Appendix for the intezdst period T, = 0.005[s] is given by:

reader. [ |

A graphical representation of the stability bounds are show 1003051 (1)‘88? 000%)5 8.888 g.g%
in Figure 2, where we considered a scalar system with pata— 0001 0000 1001 0005 | B=1 Z0.002
meters|A| = 1.1. For the same system we hayg,;, = —0.375 —0.001 0.590 1.001 ~1.066

Pmaz = 1 — 1/|A]? = 0.173, therefore the critical probability

for the TCP-like protocols isy., = v. = pmin as stated O = [ (1] 8 (1) 8 } R= { 0-%01 0801 } U =2
in Theorem 5.5. The stability bound for UDP-like protocols ’
of Equation (40) is stronger than a similar bound recently 0.003 5 0 0 0
e nonineatty of the . Q== | gl fw=] 841
e nonlinearity of the input feedback arises from the fact 92150 00 0 1
that the correction error covariance matfx, ; ;4 is a non- ) )
linear function of the innovation error covarianég, ;. The where z = [66;,06,,00,,00,]" and 60;(t) = 6,(t) — 6;.
only case whenP; ;41 is linear in P, is when R = The matrix A has two stable and two unstable eigenvalues

0 and C' = I, from which follows that the optimal control eig(A) = (1.061, 1.033,0.968,0.941). It is easy to verify that

is linear in the estimated states. However it is important tbhe pairs (4, B) and (A,Q) are controllable,(A,C) and
remark that the separation principle still does not hold¢csi (A, W) are observable, an& > 0, as required by the as-
the control input affects the estimator error covariance. sumptions of the theorems presented in the previous section
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We first compare the performance of the closed loc

. . 400 ‘
controller for two different control architecture, as show
in Fig. 4. In the first scenario we consider actuators wit  ssof colocated contr. |
[Tooommmm---- 300
i COLOCATED,
1 1
YVt Yt . uf Actuator + L(_:Q_N_T_ISQ_L _L_lgl_{_' 250
Optimal
Plant +
Controller Yt
Sensor J 200
00
COMM. NETWORK vt 150}
v =€Z_, =1 =11
| ‘/\ =0 100}
0
50+
TtYt 0 ) ) ) )
0 0.2 0.4 __ 06 0.8 1
: REMOTE ! v=y
vius Actuator + i-(-jE)—N—T—IEQ—L —IiF:lSu: . L .
1 Plant + Yt Fig. 5.  Upper bounds/Z2%* for the minimum cost with respect to two
Sensor different controller locations under TCP-like protocotmntroller colocated
with the actuator equivalent to TCP-like performance with, = 7 and
COMM. NETWORK vy Deq = 1 (thin solid line) and c_ontroller Io<_:ated _rer_notely fror_n the actuator
=0}, =1 =11 and connect by a communication netwotli¢k solid line). Cost is calculated
|\/L =0 forv =4.
0
ug . . . . .
! Optimal i.e. R = 04%4. Again we assume independent lossy links with
Controller Wt the same loss probability = 5. Fig. 6 shows the upper bound

of minimum costJ2** under TCP-like protocols calculated
as in Theorem 5.6 and the minimum cok}, under UDP-
like protocols calculated as described in Theorem 8.5 in the
Appendix. The TCP-like communication protocols give bette

Fig. 4. Different controller placement: colocated with thetuator {op) and
remote bottom).

no computational resources, therefore the controller rbast

implemented remotely and the control input is transmitted 140 \ :
the actuator via a lossy communication link which adopt Jop e
TCP-like protocol. We also assume that the communicatit 120y 1

links between the sensors and the controller and betwe
the controller and the actuator are independent and have
same arrival probability, i.ev = 7. In the second scenario
we consider the use of "smart” actuators, i.e. actuatorb wi 3
sufficient computational resources to implement the odtim  ®g!
controller. In the scenario where the controller is coledat
with the actuator it is equivalent to the TCP-like optima a0}
control with observation arrival probability., = vy = 32
(series of two independent lossy links) and control arrivi 201
probability 7., = 1 (no communication link). Fig. 5 shows
the upper bound for the minimum infinite horizon cogf** 0 0.2 04 _ _ 06 0.8 1
defined in Theorem 5.6. The colocated controller clear V=
outperforms the performance of the remote controller. This
is to be expected as the colocated controller can compendage6. Minimum costJ under two different communication protocols:
for observation packet with an optimal filter and there is nb-F-1ike thin solid line) and UDP-like thick solid line).
control packet loss. The remote controller, on the othedhan
can compensate only for the observation packet loss, but wontrol performance than UDP-like, however this comes at th
for the control packet loss. Therefore, if possible it isa price of an higher complexity in the protocol design. Once
more effective to place the controller as close as possibleagain tradeoffs between performance and complexity appear
the actuators. As a final example we consider a different compensation
As a second example we compare the performance undeproach at the actuator site when no computational ressurc
the TCP-like and UDP-like protocols, as shown in Fig. 1. Ware available. In this paper we chose to apply no control vehen
consider the pendubot above with the additional assumgptiarontrol packet is losty¢ = 0. We call this approach zero-input
of full state observation, i.eC' = l4«4, and no sensor noise, strategy. Another natural choice is to use the previousrobnt

100

80
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input if the current is lost, i.euf = uf_, [11]. We call this as the average cost over 10000 runs with initial condition
second approach hold-input strategy. Fig. 7 gives a paltoricy = 2,u§ = 0. Note that the empirical optimal gain
representation of these two strategies. We consider a varyd the theoretical optimal gail} for the zero-strategy

are consistent. Surprisingly, the zero-input strategy oy
(= ————

. I
I Zero-input |
I Strategy 1 220 : —— ‘
Plant | _g_y.. u =u _ hold-input
a c 200+ ko k-l
U = Vgug a u=0  zero-input
$k+1 = Axk + Buk 180}
— s 160
v =0 ve =1 Controller k
140t
Q
c L
s R 2 g
O u k ™ 100t
80
r—=—=---- 60
I Hold-input :
IL Strategy | 401
Plant =-=-=----= 20t ‘ ‘ ‘ ‘ ‘ ‘ ‘
uf = vgu§ + (1 — v )uf_, -18 -16 -14 -12 -1 -08 -06 -04
tpy1 = Azg+ Bug feedback gain L
Z! _ v, =1 xk Fig. 8. Empirical cost for different values of the feedbackngd., and L,
vg =0 Controller for the zero-input strategythin solid line) and hold-input strategyttick solid
| line).
c __ .
w0 - ul up = Lpxy
k—1 k

gives a comparable performance with the hold-input styateg
but it appears to perform better both in terms of minimum
Fig. 7. Compensation approaches for actuators with no coripnzh  achievable cost and in term of robustness with respect to
resources when a control packet is lost: zero-input approgic= 0 (1p)  feedback gain sensitivity. This is only an example and frth
and hold-input approach§ = uf_, (bottom). . . e .
rigorous analysis needs to be performed to verify if this is
a general result. Nonetheless the zero-input strategy #&ra f
simple scalar unstable system with parametérs 1.2, B = approach and it is based on the observation that in a stable
C =1,W =U =1 and no process and measurement noisgosed loop system driven by gaussian noise with zero mean,
i.e. R = Q = 0. We also assume there is only control packetiso the input to the plant is gaussian with zero mean, thezef
loss with arrival probabilitys = 0.5 and no observation packetusinguj; = 0 when a packet is lost is like using an unbiased
loss, i.e7 = 1. Since there is no observation loss and there @&stimate of the inputj generated by the remote controller.
full state observation with no measurement noise, the @tim
control must necessarily be a static feedback and no filter is  V[Il. CONCLUSIONS ANDFUTURE DIRECTIONS
necessary. The dynamics of the closed loop with zero-input

. In this paper we have analyzed the LQG control problem
strategy can be written as follows: pap y Q b

in the case where both observation and control packets may

Tp41 = Axp+ Buf be lost during transmission over a communication channel.
(3 = vpuy (41) This situation arises frequently in distributed systemsemh
ug; = L.z sensors, controllers and actuators reside in differensiphy
and the dynamics for the hold-input strategy as locations and have to rely on data networks to exchange
information. We have presented analysis of the LQG control
xlgﬂ = A%’kc‘F Bug, u problem under two classes of protocols: TCP-like and UDP-
up = veug + (1= v)ugy (42) Jike. In TCP-like protocols, acknowledgements of sucagssf

Uk = Lnwy transmissions of control packets are provided to the ctetro

We compare the performance in terms of the infinite horizomhile in UDP-like protocols, no such feedback is provided.
expected total cost, = E[> "7,z Wz + uf'Uug]. The  For TCP-like protocols we have solved a general LQG
optimal gain for the zero-input strategy can be computeohfrocontrol problem in both the finite and infinite horizon cases.
Equation (37) and is equal tb; = —1.02. However, the exact We have shown that the optimal control is a linear function
computation of this expected cost for the hold-input sgate of the state and that the separation principle holds. As a
cannot be computed analytically with the tools developembnsequence, controller and estimator design problems are
in this paper, therefore we resort to the computation of tliecoupled for these TCP-like protocols. However, unlilenst
empirical cost for a wide range of control feedback gairdard LQG control with no packet loss, the gain of the optimal
L. and L.. Fig.8 shows the empirical cost”*? computed observer does not converge to a steady state value. Rdtber, t
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optimal observer gain is a time-varying stochastic functicthe case when there is no measurement noise,fi.e= 0.

of the packet arrival process. Several infinite horizon LQGhese assumption mean that it is possible to measure the
controller design methodologies proposed in the litemtustatex;, when a packet is delivered. In this case the estimator
impose time-invariance on the controller, and are theeefoEquations (18)-(20) simplify as follows:

sub-optimal. In analyzing the infinite horizon problem, we
have shown that the infinite horizon cost is bounded if ang onl
if arrival probabilitiesy, 7 exceed a certain threshold. Thus,
the underlying communication channel must be sufficiently

reliable in order for LQG optimal controllers to stabilizeet By =1 (43)
plant. Priagrr = (1= Y%+1) Pryar

UDP-like protocols present a much more complex problem. = (1= ys1) (A Py A+ Q +
We have shown that the lack of acknowledgement of control +5(1 — 7) Bug, B') (44)

packets results in the failure of the separation principle. N
Estimation and control are now intimately coupled. We have BlPerip+1|0] = (1= 7)(A'PepAd +Q +

shown that the LQG optimal control is, in general, nonlinear +7(1 — 7) Buu, B') (45)
in the estimated state. As a consequence, the optimal ¢ontro

law cannot be determined explicitly in closed form, rendgri

this solution impractical. In the special case where théesta

noisej i.e.,,R = 0), the .optimal control is indged linear. Thist, and we used the fact tha}, ,, is a deterministic function
special case can be viewed as one where it becomes possiplg, .

to deduce whether or not the control packet was successfully

transmitted. We have exhibited that the LQG optimal solutio As was done in the analysis of optimal control under TCP-
in this special case. We have shown that the the set of arrilige protocols, we claim that the value functidiy’(z) can
probabilities”, 7 for which the infinite horizon cost function be written as follows:

is bounded is smaller than the equivalent set for TCP-like
protocols. However, for moderate packet loss probalslities
performance of these two classes of protocols is comparable
This makes the simpler UDP-like-like protocols attractioe
networked control systems.

To fully exploit UDP-like protocols it is necessary to have a
controller/estimator design methodology for the geneeslec
when there is measurement noise and under partial state
observation. Although the true LQG optimal controller fofor kK = N,...,0. This is clearly true fork = N, in fact we
UDP-like protocols is time-varying and hard to compute, wlave:
might choose to determine the optimal time-invariant LQG
controller. Although this is a suboptimal strategy, we &edi
that this controller can be determined explicitly, rendgri
|mplen.1entat.|on sm’_np!g and computationally effective. We a Vn(zy) = EleyWyzy|Gn]
exploring this possibility.

We have shown that underlying communication protocols
intimately affect the overall performance of networked tcoh
systems. For example the separation principle of LQG optima
control, a milestone in classical control theory on whicmgna
modern controller design techniques rest, does not hold ithere we used Lemma 4.1(b), therefore the statement is
general for networked control systems. This suggests thatisfied bySy = Wy, Tn = Wx, Dy = 0. Note that
controller design needs to be substantially reconsideoed Equation (46) can be rewritten as follows:
such systems. A second implication of our work is that con-
troller design and communication protocol design are kght
coupled. This suggests that communication protocols tadge
to networked control systems need to be developed.

Vie(zk) = :%;WS';C:EW +trace(TkPk‘k.) +tracd D Q)(46)

= JAJ?V‘NWNi‘N‘N + trace(WNPN‘N)

Vk(l‘k) = E[a:;Ska:k\gk]thrace((Tk—Sk)PHk) +trace(DkQ)
APPENDIX. PROOFS
A. UDP-like special case: R=0 and C invertible

Without loss of generality we can assurfie= I, since the where we used once again Lemma 4.1(b). Moreover, to

linear transformation = C'z would give an equivalent systemsijmplify notation we definef, 2 (T}, — Si). Let us suppose
where the matrixC' is the indentity. Let us now considerthat Equation (46) is true fde-+1 and let us show by induction



it holds true fork:
Vie(zk)

minE[m;kak + Vku;Ukuk + Vk+1(xk+1) | gk}
ug

min (E[x;kak + vl Upur, + g1 Sk412Th41 +
uk

+tracq Hy 1P y1jps1) + tracg Dy 11Q) | Gi])
E[x;(Wk—i—A’SkHA)mMgk]+trace(Sk+1Q)+
—|—(1—7y)trace(Hk+1 (A/Pk|kA+Q))+traCE(Dk+1Q)+

—|—n£cn (DuﬁgUkuk —|—17u§€B/Sk+1Buk +
+20uy, B' S A&+
+(1-p)(1 fﬁ)trace(Hk.HBuku;B/))
E[zg (Wi +A' S Az |Gr] +

+trace((Disi +(1-7) Hen ) Q) +
+(1—7)trace(AHpp A" Pyj) + tracg Sk Q) +

7 min (uf, (Ui + B (Siea + (1=7) (1-7) Hie ) B) s +
+2u},B' St At )

(Wi + A'Sep1 A)d +

+trace((Dist +(1=7) T +7Sk1)Q) +

+trace((Wk+"yA'Sk+1A+(1—"y)ATk.HA’)PHk) +

+v n&in(u; (Ur+B'(1—@&) Sk + T ) B)ur+

+2u;cB/Sk+1A:i‘k\k)7

where we defined = (1 —7)(1—%), we used Lemma 4.1(c)
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The optimal minimal cost for the finite horizon/y,
Vo(zo) is then given by:

N
Jy = EgSofo—l—trace(S’oPo)—f-z trace(((l—'?)Tk+’75k) Q)

k=1 (52)

For the infinite horizon optimal controller, necessary and
sufficient condition for the average minimal cost, =
limpy 400 %J]*V to be finite is that the coupled iterative
Equations (49) and (50) should converge to a finite value
Se and7T,, as N — +oo. In the work of Imeret al. [32]
similar equations were derived for the optimal LQG control
under UDP for the same framework with the more stringent
conditions@ = 0 and B square and invertible. They determine
necessary and sufficient conditions for those equations to
converge. However, these conditions are invalid in the ggne
case whenB in not square. Below we prove a number of
lemmas and theorems that will allow us to derive stronger
necessary and sufficient conditions even fbnot necessarily
square and invertible .

Lemma 8.1: Let S,T ¢ M = {M € R""|M > 0}.
Consider the operator®®(S,T), and ®7(S,T) as defined
in Equations (49) and (50), and consider the sequences
Sk+1 = @S(Sk,Tk) and Tk+1 = (I)T(Sk,Tk) Consider
Lsp=—U+B(1-a)s+ o‘zT)B)le’SA. operators

Then the following facts are true:

to get the second equality, and Equations (8) and (45) to get (a)

the last equality. Since the quantity inside the outer paesis

is a convex quadratic function, the minimizer is the solutio

of Y& = 0 which is given by:
uj :—(Uk+B’((1—a)skﬂ+aTH1)B)13’SMAg:~M 47)
(48)

which is linear function of the estimated statg,. Substitut-
ing back into the value function we get:

Vi(wk) (W + A'Sep1 A)d +
+trac(Dr+1 + (1 = ) Thr1 + 7Sk41)Q) +
"‘trace((Wk+A/Sk+1A+(1—’7)AT1€+1A')PW€) -

Lk &k

— 0@y A Skp1BLpd gk

T (Wi +FA S 1 A — 2 A’ S 1 BLi )i +
+trace((Dir1 + (1 — ) Ths1 + YSk4+1)Q) +
ttrace( (Wi + A'Sks1 A + (1 = 7)AThks1 A) Py,

where we used Lemma 4.1(b) in the last equality. From the

Y(S,T,L)=(1— %) A'SA+ W+
12 (A4 (1—a)BL)'S(A+ (1 —a)BL)+
+vL'UL + val’ BTBL
(b) ®9(S,T) = ming, Y(S,T, L)
(€ 0<Y(S,T,Ls7) = ®5(S,T) < Y(S,T,L) VL
(d) If Spy1 > Sk andTyyq > Ty, thenSi o > Siy1 and
Tit2 > Ty
(e) If the pair(A,W1'/2) is observable and = ®°(S,T)
andT = ®7(S,T), thenS > 0 andT > 0.
Proof: Fact (a) can be easily checked by direct substitu-

tion.
(b) If U is invertible then it is easy to verify by substitution
that

T(S,T,L)

(8, T) +
+z7(L—L§,T)’(U+B’((1—a)S+a7)B)(L—L§7T)
(S, T)

last equation we see that the value function can be written
as in Equation (46) if and only if the following equations are (c) The nonnegativeness follows form the observation that

satisfied:
Sp = A'SjiA+ Wy — DA’SkHB(Uk +
1
+B' (1 — @)Spr1 + aThs1) B) B'Sj A

= @7, (Skr1, Tir1) (49)
Ty = (1=NAT1 A+ FA Sk A+ Wy

= @7, (Sks1, Tht1) (50)
Di = (1 =%)Tk+1+3Sk+1 + Dis1 (51)

T(S,T,L) a sum of positive semi-definite matrices. In fact
(1-:Z) = % >0and0 < a < 1. The equality
Y(S,T,L% ) = ®9(S,T) can be verified by direct substitu-
tion. The last inequality follows directly from Fact (b).

(d)

Sk = P¥(Ski1, Thr1) = T(Ski1s Thov1s L, 1)
> V(S Te Ly, 1)) 2 XS T Ly 1)
= O5(Sk, Ti) = Skt1

Tir2 = T (Sks1, Thy1) = T (Sk, Ti) = Tt
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(e) First observe that S=®9(S,7)>0 and for all time k, ie. the sequences are monotonically
T =®7(S,T) > 0. Thus, to prove thatS,T > 0, we increasing. These sequences are also bounded, in fact
only need to establish tha$, T are nonsingular. Suppose(V, < S),(Zy < T) = (Vi = Y(0,0,L) < Y(5,T,L) =
they are singular, the there exist vectorst v, € N'(S) and S),(Z;, = @7(0,0) < ®7(S,T) = T) and the same
0 # v € N(T), i.e. Sus = 0 and Tv; = 0, where A/(-) argument can be inductively used to show that< S and
indicates the null space. Then Z, < T for all K. Consider now the sequencés, Ty as

oy xS oy " defined in the theorem initialized witl, = 7y = 0. By
O; 1&5;1& ;71)};?14,(51’422)‘? 1711/)[;3(53’ Lsr)vs direct substitution we find that; = W > 0 = S, and
L—a/7s s T, = W > 0 = T,. By Lemma 8.1(d) follows that the
wherex indicates other terms. Since all the terms are positiggquencesS;,, 7, are monotonically increasing. Moreover,
semi-definite matrices, this implies that all the term must thy Lemma 8.1(c) it follows tha(S, < Vi, Ty < Zi) =

zero: (Spp1 = D5(Sk, Tx) < Y(Sk, T, L) < Y(Vi, Zy,L) =
v, A'SAvy = 0 = SAv, = 0 = Av, € N(S) Vig1), Tepr = @T(Sk,Th) < ®T(VioZk) = Zisa).
VW, = 0= W20, =0 Since this is verified fork = 0, it inductively follows

) . . that (Sx < Vi, Tk < Zi) for all k. Finally since Vy, Zj
As a result, the null spacd/(S) is A-invariant. Therefore, are bounded, we have thas, < S,T, < 7. Since

N(S) contains an eigenvector of, i.e. there exista: # 0 ., T.) are monotonically increasing and bounded, it
such thatSu = 0 and Au = ou. As before, we conclude follows that lLim S, — S and lim T — T

_ .. . . . k—oo Pk 00 k—oo Lk 001
that Wff;oi This implies (using the PBH test) that the pa,'{;vhere Seo, T, are semi-definite matrices. From this
(4, W 7%) IS not observa_\ble, contradicting the hypothesqt easily follows that these matrices have the property
Thus,N'(S) is empty, proving that > 0. The same argumentSOo = 05(S.,To), T = ®T(S.,T..). Definite
can be used to prove that al3b> 0. positiveness of S, follows from Lemma 8.1(e) using
the hypothesis that(4,W'/?) is observable. The same
argument can be used to prove that > 0. Finally proof
Y(S,T,L)= A'SA+W +20A'SBL+ of uniqueness of solution and convergence for all initial

oy (U +B'((1—-a)s+ dT)B)L conditions Sy, Tp can be obtained similarly to Theorem 1 in
(53) [33] and it is therefore omitted.

Assume that the pairéA, W'/2) and (A, B) are observable
and controllable, respectively. Then the following stagets
are equivalent:

(@) There exist a matrix, and positive definite matrices

Lemma 8.2: Consider the following operator:

(b)=(a) This part follows easily by choosing = LS 1.
where L* is defined in Lemma 8.1. Using Lemma 8.1(c) we
have 5o = ®9(Sac:Toc) = Y(Seo,Tso, L), therefore the

& and T such that: statement is verified using = S, andT = T.. [ ]
S>0 T>0, 8S="(5,1T,L), T=2T(51T)
(b) Consider the sequences: Lemma 8.3 Let us consider the fixed points of Equations

(49) and (50), i.eS = ®3(S,T),T = ®7(S,T) whereS, T >

0. Let A be unstable. A necessary condition for existence of
where the operator®(-), ®7(-) are defined in Equations solution is

(49) and (50). For any initial conditiosy, 7, > 0 we

have

Spi1 = P (Sk, Tk), Try1 = T (Sk, Th)

khm Sk = Som klim Tk = Too

andS.., T, > 0 are the unique positive definite solution
of the following equations AP +7—290) <3+ 7 — 70 (54)

Seo = D9 (S0, To);, Too = BT (See, Tio)

Proof: (@=() The main idea of the proof
consists in proving convergence of several monotonic
sequences. Consider the sequendés. = T(Vk,Zk,E)
and  Zy1 = ®7(Vi, Zp)  with initial  conditions where |A] £ max; [\;(4)| is the largest eigenvalue of the
Vo = Zo = 0. It is easy to verify by substitution that matrix A.
Vi=W+pL'UL>0=1, and Z;=W >0=2%,.
Lemma 8.1(a) shows that the operaf6(V, Z, i) is linear Proof: To prove the necessity condition it is sufficient
and monotonically increasing i and Z, i.e. to show that there exist somg initial conditioﬁ@]j“g > 0 for
(Viers = Vi, Ziosr > Z1) = (Views > Vierts Zoso > Zios1)- which the sequence, 1 = ©°(Sk, Tk), Tk+1 = ©* (Sk, Tk)

Also the operator®”(V,Z) is linear and monotonically gcr)e gﬂggggg etﬁétlginé%_r)‘r%?ﬁm:—sl}igl&vgwhgsegkoi E(ZU?)S)

increasing inV" and Z. SinceVy > Vy and Zy > Zy, using and T, > t,vv’, wheresy, t, > 0, andv is the eigenvector
an induction argument we have thet.; > Vi, Zxo1 > Z,  corresponding to the largest eigenvalue 4f, i.e. A'v =



Amaz¥ @nd|Apaz| = |4’| = |A|. Then we have:

@S(Sk, Ty) > o° (skvv'7 tkvv')

Skt1 =
= mLin Y (spvv’, tgvv’, L)

= rnLin (skA/m/A + W + 2s,vA'vv' BL +

1Z + —a)spvv’ 4 atyov’
+7L/ (U + B'((1 - @)svv’ + atyov') B) L)

\%

mLin (sk\A|2vv' + 28k P Amazvt’ BL +

—&—DL'B'((I — o_c)skvv/ + o‘ztkvv')BL)

/ A 2ps? /

= min (sk\A|2vv _ Al wsi v+

L fk

€ Amansid + gikBL)'w'(AmazsiI + gikBL))
> sk|A\2vv/ — —|A|2Dsi !
- (1 —@)sk + aty
— 2 S 2. S Y
= Al (1 (1—a)sk + atk)w
= Sk+1’l)’l)/

where I is the identity matrix and$, = (1 — @)sy + atg.
Similarly we have:
OT(Sk, Ti) > ®T (spvv’, trvv')
(1 =)t Avv' A+ s, Ao A+ W
(1 = 3)ty| A%[0v" + Fsp| AlPv0!
= [AP((0 =)t +7s1)) oo
= tppov

Tkt

Y%

We can summarize the previous results as follows:
(Sk > spvv’, Ty, > trov') =
= (Sk+1 > Spp100", Thoyq > t_k+1U'U/)
ska1=0" (51, tr) = |A%sy (1 - (1—5;)/%»
terr =0 (sk,te) = |AP (1= 7)te + Tsr))
Let us define the following sequences:
Spi1=P%(Sk, Th), Thr1 =T (Sk,Tk), So=To=vv

Skp1=0"(Sk, )y i1 = &' (skstr),

Sk = sV, Ty, = tyov'

Sozt():l

From the previous derivations we have tiat> S, 7). > Tj

for all time k. Therefore, it is sufficient to find when the scalar
sequencesy, t; diverges to find the necessary conditions. It

should be evident that also the operatofss, ¢), ¢'(s,t) are

monotonic in their arguments. Also it should be evident that

the only fixed points of = ¢*(s,t),t = ¢'(s,t) ares =t =

0. Therefore we should be find when the origin is an unstabl

equilibrium point, since in this cademy_. ., sk, tx = co. Note
thatt = ¢'(s,t) can be written as:

t = @"(s,t) = (1= 7)|APt +7]APs
B _ AlAPs
= =TT Syap
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restricted mapz,1 = ¢(zk,¥(2;)) Is stable. The restricted
map is given by:

2k

Zk+1 = |A|2Zk 1—v

~ A2
(1 — @)Zk + @%Z}c

= AP |1- Y 2

_ _ ~ 2
(1 - O‘) + al_&‘f,‘:{)Az
p(1—(1—7)A?
_ |A|2 (1_ _ Ii( __( _’Y)| |_) )zk
Y+ —qv—v(l-7)AP
_ ( (1 - 7)|AP ) .
Y+ v —v—v(l—7) Al
This is a linear map and it is stable only if the term inside the
parenthesis is smaller than unity, i.e.

(1 — )| AP?
<7+v—w—l/(1 —v)AP) <!

Fy+v—g0—o(1—-7)AP >
F+o—q0 >

(1 —)| AP
AP (Y + 7 — 299)
which concludes the lemma. [ ]

Lemma 8.4: Let us consider the fixed points of Equations
(49) and (50), i.eS = ®3(S,T),T = ®1(S,T) whereS, T >
0. Let A be unstable(A, W'/?) observable and square and
invertible. Then a sufficient condition for existence ofigmn
is

A7+ —290) < 7+ — A0 (55)

where |A] 2 max; |A:(A)| is the largest eigenvalue of the
matrix A.

Proof: The proof is constructive. In fact we find a
control feedback gairl that satisfies the conditions stated in
Theorem 8.2(a). LeL. = —nB~'A wheren > 0 is a positive
scalar that is to be determined. Also consifer sI,T = t1,
wherel is the identity matrix and, ¢t > 0 are positive scalars.
Then we have

Y(sI,tI,L) = A'sA+W —2mA'sA+vA'B~ UB™'A+
+on” A'((1 — a)s + at) A
|A|? (s —2usn+v((1—a)s+ o"zt)nz)l +wl
= (s, t,m)I (56)
&7 (sI,tI) FA'sA+ (1 —3)AtA+W
< (AlAPs + (1= )AL +wl
< s, (57)

Wherew = |W + 7A’B~ ' UB~'A| > 0 and[ is the identity
matrix. Let us consider the following scalar operators and
s%quences:

©*(s,t,m) = AP = 20m+ o(1 — a)n?)s + van’t + w
o'(s,t) = FlAPs+ (1 —-F)|APt+w
Skr1 = ©°(Skytiy )y ther = @' (skytk), so=1to =0

The operators are clearly monotonically increasing, ity and

with the additional assumptioh— (1—7)A? > 0. A necessary sinces; = ¢*(so,t0,17) = w > so andt; = @'(sg,ty) =
condition for stability for the origin is that the origin ofw > tq, it follows that the sequences, ¢, are monotonically



16

increasing. If these sequences are bounded, then they must¥e can use the previous lemmas to prove the following
converge tos, t. Thereforesy, t;, are bounded if and only if theorems that states the properties of optimal control @r n

there exists, > 0 such thats = ¢*(3,%,1) andt = (5, 1).
Let us find the fixed points:

t= ¢'(51) =

- 3| Al? .

t= —— 5+ w;
1= (1=9)[A]?

2 T~ 5mar > 0. and we must have — (1 —

where w; T=(

7)|A|? > 0 to guarantee that> 0. Substituting back into the

operatory® we have:

ACK protocols in the special scenario with no measurement
noise and full state observation.

Theorem 8.5: Consider the system (1)-(3) and consider the
problem of minimizing the cost function (5) within the class
admissible policiesy, = f(Gi), whereG is the information
available under UDP-like schemes, given in Equation (4).
Assume also thakR = 0 andC' is square and invertible. Then:

(a) The optimal estimator gain is constant and in particular
K,=1ifC=1I.
(b) The infinite horizon optimal control exists if and only

,A|2

5= |APQ-20m+0(1—a)n? §+aan27‘7_§+
|A|"( ( n°) - (1- AP
+176n]2wt—|—w
|A|2<17217n+17<(175z)+

A2 (1—29n+97+”;7

yaAl? 2 -
) e
p=r(1=AAP o\
) St

wherew(n) 2 vam?w; +w > 0. For a positive solutiors to
exist, we must have(n) < 1. Sincea(n) is a convex function
of the free parametes, we can try to increase the basin of
existence of solutions by choosimg = argmin, a(n), which
can be found by soIvin@%(n*) =0 and is given by:

f_ (1= y)AP
47 =37 — (1= )[AP
Therefore a sufficient condition for existence of solutiane

given by:
2 —
e e e
(L R
J+v -7 —v(1—7)|AP
which is the same bound for the necessary condition qb;
convergence in Lemma 8.3.

If this condition is satisfied thedim,_... s, = 5§ and
limy_o tr = t. Let us consider now the sequencs =
sil, Tk = 1, Sk+1 T(Sk,Tk,i) and Tk+1
o7 (S, Ty), whereL = —*B~ 1A, Sy = T, = 0, and
sk, tr where defined above. These sequences are all monot(;%]-
ically increasing. From Equations (56) and (57) it follows
that(Sk < spl, Ty < tkI) = (Sk+1 =< Sk+1I,Tk+1 < tkI)
Since this is verified fok = 0 we can claim that), < 57 and
Ty, < tI for all k. SinceSy, T} are monotonically increasing [7]
and bounded, then they must converge to positive semidefinit
matricesS, T > 0 which solve the equations = T(5,7,L) g
andT = ®7(S,T). Since by hypothesis the pair, W'/2)
is observable, using similar arguments of Lemma 8.1(e), it
is possible to show tha#, 7" > 0. ThereforeS, T, L satisfy g
the conditions of statement (a) Theorem 8.2, from which if
follows statement (b) of the same theorem. This implies that
the sufficient conditions derived here guarantee the cldim
the lemma. ]

n

a(n®) < 1
1= 2
- (A4 .

(1]

(3]
(4]

(6]

if there exists positive definite matricés,, 7., > 0 such
thatS,, = ®°(S4, To) andT,, = T (S., T ), Where
®° and ®° are defined in Equations (49) and (50).

(c) The infinite horizon optimal controller gain is constant

limk_)oo Lk = Loo

Loo = —(B'(aTs + (1 —@)Sx)B+U)"'B'S, A
(58)
(d) A necessary condition for existence ®f,, T, > 0 is
A7 +7—290) <5+ — A0 (59)

where| 4| 2 max; |X:(A)] is the largest eigenvalue of the
matrix A. This condition is also sufficient iB3 is square
and invertible.
(e) The expected minimum cost converges:

1
Ji = klim —J§ = trace((1 =) Ts +75%)Q) (60)
Proof: (a) This fact follows from Equations (43)-

(45). Statements (b), (c) and (e) follow from Lemma 8.2
and Equations (47) and (52). Statement (d) corresponds
to Lemmas 8.3 and 8.4. ]
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