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Abstract— When data are transmitted to an estimation-control
unit over a network, and control commands are issued to
subsystems over the same network, both observation and control
packets may be lost or delayed. This process can be modeled by
assigning probabilities to successfully receive packets. Determin-
ing the impact of this uncertainty on the feedback-loop requires
a generalization of classical control theory. This paper presents
the foundations of such new theory.

Motivations and overview of the efforts of different research
groups are described first. Then, novel contributions of the
authors are presented. These include showing threshold behav-
iors which are governed by the uncertainty parameters of the
communication network: for network protocols where successful
transmissions of packets is acknowledged at the receiver (e.g.
TCP-like protocols), there exists critical probabilities for the
successful delivery of packets, below which the optimal controller
fails to stabilize the system. Furthermore, for these protocols,
the separation principle holds and the optimal LQG control is
a linear function of the estimated state. In stark contrast, it
is shown that when there is no acknowledgement of successful
delivery of control packets (e.g. UDP-like protocols), the LQG
optimal controller is in general nonlinear.

I. I NTRODUCTION

The increasingly fast convergence of sensing, computing
and wireless communication on cost effective, low power,
thumb-size devices, is quickly enabling a surge of new control
applications. In recent years, we have already witnessed the
wireless infrastructure overshadowing its wired counterpart
in all applications where it could be securely and reliably
implemented. Glamorous is the case of cellular telephony,
that is progressively substituting wireline telephony. Sohas
happened to LAN access, now dominated by WI-FI. Doomed
to fall next is wired broadband access, such as DSL, with the
advent of WIMax and 3G wireless data services. The process
is likely to continue with the advent of sensor technology.
Everything is getting “sensed:” vehicles, roads, buildings,
airspaces, environment, and so on. This ability to collect data
over a network at a very fine temporal and spatial granularity,
and the ability to process such data in real-time and then
perform appropriate control actions, opens to the development
of new applications [1][2][3].
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Why not have real time alarm systems for catastrophic, yet
predictable events, such as tsunamis, landslides, train crashes?
What we used to regard as unforeseeable events are merely
combinations of other events that we can now observe. Why
not have efficient controllers for electric grids, exchanging load
information between local stations, to optimize delivery and
avoid costly and dangerous blackouts? A main issue that needs
to be addressed to realize this vision is the the development
of theoretical foundations of remote control over unreliable
networks. We can fully benefit from the ability to collect an
enormous amount of data from the physical world only if
we can analyze the behavior of control processes acting over
networks.

The benefits of pervasive networking and sensing are clear.
For example buildings, both residential and commercial, can
greatly benefit from the use of sensor networks, by decreasing
construction and operating costs, while improving comfort
and safety. Today, more than half of the cost of an Heating,
Ventilation, Air Conditioning (HVAC) system in a building
is represented by installation and most of it is wiring. Wire-
less communication could sensibly lower this cost [4][5].
Moreover, combining wireless technology with Micro Electro
Mechanical Systems (MEMS) technology could reduce the
cost further, allowing sensors to be embedded in products such
as ceiling tiles and furniture, and enable improved control
of the indoor environment[6]. On the operating cost, such
systems could dramatically improve energy efficiency. The
United States is the bigger consumer of energy with 8.5
quadrillion British Thermal Units (BTU). Commercial and
residential sectors account for about40% of total consumption,
according to a study conducted by the Energy Information
Administration in March 2004. With oil and gas prices rising
and not likely to decrease anytime soon, it is imperative to
find ways to decrease consumption by avoiding useless waste.

Another example where pervasive wireless technology will
have a high impact is Supervisory Control And Data Ac-
quisition (SCADA) networks. These networks, were origi-
nally developed in the 1960s, and are used for industrial
measurement, monitoring, and control systems, especiallyby
electricity and natural gas utilities, water and sewage utilities,
railroads, telecommunications, and other critical infrastructure
organizations. They enable remote monitoring and control of
a large variety of industrial devices, such as water and gas
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pumps, track switches, and traffic signals.
SCADA systems typically implement a distributed system

whose elements are called points. A point can be a single
input or output value, monitored or controlled by the system. A
variety of host computers allow for “supervisory level” control
of the remote site. Great part of the control takes place at
distributed locations called Remote Terminal Units (RTUs).
RTUs connects to physical equipment such as switches, pumps
and other devices, and monitor and control these devices.
SCADA systems often have Distributed Control System (DCS)
components. In this case smart RTUs are employed, capa-
ble of performing autonomous control and decision without
the intervention of the master computers. The role of host
computers is generally restricted to supervisory level control.
Data acquisition begins at the RTU level and includes meter
readings and equipment statuses that are communicated to the
SCADA as required. Data is then compiled and formatted in
such a way that a control room operator using the SCADA can
make appropriate supervisory decisions that may be required
to over-ride normal RTU controls. SCADA systems have tra-
ditionally used combinations of different infrastructureto meet
communication requirements. The existence of a consolidated
wired legacy infrastructure hinders the development of open
systems based on wireless technology, that would provide
superior performance and lower costs, easier maintenance and
upgradability. Most of the remote monitoring and control
application could run over the wireless infrastructure, while
components could be easily swapped without any service
interruption.

A third example of application of wireless sensor technol-
ogy is represented by in-car networks. Electronics is quickly
becoming a main differentiator in the automotive industry,
with companies offering electronic services, from Global Po-
sitioning System (GPS) in-vehicle safety and security system,
to DVD, to drive-by-wire systems. These enhancements of
course come at a price. Electronic systems now account for a
sizeable part of the cost and weight of a vehicle. Cars have
over 50 embedded computers running a variety of applications,
from safety-critical to pure entertainment. In addition, these
applications consist of sensors, actuators and controllers that
are spatially distributed in the vehicle. These components
communicate using dedicated wires, bringing the length of
wires in high-end luxury cars to amount for more than three
miles and adding over two hundred pounds of weight to the
vehicle. As electronics is only likely to in increase in cars, with
new services and applications, this design scheme will not be
sustainable for long. In vehicle networking will become essen-
tial and a prime application of networked embedded systems
theory. As many applications concur in sharing computing and
communication resources, issues of scheduling, network delay
and data loss will need to be dealt with.

Beyond these examples there is a whole new and unexplored
terrain, where any engineer can exploit his/her imagination.
There is a surge of new startups trying to carve a niche in new
markets, and established companies trying to take advantage of
the new technology to improve their offerings while creating
new products and services.

By looking at all applications mentioned above, a common

modus operandi is revealed, which is typical of networked
control systems. Data is sent from possibly multiple sensors
to one or more computing units, using a communication
network. Such data is then processed to estimate the state
of a dynamical phenomenon, and control inputs are sent to
actuators, again through the network. Both measurements and
inputs have very stringent time constraints, depending on the
system dynamics, that the network needs to be able to satisfy.
Placing a communication network in the control loop raises
many issues. One of the key parameters in digital control
systems design is the selection of a fixed sampling period. This
is mainly a function of the system dynamics, and it places a
hard constraint on the time necessary to receive observations,
estimate the state, compute an input, and transmit it to the
actuators. All of this needs to happen within one sampling
interval. Computing power of modern machines, combined
with usually wired, dedicated interconnection between differ-
ent parts of the system, guarantees that such constraints are
met. When closing the loop around wireless sensor networks,
the assumption of data availability does not hold anymore,
as packets are randomly dropped and delayed. While system
and control theory provide a wealth of analytical results, the
assumptions that the theory is traditionally based upon do not
hold true in this setting, and neglecting these phenomena may
yield to catastrophic system performance. A notion of time,
either global or local, is needed to order and combine possibly
different sensor data for state estimation. The estimator needs
to know what to do when observations are not arriving, and
the controller needs to design an input using uncertain state
estimates, not knowing whether its previous input has been
successfully received by the actuators.

More generally, the use of networks in control systems
imposes a paradigm shift in the engineer’s mentality. Deter-
ministic methods need to be replaced by stochastic ones, as
such is the nature of the network phenomena. This argument
is particularly true in wireless networks, where the use of a
shared channel with random disturbances and noise cannot be
modelled deterministically.

This paper attempts to place the theoretical foundations for
the design of estimation and control systems over networks.

II. CONTROL OVERNETWORKS

A. Foundations

There are a number of basic problems that arise when at-
tempting to realize the vision of pervasive wireless networking
described above. Wireless networks are inherently less reliable
and secure than their wired counterparts. Penetration of wire-
less technology in modern society will be limited by these two
factors. For example, car manufacturers today are reluctant
to put wireless networks in cars, especially if connecting
highly critical systems, e.g. braking, steering, accelerating etc.
Loss of data may have a disastrous effect on the behavior of
the vehicle. Similarly, in SCADA systems, which represent
the standard control infrastructure in industrial processes and
also in some experimental facilities such as nuclear fusion,
communication is ethernet based, and it is likely to remain so
until we can guarantee acceptable performance and security.
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In short, applications need to be designed robust enough to
cope with unreliability in the network.

Issues of communication delay, data loss, and time-
synchronization play critical roles. In particular, communi-
cation and control are tightly coupled and they cannot be
addressed independently. Specific questions that arise arethe
following. What is the amount of data loss that the control loop
can tolerate to reliably perform its task? Can communication
protocols be designed to satisfy this constraint? The goal of
this paper is to provide some first steps in answering such
questions by examining the basic system-theoretic implications
of using unreliable networks for control. This requires a
generalization of classical control techniques that explicitly
takes into account the stochastic nature of the communication
channel.

In order to understand the complex coupling between com-
munication and control it is necessary to place the foun-
dations first. We start by addressing some simple canonical
problems that will shed some light on the real system be-
havior. We shall consider the following abstractions. Packet
networks communication channels typically use one of two
fundamentally different protocols: TCP-like or UDP-like.In
the first case there is acknowledgement of received packets,
while in the second case no-feedback is provided on the
communication link. The well known Transmission Control
(TCP) and User Datagram (UDP) protocols used in the Internet
are specific examples of our more general notion of TCP-like
and UDP-like communication protocol classes. We want to
study the effect of data losses due to the unreliability of the
network links under these two general protocol abstractions.
Accordingly, we model the arrival of both observations and
control packets as random processes whose parameters are
related to the characteristics of the communication channel.
Two independent Bernoulli processes are considered, with
parametersγ and ν, that govern packet losses between the
sensors and the estimation-control unit, and between the latter
and the actuation points, see Figure 1. We point out that
using Bernoulli processes is clearly an idealization that is
chosen for mathematical tractability. The networking compo-
nent obviously has an additional impact on the performance
of the closed loop systems. Routing and congestion control
mechanisms would affect the packet arrival probability andit
is necessary in practice to estimate this probability to compute
the optimal control law. The presence of correlations in the
packet loss process can be taken into account, in principle,
at the cost of complicating the mathematical analysis. Our
foundations are instead based on simple abstractions which, as
we shall see, already reveal useful design guidelines and can
explain real system behaviors that are observed in practice.

B. Previous Work

Study of stability of dynamical systems where components
are connected asynchronously via communication channels
has received considerable attention in the past few years and
our contribution can be put in the context of the previous
literature. In [7] and [8], the authors proposed to place an
estimator, i.e. a Kalman filter, at the sensor side of the
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Fig. 1. Architecture of the closed loop system over a communication
network under TCP-like protocols (top) and UDP-like protocols (bottom). The
binary random variablesνt andγt indicates whether packets are transmitted
successfully.

link without assuming any statistical model for the data loss
process. In [9], Smithet al. considered a suboptimal but
computationally efficient estimator that can be applied when
the arrival process is modeled as a Markov chain, which is
more general than a Bernoulli process. Other works include
Nilssonet al. [10][11] who present the LQG optimal regulator
with bounded delays between sensors and controller, and
between the controller and the actuator. In this work, bounds
for the critical probability values are not provided and there is
no analytic solution for the optimal controller. The case where
dropped measurements are replaced by zeros is considered
by Hadjicostis and Touri [12], but only in the scalar case.
Other approaches include using the last received sample for
control [11], or designing a dropout compensator [13], which
combines estimation and control in a single process. However,
the former approach does not consider optimal control and
the latter is limited to scalar systems. Yuet al. [14] studied
the design of an optimal controller with a single control
channel and deterministic dropout rates. Seileret al. [15]
considered Bernoulli packet losses only between the plant
and the controller and posed the controller design as anH∞

optimization problem. Other authors [16] [17] [18] [19] model
networked control systems with missing packets as Markovian
jump linear systems (MJLSs), however this approach gives
suboptimal controllers since the estimators are stationary.
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Finally, Elia [20][21] proposed to model the plant and the
controller as deterministic time invariant discrete-timesystems
connected to zero-mean stochastic structured uncertainty. The
variance of the stochastic perturbation is a function of the
Bernoulli parameters, and the controller design is posed anan
optimization problem to maximize mean-square stability ofthe
closed loop system. This approach allows analysis of Multiple
Input Multiple Output (MIMO) systems with many different
controller and receiver compensation schemes [20], however,
it does not include process and observation noise and the
controller is restricted to be time-invariant, hence sub-optimal.
There is also an extensive literature, inspired by Shannon’s
results on the maximum bit-rate that a channel with noise can
reliably carry, whose goal is to determine the minimum bit-
rate that is needed to stabilize a system through feedback [22]
[23] [24] [25] [26] [27] [28] [29] [30] [31]. This approach
is somewhat different from ours as we consider bits to be
grouped into packets that form single entities which can be
lost. Nonetheless there are several similarities that are not yet
fully explored.

Compared to previous works, this paper considers the
alternative approach where the external compensator feeding
the controller is the optimal time varying Kalman gain. More-
over, this paper considers the general Multiple Input Multiple
Output (MIMO) case, and gives some necessary and sufficient
conditions for closed loop stability. The work of [32] is most
closely related to this paper. However, we consider the more
general case when the matrixC is not the identity and there
is noise in the observation and in the process. In addition,
we also give stronger necessary and sufficient conditions for
existence of the solution in the infinite horizon LQG control.

C. Our Contribution

We study the effect of data losses due to the unreliability
of the network links under two different classes of protocols.
In our analysis, the distinction between the two classes of
protocols will reside exclusively in the availability of packet
acknowledgement. Adopting the framework proposed by Imer
et al. [32], we will refer therefore to TCP-like protocols if
packet acknowledgement is available and to UDP-like proto-
cols otherwise.

We show that, for the TCP-like case, the classic separation
principle holds, and consequently the controller and estimator
can be designed independently. Moreover, the optimal con-
troller is a linear function of the state. In sharp contrast,for
the UDP-like case, a counter-example demonstrates that the
optimal controller is in general non-linear. In the specialcase
when the state is fully observable and the observation noise
is zero the optimal controller is indeed linear. We explicitly
note that a similar, but slightly less general special case
was previously analyzed in [32], where both observation and
process noise are assumed to be zero and the input coefficient
matrix to be invertible.

Our final set of results relate to convergence in the infinite
horizon. Here, results on estimation with missing observation
packets [33] [34] are extended to the control case. We show
the existence of a critical domain of values for the parameters

of the Bernoulli arrival processes,ν and γ, outside which a
transition to instability occurs and the optimal controller fails
to stabilize the system.

These results are visually summarized in Figure 2, where
our stability bounds are depicted for a scalar system. The
stability regions are the regions above those bounds. Notice
that for TCP-like protocols there exist critical arrival proba-
bilities for the control and observation packets below which
the system is in the unstable region. These critical values are
independent of each other, which is another consequence of
the fact that the separation principle holds for these protocols.
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Fig. 2. Stability regions for TCP-like protocols and UDP-like protocols for a
scalar unstable system. These bounds are tight (i.e. necessary and sufficient)
in the scalar case. The dashed line corresponds to the boundary of a weaker
(sufficient) condition on the stability region for UDP-likeprotocols as recently
reported in [32].

In contrast, for UDP-like protocols the critical arrival prob-
abilities for the control and observation channels are coupled,
and the stability domain boundary assumes a curved form. The
performance of the optimal controller degrades considerably
when compared to TCP-like protocols, as the stability region
of UDP is strictly contained into the one of TCP. Finally, the
figure also reports the boundary of a weaker condition on the
stability region for UDP-like protocols as reported in [32],
which is indicated with a dashed line.

III. PROBLEM FORMULATION

Consider the following linear stochastic system with inter-
mittent observation and control packets:

xk+1 = Axk +Buk + wk (1)

ua
k = νku

c
k (2)

yk = γkCxk + vk, (3)

whereua
k is the control input to the actuator,uc

k is the desired
control input computed by the controller,(x0, wk, vk) are
Gaussian, uncorrelated, white, with mean(x̄0, 0, 0) and covari-
ance(P0, Q,R) respectively, and(γk, νk) are i.i.d. Bernoulli
random variables withP (γk = 1) = γ̄ andP (νk = 1) = ν̄.
The stochastic variableνk models the loss packets between
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the controller and the actuator: if the packet is correctly
delivered thenua

k = uc
k, otherwise if it is lost then the

actuator does nothing, i.e.ua
k = 0. This compensation scheme

is summarized by Equation (2). This modeling choice is
not unique: for example if the control packetuc

k is lost,
the actuator could employ the previous control value, i.e.
ua

k = ua
k−1, as suggested in [11]. The analysis of this scheme

requires a different problem formulation and is not considered
here. However both schemes are sensible compensation, and in
Section VII an empirical comparison seems to suggest that the
zero-input scheme indeed outperforms the hold-input scheme.
The stochastic variableγk models the packet loss between
the sensor and the controller: if the packet is delivered then
yk = Cxk + vk, while if the packet is lost the controller
reads pure noise, i.e.yk = vk. This observation model is
summarized by Equation (3). A different observation formal-
ism was proposed in [33], where the missing observation was
modeled as an observation for which the measurement noise
had infinite covariance. It is possible to show that both models
are equivalent, but the one considered in this paper has the
advantage of simpler analysis. This is because at times when
packets are not delivered, the optimal estimator ignores the
observationyk, therefore its value is irrelevant.

Let us define the following information sets:

Ik =

{
Fk

∆
= {yk,γk,νk−1}, TCP-like

Gk
∆
= {yk,γk}, UDP-like

(4)

wherey
k = (yk, yk−1, . . . , y1), γ

k = (γk, γk−1, . . . , γ1), and
ν

k = (νk, νk−1, . . . , ν1).
Consider also the following cost function:

JN (uN−1, x̄0, P0) = E
[
x′NWNxN+

+
∑N−1

k=0(x
′
kWkxk+νku

′
kUkuk) |uN−1, x̄0,P0

] (5)

where u
N−1 = (uN−1, uN−2, . . . , u1). Note that we are

weighting the input only if it is successfully received at the
plant. In the event it is not received, the plant applies zero
input and therefore there is no energy expenditure.

We now seek a control input sequenceu
∗N−1 as a function

of the admissible information setIk, i.e. uk = gk(Ik), that
minimizes the functional defined in Equation (5), i.e.

J∗
N (x̄0, P0)

∆
= min

uk=gk(Ik)
JN (uN−1, x̄0, P0), (6)

where Ik = {Fk,Gk} is one of the sets defined in Equa-
tion (4). The setF corresponds to the information provided
under an acknowledgement-based communication protocols
(TCP-like) in which successful or unsuccessful packet delivery
at the receiver is acknowledged to the sender within the same
sampling time period. The setG corresponds to the information
available at the controller under communication protocolsin
which the sender receives no feedback about the delivery of the
transmitted packet to the receiver (UDP-like). The UDP-like
schemes are simpler to implement than the TCP-like schemes
from a communication standpoint. Moreover UDP-like proto-
cols includes broadcasting which is not feasible under TCP-
like protocols. However, UDP-like protocols provide a leaner
information set. The goal of this paper is to design optimal

LQG controllers and to estimate their closed-loop performance
for both TCP-like and UDP-like protocols.

IV. OPTIMAL ESTIMATION

We start defining the following variables:

x̂k|k
∆
= E[xk | Ik],

ek|k
∆
= xk − x̂k|k,

Pk|k
∆
= E[ek|ke

′
k|k | Ik].

(7)

Derivations below will make use of the following facts:
Lemma 4.1: The following facts are true [35]:
(a) E [(xk − x̂k)x̂′

k | Ik] = E
�
ek|kx̂′

k | Ik

�
= 0

(b) E [x′
kSxk | Ik] = x̂′

kSx̂k+trace
�
SPk|k

�
, ∀S ≥ 0

(c) E [E[ g(xk+1) |Ik+1] | Ik] = E [g(xk+1) | Ik] , ∀g(·).
We now make the following computations which we use to

derive the optimal LQG controller.

E[x′k+1Sxk+1 | Ik] = E[x′kA
′SAxk | Ik]+

+ν̄u′kB
′SBuk + 2ν̄u′kB

′SA x̂k|k + trace(SQ)
(8)

where both the independence ofνk, wk, xk, and the zero-mean
property ofwk are exploited. The previous expectation holds
true for both the information sets, i.e.Ik = Fk or Ik = Gk.
Also

E[e′k|kTek|k | Ik] = trace(TE[ek|ke
′
k|k | Ik])

= trace(TPk|k), ∀T ≥ 0.

The equations for the optimal estimator are different
whether TCP-like or UDP-like communication protocols are
used

A. Estimator design under TCP-like protocols

Equations for optimal estimator are derived using arguments
similar to those used in standard Kalman filtering. The inno-
vation step is given by:

x̂k+1|k
∆
= AE[xk|Fk]+νkBuk = Ax̂k|k+νkBuk (9)

ek+1|k
∆
= xk+1 − x̂k+1|k = Aek|k + wk (10)

Pk+1|k
∆
= E[ek+1|ke

′
k+1|k|νk,Fk]=APk|kA

′+Q (11)

where the independence ofwk andFk, and the requirement
that uk is a deterministic function ofFk, are used. Since
yk+1, γk+1, wk andFk are independent, the correction step is
given by:

x̂k+1|k+1 = x̂k+1|k+γk+1Kk+1(yk+1−Cx̂k+1|k) (12)

ek+1|k+1

∆
= xk+1−x̂k+1|k+1 (13)

= (I−γk+1Kk+1C)ek+1|k−γk+1Kk+1vk+1

Pk+1|k+1 = Pk+1|k−γk+1Kk+1CPk+1|k (14)

Kk+1
∆
= Pk+1|kC

′(CPk+1|kC
′ + R)−1 (15)

where we simply applied the standard derivation for the time
varying Kalman filter using the following time varying system
matrices:Ak = A, Ck = γkC, andCov(vk) = R.
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B. Estimator design under UDP-like protocols

We derive the equations for the optimal estimator using
similar arguments to the standard Kalman filtering equations.
The innovation step is given by:

x̂k+1|k
∆
= E[xk+1|Gk] = E[Axk + νkBuk + wk|Gk]

= Ax̂k|k + ν̄Buk (16)

ek+1|k
∆
= xk+1 − x̂k+1|k

= Aek|k + (νk − ν)Buk + wk (17)

Pk+1|k
∆
= E[ek+1|ke

′
k+1|k |Gk]

= APk|kA
′ + ν̄(1 − ν̄)Buku

′
kB

′ +Q (18)

where we used the independence and zero-mean ofwk, (νk −
ν̄), and Gk, and the fact thatuk is a deterministic function
of the information setGk. Note how under UDP-like com-
munication, differently from TCP-like, the error covariance
Pk+1|k depends explicitly on the control inputuk. This is the
main difference with control feedback systems under TCP-like
protocols.

The correction step is the same as for the TCP case:

x̂k+1|k+1 = x̂k+1|k + γk+1Kk+1(yk+1 − Cx̂k+1|k)

Pk+1|k+1 = Pk+1|k − γk+1Kk+1CPk+1|k, (19)

Kk+1
∆
= Pk+1|kC

′(CPk+1|kC
′ +R)−1, (20)

where again we considered a time varying system withAk =
A andCk = γkC as we did for the optimal estimator under
TCP-like protocols.

V. OPTIMAL CONTROL UNDERTCP-LIKE PROTOCOLS

Derivation of the optimal feedback control law and the
corresponding value for the objective function will follow
the dynamic programming approach based on the cost-to-go
iterative procedure.

Define the optimal value functionVk(xk) as follows:

VN (xN )
∆
= E[x′NWNxN | FN ]

Vk(xk)
∆
= minuk

E[x′kWkxk + νku
′
kUkuk+

+Vk+1(xk+1)|Fk].

(21)

wherek = N − 1, . . . , 1. Using dynamic programming theory
[36], one can show thatJ∗

N = V0(x0). Under ACK-based
protocols the following lemma holds true:

Lemma 5.1: The value functionVk(xk) defined in Equa-
tions (21) for the system dynamics of Equations (1)-(3) under
ACK-based protocols can be written as:

Vk(xk) = E[ x′kSkxk | Fk] + ck, k = N, . . . , 0 (22)

where the matrixSk and the scalarck can be computed
recursively as follows:

Sk = A′Sk+1A+Wk −
−ν̄A′Sk+1B(B′Sk+1B+Uk)−1B′Sk+1A (23)

ck = trace
(
(A′Sk+1A+Wk − Sk)Pk|k

)
+

+trace(Sk+1Q) + E[ck+1 | Fk] (24)

with initial values SN = WN and cN = 0. Moreover the
optimal control input is given by:

uk = −(B′Sk+1B + Uk)−1B′Sk+1A x̂k|k = Lk x̂k|k. (25)
Proof: The proof employs an induction argument. The

claim is clearly true fork = N with the choice of parameters
SN = WN andcN = 0. Suppose now that the claim is true for
k + 1, i.e. Vk+1(xk+1) = E[ x′k+1Sk+1xk+1 | Fk+1] + ck+1.
The value function at time stepk is the following:

Vk(xk) = min
uk

E[x′
kWkxk + νku

′
kUkuk + Vk+1(xk+1) | Fk]

= min
uk

E[x′
kWkxk + νku

′
kUkuk + |Fk] +

+E
�
E[x′

k+1Sk+1xk+1 + ck+1 | Fk+1] |Fk

�
= min

uk

E[x′
kWkxk+νku

′
kUkuk+x

′
k+1Sk+1xk+1+ck+1|Fk]

= E[x′
kWkxk + x

′
kA

′
Sk+1Axk | Fk] + (26)

+trace(Sk+1Q) + E[ck+1 | Fk] +

+ν̄ min
uk

�
u
′
k(Uk+B

′
Sk+1B)uk+2u

′
kB

′
Sk+1A x̂k|k

�
where we used Lemma 1(c) to get the third equality, and
Equation (8) to obtain the last equality. The value function
is a quadratic function of the input, therefore the minimizer
can be simply obtained by solving∂Vk

∂uk

= 0, which gives
Equation (25). The optimal feedback is thus a simple linear
function of the estimated state. If we substitute the minimizer
back into Equation (26) we get:

Vk(xk) = E[x′
kWkxk + x

′
kA

′
Sk+1Axk | Ik] +

+trace(Sk+1Q) + E[ck+1 | Ik] −
−ν̄x̂

′
k|kA

′
Sk+1B(Uk + B

′
Sk+1B)−1

B
′
Sk+1Ax̂k|k

= E[x′
kWkxk + x

′
kA

′
Sk+1Axk −

−ν̄x
′
kA

′
Sk+1B(Uk+B

′
Sk+1B)−1

B
′
Sk+1Axk | Ik] +

+trace(Sk+1Q) + E[ck+1 | Ik] +

+ν̄ trace(A′
Sk+1B(Uk+B

′
Sk+1B)−1

B
′
Sk+1 Pk|k)

where we used Lemma 1(b). Therefore, the claim given by
Equation (22) is satisfied also for time stepk for all xk if and
only if the Equations (23) and (24) are satisfied.

Since J∗
N (x̄0, P0) = V0(x0), from the lemma it follows

that the cost function for the optimal LQG using ACK-based
protocols is given by:

J∗
N = x̄′

0S0x̄0 + trace(S0P0) +
PN−1

k=0
trace(Sk+1Q)+

+
PN−1

k=0
trace((A′Sk+1A + Wk − Sk)Eγ [Pk|k])

(27)

where we used the factE[x′0S0x0] = x̄′0S0x̄0 + trace(S0P0),
andEγ [·] explicitly indicates that the expectation is calculated
with respect to the arrival sequence{γk}.

It is important to remark that the error covariance matrices
{Pk|k}N

k=0 are stochastic since they depend on the sequence
{γk}. Moreover, since the matrixPk+1|k+1 is a nonlinear
function of the previous time step matrix covariancePk|k, as
can be observed from Equations (11) and (15), the exact ex-
pected value of these matrices,Eγ [Pk|k], cannot be computed
analytically, as shown in [33]. However, they can be bounded
by computable deterministic quantities, as shown in [33] from
which we can derive the following lemma:

Lemma 5.2 ([33]): The expected error covariance matrix
Eγ [Pk|k] satisfies the following bounds:

P̃k|k ≤ Eγ [Pk|k] ≤ P̂k|k ∀k ≥ 0, (28)
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where the matriceŝPk|k andP̃k|k can be computed as follows:bPk+1|k = A bPk|k−1A
′ + Q −

− γ̄A bPk|k−1C
′(C bPk|k−1C

′+R)−1
C bPk|k−1A

′ (29)bPk|k = bPk|k−1 −
− γ̄ bPk|k−1C

′(C bPk|k−1C
′ + R)−1

C bPk|k−1 (30)ePk+1|k = (1 − γ̄)A ePk|k−1A
′ + Q (31)ePk|k = (1 − γ̄) ePk|k−1 (32)

where the initial conditions arêP0|0 = P̃0|0 = P0.
Proof: The argument is based on the observation that

the matricesPk+1|k and Pk|k are concave and monotonic
functions ofPk|k−1. The proof is offered in [33] and is thus
omitted.
From this lemma it follows that also the minimum achiev-
able costJ∗

N , given by Equation (27), cannot be computed
analytically, but can bounded as follows:

Jmin
N ≤ J∗

N ≤ Jmax
N (33)

Jmax
N = x̄′

0S0x̄0+trace(S0P0)+
PN−1

k=0
trace(Sk+1Q))+

+
PN−1

k=0
trace

�
(A′Sk+1A + Wk − Sk) bPk|k

� (34)

Jmin
N = x̄′

0S0x̄0+trace(S0P0)+
PN−1

k=0
trace(Sk+1Q)+

+
PN−1

k=0
trace

�
(A′Sk+1A + Wk − Sk) ePk|k

� (35)

The results derived above can be summarized as follows:
Theorem 5.3: Consider the system (1)-(3) and consider the

problem of minimizing the cost function (5) within the classof
admissible policiesuk = f(Fk), whereFk is the information
available under ACK-based schemes, given in Equation (4).
Then:

(a) The separation principle still holds for ACK-based
communication, since the optimal estimator, given by
Equations (9),(11),(12),(14) and (15), is independent of
the control inputuk.

(b) The optimal estimator gainKk is time-varying and
stochastic since it depends on the past observation arrival
sequence{γj}k

j=1.
(c) The optimal control input, given by Equations (25)
and (23) with initial conditionSN = WN , is a linear
function of the estimated statêxk|k, i.e. uk = Lkx̂k|k,
and is independent of the process sequences{νk, γk}.

The infinite horizon LQG can be obtained by taking the
limit for N → +∞ of the previous equations. However,
as explained above, the matrices{Pk|k} depend nonlinearly
on the specific realization of the observation sequence{γk},
therefore the expected error covariance matricesEγ [Pk|k] and
the minimal costJ∗

N cannot be computed analytically and do
not seem to have limit [33]. Differently from standard LQG
optimal regulator [37], the estimator gain does not converge
to a steady state value, but is strongly time-varying due to
its dependence on the arrival process{γk}. Moreover, while
the standard LQG optimal regulator always stabilizes the
original system, in the case of observation and control packet
losses, the stability can be lost if the arrival probabilities
ν̄, γ̄ are below a certain threshold. This observation comes
from the study of existence of solution for a Modified Riccati
Algebraic Equation (MARE),S = Π(S,A,B,W,U, ν), which

was introduced by [38] and studied in [39], [33] and [21],
where the nonlinear operatorΠ(·) is defined as follows:

Π(S,A,B,Q,R, ν)
∆
= A′SA+W−

−ν A′SB(B′SB + U)−1B′SA
(36)

In particular, Equation (23), i.e.Sk+1 = Π(Sk, A,B,W,U, ν),
is the dual of the estimator equation presented in [33], i.e.
Pk+1 = Π(Pk, A

′, C ′, Q,R, γ). The results about the MARE
are summarized in the following lemma

Lemma 5.4: Consider the modified Riccati equation defined
in Equation (36). LetA be unstable,(A,B) be controllable,
and (A,W

1
2 ) be observable. Then:

(a) The MARE has a unique strictly positive definite
solutionS∞ if and only if ν > νc, whereνc is the critical
arrival probability defined as:

νc
∆
= inf

ν
{0 ≤ ν ≤ 1 |S = Π(S, A, B, W, U, ν), S ≥ 0}.

(b) The critical probabilityνc satisfy the following ana-
lytical bounds:

pmin ≤ νc ≤ pmax

pmin
∆
= 1 − 1

maxi |λu

i
(A)|2

pmax
∆
= 1 − 1Q

i
|λu

i
(A)|2

whereλu
i (A) are the unstable eigenvalues ofA. More-

over, νc = pmin whenB is square and invertible, and
νc = pmax whenB is rank one.

(c) The critical probability can be numerically computed
via the solution of the following quasi-convex LMIs
optimization problem:

νc = argminν̄Ψν(Y, Z) > 0, 0 ≤ Y ≤ I.
Ψν(Y, Z) =

=

264 Y
√

ν(Y A
′ + ZB

′)
√

1 − νY A
′

√
ν(AY + BZ

′) Y 0√
1 − νAY 0 Y

375
(d) If ν > νc, then limk→+∞ Sk = S∞ for all initial
conditionsS0 ≥ 0, whereSk+1 = Π(Sk, A,B,W,U, ν).

The proof of facts (a),(c), and (d) can be found in [33]. The
proof νc = pmin whenB is square and invertible can be found
in [38], and the proofνc = pmax whenB is rank one in [21].

In [33] statistical analysis of the optimal estimator was
given, which we report here for convenience:

Theorem 5.5 ([33]): Consider the system (1)-(3) and the
optimal estimator under ACK-based protocols, given by Equa-
tions (9),(11),(12),(14) and (15). Assume that(A,Q

1
2 ) is

controllable,(A,C) is observable, andA is unstable. Then
there exists a critical observation arrival probabilityγc, such
that the expectation of estimator error covariance is bounded
if and only if the observation arrival probability is greater than
the critical arrival probability, i.e.

Eγ [Pk|k] ≤M ∀k iff γ̄ > γc.

whereM is a positive definite matrix possibly dependent on
P0. Moreover, it is possible to compute a lower and an upper
bound for the critical observation arrival probabilityγc, i.e.
pmin ≤ γc ≤ γmax ≤ pmax, where:

γmax
∆
= inf

γ
{0 ≤ γ ≤ 1, |P = Π(P, A

′
, C

′
, Q, R, γ), P ≥ 0)},
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wherepmin andpmax are defined in Lemma 5.4.
The proof of the previous theorem can be found in [33].

Using the previous theorem and the results from the pre-
vious section, we can prove the following theorem for the
infinite horizon optimal LQG under ACK-based protocols:

Theorem 5.6: Consider the same system as defined in the
previous theorem with the following additional hypothesis:
WN = Wk = W and Uk = U . Moreover, let(A,B) and
(A,Q

1
2 ) be controllable, and let(A,C) and (A,W

1
2 ) be ob-

servable. Moreover, suppose thatν̄ > νc andγ̄ > γmax, where
νc andγmax are defined in Lemma 5.4 and in Theorem 5.5,
respectively. Then we have:

(a) The infinite horizon optimal controller gain is constant:

lim
k→∞

Lk = L∞ = −(B′S∞B + U)−1B′S∞A (37)

(b) The infinite horizon optimal estimator gainKk, given
by Equation (15), is stochastic and time-varying since
it depends on the past observation arrival sequence
{γj}k

j=1.
(c) The expected minimum cost can be bounded by two
deterministic sequences:

1

N
Jmin

N ≤ 1

N
J∗

N ≤ 1

N
Jmax

N (38)

whereJmin
N , Jmax

N converge to the following values:

J
max
∞

∆
= lim

N→+∞

1

N
J

max
N

= trace((A′
S∞A + W − S∞)( bP∞ −

−γ̄ bP∞C
′(C bP∞C

′ + R)−1
C bP∞)) +

+trace(S∞Q)

J
min
∞

∆
= lim

N→+∞

1

N
J

min
N

= (1 − γ̄)trace
�
(A′

S∞A + W − S∞) eP∞

�
+

+trace(S∞Q),

and the matricesS∞, P∞, P∞ are the positive definite
solutions of the following equations:

S∞ = A
′
S∞A + W −

−ν̄ A
′
S∞B(B′

S∞B + U)−1
B

′
S∞A

P∞ = AP∞A
′ + Q −

−γ̄ AP∞C
′(CP∞C

′ + R)−1
CP∞A

′

P∞ = (1 − γ̄)AP∞A
′ + Q

Proof: (a) Since by hypothesis̄ν > νc, from
Lemma 5.4(d) follows thatlimk→+∞ Sk = S∞. Therefore
Equation (37) follows from Equation (25).

(b) This follows from the dependence on the arrival se-
quence{γk} of the optimal state estimator given by Equations
(9),(11),(12),(14) and (15).

(c) Equation (29) can be written in terms of the MARE
as P̂k+1|k = Π(P̂k|k−1, A

′, C ′, Q,R, γ), therefore sincēγ >

γmax from Lemma 5.4(d) it follows thatlimk→+∞ P̂k|k−1 =
P∞, where P∞ is the solution of the MAREP∞ =
Π(P∞, A

′, C ′, Q,R, γ). Also limk→+∞ P̃k|k−1 = P∞, where
P̃k|k−1 is defined in Equation (31) andP∞ is the solu-
tion of the Lyapunov equation̂P∞ = ÃP̂∞Ã

′ + Q, where

Ã =
√

1 − γ̄A. Such solution clearly exists since
√

1 − γ̄ <
1

pmin

= 1
maxi |λu

i
(A)| and thus the matrixÃ is strictly stable.

From Equations (30) and (32) it follows thatlimk→+∞ P̂k|k =

P∞ − γ̄P∞C
′(CP∞C

′ + R)−1CP∞ and limk→+∞ P̃k|k =
(1 − γ̄)P∞. Also limk→+∞ Sk+1 = limk→+∞ Sk = S∞. Fi-
nally from Equations (33) - (35) and the previous observations
follow the claim.

VI. OPTIMAL CONTROL UNDERUDP-LIKE PROTOCOLS

In this section, we show that the optimal LQG controller,
under UDP-like communication protocols, is in generalnot a
linear function of the state estimate. Consequently, estimation
and controller design cannot be treated independently. For
this, we construct a counter-example considering a simple
scalar system and we proceed using the dynamic programming
approach. Consider the scalar system whereA = 1, B =
1, C = 1,WN = Wk = 1, Uk = 0, R = 1, Q = 0.
Analogously to the TCP case, we define the value function,
Vk(xk), as in Equations (21) where we just need to substitute
the information setFk with Gk. Fork = N , the value function
is given byVN (xN ) = E[x′NWNxN | GN ] = E[x2

N | GN ]. For
k = N − 1 we have:

VN−1(xN−1) = min
uN−1

E[x2
N−1 + VN (xN ) | GN−1]

= min
uN−1

(E[2x2
N−1|GN−1] +

+ν̄u2
N−1 + 2ν̄uN−1x̂N−1|N−1),

where we used the independence ofνN−1 andGN−1, and the
fact thatuN−1 is a deterministic function of the information
setGN−1. The cost is a quadratic function of the inputuN−1,
therefore the minimizer can be simply obtained by finding
∂VN−1

∂uN−1
= 0, which is given byu∗N−1 = −x̂N−1|N−1. If we

substitute backu∗N−1 into the value function we have:

VN−1(xN−1) = E[2x2
N−1|GN−1] − ν̄x̂2

N−1|N−1

= E[(2 − ν̄)x2
N−1|GN−1] + ν̄PN−1|N−1

where we used Lemma 4.1(b).
Using the previous equations we proceed to compute the

value function fork = N − 2:

VN−2(xN−2) =

= min
uN−2

E[x2
N−2 + VN−1(xN−1) | GN−2]

= E[(3 − ν̄)x2
N−2 | GN−2] + γ̄ + ν̄PN−2|N−2 +

+ν̄(1 − γ̄)PN−2|N−2 +

+ min
uN−2

(
ν̄(2 − ν̄)u2

N−2 + 2ν̄(2 − ν̄)uN−2x̂N−2|N−2

+ν̄2(1 − ν̄)(1 − γ̄)u2
N−2 +

+ ν̄γ̄
1

PN−2|N−2 + ν̄(1 − ν̄)u2
N−2 + 1

)
(39)

Detailed derivations of previous equations can be found in
[40]. The first three terms within parenthesis are convex
quadratic functions of the control inputuN−2, however the last
term is not. Therefore, the minimizeru∗N−2 is, in general, a
non-linear function of the information setGk. The nonlinearity
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of the optimal controller arises from the fact that the correction
error covariance matrixPk+1|k+1 is a non-linear function of
the innovation error covariancePk+1|k, as it can be seen in
Equations (19) and (20). The only case whenPk+1|k+1 is
linear inPk+1|k is when measurement noise covarianceR = 0
and the observation matrixC is square and invertible, from
which follows that the optimal control is linear in the estimated
states. It is important to remark that the separation principle
still does not hold even for this special case, since the control
input affects the estimator error covariance.

We can summarize these results in the following theorem:
Theorem 6.1: Let us consider the stochastic system defined

in Equations (1) with horizonN ≥ 2. Then:

(a) The separation principle does not hold since the esti-
mator error covariance depends on the control input, as
shown in Equation (18).

(b) The optimal control feedbackuk = g∗k(Gk) that min-
imizes the cost functional defined in Equation (5) under
UDP-like protocols is, in general, a nonlinear function of
information setGk.

(c) The optimal control feedbackuk = g∗k(Gk) is a linear
function of the estimated statêxk|k, i.e. uk = L∗

kx̂k|k,
if and only if the matrixC is invertible and there is
no measurement noise [40][32]. In the infinite horizon
scenario the optimal state-feedback gain is constant, i.e.
L∗

k = L∗
∞, and can be computed as the solution of a

convex optimization problem. A necessary condition for
stability of the closed loop system is:

|A|2(γ̄ + ν̄ − 2γ̄ν̄) < γ̄ + ν̄ − 2γ̄ν̄ (40)

where|A| = maxi |λi(A)| is the largest eigenvalue of the
matrixA. This condition is also sufficient ifB is square
and invertible [40].
Proof: (a) This statement clearly true by inspecting

Equation (18), since the definition of separation between
control and estimation the error estimate must not depend
on the input. (b) This claim was proved by the previous
counterexample. (c) As the proof of this claim is long and
rather technical we moved it to the Appendix for the interested
reader.

A graphical representation of the stability bounds are shown
in Figure 2, where we considered a scalar system with para-
meters |A| = 1.1. For the same system we havepmin =
pmax = 1 − 1/|A|2 = 0.173, therefore the critical probability
for the TCP-like protocols isγc = νc = pmin as stated
in Theorem 5.5. The stability bound for UDP-like protocols
of Equation (40) is stronger than a similar bound recently
reported in [32].

The nonlinearity of the input feedback arises from the fact
that the correction error covariance matrixPk+1|k+1 is a non-
linear function of the innovation error covariancePk+1|k. The
only case whenPk+1|k+1 is linear in Pk+1|k is whenR =
0 and C = I, from which follows that the optimal control
is linear in the estimated states. However it is important to
remark that the separation principle still does not hold, since
the control input affects the estimator error covariance.

VII. N UMERICAL EXAMPLES

In this section we show some applications of the theoretical
tools developed in the previous sections to evaluate the perfor-
mance of typical control systems for different communication
architectures and protocols.

Fig. 3. Photo of Pendubot. Courtesy of Mechatronic Systems, Inc

As a first example we consider the pendubot: a control
laboratory experiment consisting of two-link planar robotwith
torque actuation only on the first link as shown in Fig. 3.
We are interested in designing a controller that stabilizes
the pendubot in up-right position, corresponding to unstable
equilibrium pointθ∗1 = −π/2, θ∗2 = 0, where the anglesθ1, θ2
are defined as shown in Fig. 3. We address the interested reader
to [41] for more details and references on the pendubot. The
state space representation of the system linearized about the
the unstable equilibrium point and discretized with sampling
periodTs = 0.005[s] is given by:

A =

264 1.001 0.005 0.000 0.000
0.35 1.001 −0.135 0.000

−0.001 0.000 1.001 0.005
−0.375 −0.001 0.590 1.001

375 , B =

264 0.001
0.540
−0.002
−1.066

375
C =

�
1 0 0 0
0 0 1 0

�
, R =

�
0.001 0

0 0.001

�
, U = 2

Q = qq
T
, q =

264 0.003
1.000
−0.005
−2.150

375 , W =

264 5 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

375
where x = [δθ1, δθ̇1, δθ2, δθ̇2]

T and δθi(t) = θi(t) − θ∗i .
The matrixA has two stable and two unstable eigenvalues
eig(A) = (1.061, 1.033, 0.968, 0.941). It is easy to verify that
the pairs (A,B) and (A,Q) are controllable,(A,C) and
(A,W ) are observable, andR > 0, as required by the as-
sumptions of the theorems presented in the previous sections.
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We first compare the performance of the closed loop
controller for two different control architecture, as shown
in Fig. 4. In the first scenario we consider actuators with

Actuator +

Plant +

Sensor

COMM. NETWORK

Optimal

Controller

COLOCATED

CONTROLLER

Actuator +

Plant +

Sensor

Optimal

Controller

COMM. NETWORK

REMOTE

CONTROLLER

Fig. 4. Different controller placement: colocated with the actuator (top) and
remote (bottom).

no computational resources, therefore the controller mustbe
implemented remotely and the control input is transmitted to
the actuator via a lossy communication link which adopt a
TCP-like protocol. We also assume that the communication
links between the sensors and the controller and between
the controller and the actuator are independent and have the
same arrival probability, i.e.̄ν = γ̄. In the second scenario
we consider the use of ”smart” actuators, i.e. actuators with
sufficient computational resources to implement the optimal
controller. In the scenario where the controller is colocated
with the actuator it is equivalent to the TCP-like optimal
control with observation arrival probabilitȳγeq = ν̄γ̄ = γ̄2

(series of two independent lossy links) and control arrival
probability ν̄eq = 1 (no communication link). Fig. 5 shows
the upper bound for the minimum infinite horizon costJmax

∞

defined in Theorem 5.6. The colocated controller clearly
outperforms the performance of the remote controller. This
is to be expected as the colocated controller can compensate
for observation packet with an optimal filter and there is no
control packet loss. The remote controller, on the other hand,
can compensate only for the observation packet loss, but not
for the control packet loss. Therefore, if possible it is always
more effective to place the controller as close as possible to
the actuators.

As a second example we compare the performance under
the TCP-like and UDP-like protocols, as shown in Fig. 1. We
consider the pendubot above with the additional assumptions
of full state observation, i.e.C = I4×4, and no sensor noise,

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

400

ν=γ

J∞

remote contr.
colocated contr.

Fig. 5. Upper boundsJmax
∞ for the minimum cost with respect to two

different controller locations under TCP-like protocols:controller colocated
with the actuator equivalent to TCP-like performance withγ̄eq = γ̄ν̄ and
ν̄eq = 1 (thin solid line) and controller located remotely from the actuator
and connect by a communication network (thick solid line). Cost is calculated
for ν̄ = γ̄.

i.e.R = 04×4. Again we assume independent lossy links with
the same loss probabilitȳν = γ̄. Fig. 6 shows the upper bound
of minimum costJmax

∞ under TCP-like protocols calculated
as in Theorem 5.6 and the minimum costJ∗

∞ under UDP-
like protocols calculated as described in Theorem 8.5 in the
Appendix. The TCP-like communication protocols give better

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

ν=γ

J∞

UDP−like
TCP−like

Fig. 6. Minimum costJ∞ under two different communication protocols:
TCP-like (thin solid line) and UDP-like (thick solid line).

control performance than UDP-like, however this comes at the
price of an higher complexity in the protocol design. Once
again tradeoffs between performance and complexity appear.

As a final example we consider a different compensation
approach at the actuator site when no computational resources
are available. In this paper we chose to apply no control whena
control packet is lost,ua

k = 0. We call this approach zero-input
strategy. Another natural choice is to use the previous control
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input if the current is lost, i.e.ua
k = ua

k−1 [11]. We call this
second approach hold-input strategy. Fig. 7 gives a pictorial
representation of these two strategies. We consider a very

Plant

Controller

Plant

Controller
Z-1

Zero-input

Strategy

Hold-input

Strategy

Fig. 7. Compensation approaches for actuators with no computational
resources when a control packet is lost: zero-input approach ua

k
= 0 (top)

and hold-input approachua
k

= ua
k−1

(bottom).

simple scalar unstable system with parametersA = 1.2, B =
C = 1,W = U = 1 and no process and measurement noise,
i.e. R = Q = 0. We also assume there is only control packet
loss with arrival probabilitȳν = 0.5 and no observation packet
loss, i.e.γ̄ = 1. Since there is no observation loss and there is
full state observation with no measurement noise, the optimal
control must necessarily be a static feedback and no filter is
necessary. The dynamics of the closed loop with zero-input
strategy can be written as follows:

xk+1 = Axk +Bua
k

ua
k = νku

c
k

uc
k = Lzxk

(41)

and the dynamics for the hold-input strategy as

xk+1 = Axk +Bua
k

ua
k = νku

c
k + (1 − νk)ua

k−1
uc

k = Lhxk

(42)

We compare the performance in terms of the infinite horizon
expected total costJ∞ = E[

∑∞
k=0 x

′
kWxk + ua

k
′Uua

k]. The
optimal gain for the zero-input strategy can be computed from
Equation (37) and is equal toL∗

z = −1.02. However, the exact
computation of this expected cost for the hold-input strategy
cannot be computed analytically with the tools developed
in this paper, therefore we resort to the computation of the
empirical cost for a wide range of control feedback gains
Lz and Lz. Fig.8 shows the empirical costJemp

∞ computed

as the average cost over 10000 runs with initial condition
x0 = 2, ua

0 = 0. Note that the empirical optimal gain
and the theoretical optimal gainL∗

z for the zero-strategy
are consistent. Surprisingly, the zero-input strategy notonly
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Fig. 8. Empirical cost for different values of the feedback gains Lz andLh

for the zero-input strategy (thin solid line) and hold-input strategy (thick solid
line).

gives a comparable performance with the hold-input strategy
but it appears to perform better both in terms of minimum
achievable cost and in term of robustness with respect to
feedback gain sensitivity. This is only an example and further
rigorous analysis needs to be performed to verify if this is
a general result. Nonetheless the zero-input strategy is a fair
approach and it is based on the observation that in a stable
closed loop system driven by gaussian noise with zero mean,
also the input to the plant is gaussian with zero mean, therefore
usingua

k = 0 when a packet is lost is like using an unbiased
estimate of the inputuc

k generated by the remote controller.

VIII. C ONCLUSIONS ANDFUTURE DIRECTIONS

In this paper we have analyzed the LQG control problem
in the case where both observation and control packets may
be lost during transmission over a communication channel.
This situation arises frequently in distributed systems where
sensors, controllers and actuators reside in different physical
locations and have to rely on data networks to exchange
information. We have presented analysis of the LQG control
problem under two classes of protocols: TCP-like and UDP-
like. In TCP-like protocols, acknowledgements of successful
transmissions of control packets are provided to the controller,
while in UDP-like protocols, no such feedback is provided.

For TCP-like protocols we have solved a general LQG
control problem in both the finite and infinite horizon cases.
We have shown that the optimal control is a linear function
of the state and that the separation principle holds. As a
consequence, controller and estimator design problems are
decoupled for these TCP-like protocols. However, unlike stan-
dard LQG control with no packet loss, the gain of the optimal
observer does not converge to a steady state value. Rather, the
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optimal observer gain is a time-varying stochastic function
of the packet arrival process. Several infinite horizon LQG
controller design methodologies proposed in the literature
impose time-invariance on the controller, and are therefore
sub-optimal. In analyzing the infinite horizon problem, we
have shown that the infinite horizon cost is bounded if and only
if arrival probabilitiesγ̄, ν̄ exceed a certain threshold. Thus,
the underlying communication channel must be sufficiently
reliable in order for LQG optimal controllers to stabilize the
plant.

UDP-like protocols present a much more complex problem.
We have shown that the lack of acknowledgement of control
packets results in the failure of the separation principle.
Estimation and control are now intimately coupled. We have
shown that the LQG optimal control is, in general, nonlinear
in the estimated state. As a consequence, the optimal control
law cannot be determined explicitly in closed form, rendering
this solution impractical. In the special case where the state
is completed observed (C is invertible and there is no output
noise i.e.,R = 0), the optimal control is indeed linear. This
special case can be viewed as one where it becomes possible
to deduce whether or not the control packet was successfully
transmitted. We have exhibited that the LQG optimal solution
in this special case. We have shown that the the set of arrival
probabilitiesγ̄, ν̄ for which the infinite horizon cost function
is bounded is smaller than the equivalent set for TCP-like
protocols. However, for moderate packet loss probabilities the
performance of these two classes of protocols is comparable.
This makes the simpler UDP-like-like protocols attractivefor
networked control systems.

To fully exploit UDP-like protocols it is necessary to have a
controller/estimator design methodology for the general case
when there is measurement noise and under partial state
observation. Although the true LQG optimal controller for
UDP-like protocols is time-varying and hard to compute, we
might choose to determine the optimal time-invariant LQG
controller. Although this is a suboptimal strategy, we believe
that this controller can be determined explicitly, rendering
implementation simple and computationally effective. We are
exploring this possibility.

We have shown that underlying communication protocols
intimately affect the overall performance of networked control
systems. For example the separation principle of LQG optimal
control, a milestone in classical control theory on which many
modern controller design techniques rest, does not hold in
general for networked control systems. This suggests that
controller design needs to be substantially reconsidered for
such systems. A second implication of our work is that con-
troller design and communication protocol design are tightly
coupled. This suggests that communication protocols targeted
to networked control systems need to be developed.

APPENDIX: PROOFS

A. UDP-like special case: R=0 and C invertible

Without loss of generality we can assumeC = I, since the
linear transformationz = Cx would give an equivalent system
where the matrixC is the indentity. Let us now consider

the case when there is no measurement noise, i.e.R = 0.
These assumption mean that it is possible to measure the
statexk when a packet is delivered. In this case the estimator
Equations (18)-(20) simplify as follows:

Kk+1 = I (43)

Pk+1|k+1 = (1 − γk+1)Pk+1|k

= (1 − γk+1)(A
′Pk|kA+Q+

+ν̄(1 − ν̄)Buku
′
kB

′) (44)

E[Pk+1|k+1|Gk] = (1 − γ̄)(A′Pk|kA+Q+

+ν̄(1 − ν̄)Buku
′
kB

′) (45)

where in the last equation we used independence ofγk+1 and
Gk, and we used the fact thatPk|k is a deterministic function
of Gk.

As was done in the analysis of optimal control under TCP-
like protocols, we claim that the value functionV ∗

k (xk) can
be written as follows:

Vk(xk) = x̂′k|kSkx̂k|k+trace(TkPk|k)+trace(DkQ)(46)

for k = N, . . . , 0. This is clearly true fork = N , in fact we
have:

VN (xN ) = E[x′NWNxN |GN ]

= x̂′N |NWN x̂N |N + trace(WNPN |N )

where we used Lemma 4.1(b), therefore the statement is
satisfied bySN = WN , TN = WN ,DN = 0. Note that
Equation (46) can be rewritten as follows:

Vk(xk) = E[x′kSkxk|Gk]+trace
(
(Tk−Sk)Pk|k

)
+trace(DkQ)

where we used once again Lemma 4.1(b). Moreover, to
simplify notation we defineHk

∆
= (Tk − Sk). Let us suppose

that Equation (46) is true fork+1 and let us show by induction
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it holds true fork:

Vk(xk) = min
uk

E[x′
kWkxk + νku

′
kUkuk + Vk+1(xk+1) | Gk]

= min
uk

�
E[x′

kWkxk + νku
′
kUkuk + x

′
k+1Sk+1xk+1 +

+trace(Hk+1Pk+1|k+1) + trace(Dk+1Q) | Gk]
�

= E[x′
k(Wk+A

′
Sk+1A)xk|Gk]+trace(Sk+1Q)+

+(1−γ̄)trace(Hk+1(A
′
Pk|kA+Q))+trace(Dk+1Q)+

+min
uk

�
ν̄u

′
kUkuk+ν̄u

′
kB

′
Sk+1Buk+

+2ν̄u
′
kB

′
Sk+1Ax̂k|k+

+ν̄(1−ν̄)(1−γ̄)trace(Hk+1Buku
′
kB

′)
�

= E[x′
k(Wk+A

′
Sk+1A)xk|Gk]+

+trace
�
(Dk+1+(1−γ̄)Hk+1)Q

�
+

+(1−γ̄)trace(AHk+1A
′
Pk|k) + trace(Sk+1Q) +

+ν̄ min
uk

�
u
′
k

�
Uk+B

′(Sk+1+(1−ν̄)(1−γ̄)Hk+1)B
�
uk+

+2u
′
kB

′
Sk+1Ax̂k|k

�
= x̂

′
k|k(Wk + A

′
Sk+1A)x̂k|k +

+trace
�
(Dk+1+(1−γ̄)Tk+1+γ̄Sk+1)Q

�
+

+trace
�
(Wk+γ̄A

′
Sk+1A+(1−γ̄)ATk+1A

′)Pk|k

�
+

+ν̄ min
uk

�
u
′
k

�
Uk+B

′((1−ᾱ)Sk+1+ᾱTk+1)B
�
uk+

+2u
′
kB

′
Sk+1Ax̂k|k

�
,

where we defined̄α = (1− ν̄)(1− γ̄), we used Lemma 4.1(c)
to get the second equality, and Equations (8) and (45) to get
the last equality. Since the quantity inside the outer parenthesis
is a convex quadratic function, the minimizer is the solution
of ∂Vk

∂uk

= 0 which is given by:

u
∗
k =−

�
Uk+B

′�(1−ᾱ)Sk+1+ᾱTk+1

�
B
�
−1

B
′
Sk+1A x̂k|k (47)

= Lk x̂k|k (48)

which is linear function of the estimated statex̂k|k. Substitut-
ing back into the value function we get:

Vk(xk) = x̂
′
k|k(Wk + A

′
Sk+1A)x̂k|k +

+trace
�
(Dk+1 + (1 − γ̄)Tk+1 + γ̄Sk+1)Q

�
+

+trace
�
(Wk+A

′
Sk+1A+(1−γ̄)ATk+1A

′)Pk|k

�
−

−ν̄x̂
′
k|kA

′
Sk+1BLkx̂k|k

= x̂
′
k|k(Wk + γ̄A

′
Sk+1A − ν̄x̂

′
k|kA

′
Sk+1BLk)x̂k|k +

+trace
�
(Dk+1 + (1 − γ̄)Tk+1 + γ̄Sk+1)Q

�
+

+trace
�
(Wk + A

′
Sk+1A + (1 − γ̄)ATk+1A

′)Pk|k

�
,

where we used Lemma 4.1(b) in the last equality. From the
last equation we see that the value function can be written
as in Equation (46) if and only if the following equations are
satisfied:

Sk = A′Sk+1A+Wk − ν̄A′Sk+1B
(
Uk +

+B′ ((1 − ᾱ)Sk+1 + ᾱTk+1)B
)−1

B′Sk+1A

= ΦS
γ,ν(Sk+1, Tk+1) (49)

Tk = (1 − γ̄)A′Tk+1A+ γ̄A′Sk+1A+Wk

= ΦT
γ,ν(Sk+1, Tk+1) (50)

Dk = (1 − γ̄)Tk+1 + γ̄Sk+1 +Dk+1 (51)

The optimal minimal cost for the finite horizon,J∗
N =

V0(x0) is then given by:

J∗
N = x′0S0x0+trace(S0P0)+

N∑

k=1

trace
((

(1−γ̄)Tk+γ̄Sk

)
Q

)

(52)
For the infinite horizon optimal controller, necessary and

sufficient condition for the average minimal costJ∞
∆
=

limN→+∞
1
N J

∗
N to be finite is that the coupled iterative

Equations (49) and (50) should converge to a finite value
S∞ and T∞ asN → +∞. In the work of Imeret al. [32]
similar equations were derived for the optimal LQG control
under UDP for the same framework with the more stringent
conditionsQ = 0 andB square and invertible. They determine
necessary and sufficient conditions for those equations to
converge. However, these conditions are invalid in the general
case whenB in not square. Below we prove a number of
lemmas and theorems that will allow us to derive stronger
necessary and sufficient conditions even forB not necessarily
square and invertible .

Lemma 8.1: Let S, T ∈ M = {M ∈ R
n×n|M ≥ 0}.

Consider the operatorsΦS(S, T ), and ΦT (S, T ) as defined
in Equations (49) and (50), and consider the sequences
Sk+1 = ΦS(Sk, Tk) and Tk+1 = ΦT (Sk, Tk). Consider
L∗

S,T = −
(
U +B′

(
(1 − ᾱ)S + ᾱT

)
B

)−1
B′SA. operators

Then the following facts are true:
(a)

Υ(S, T, L) = (1 − ν̄
1−ᾱ )A′SA+W+

+ ν̄
1−ᾱ

(
A+ (1 − ᾱ)BL

)′
S

(
A+ (1 − ᾱ)BL

)
+

+ν̄L′UL+ ν̄ᾱL′B′TBL

(b) ΦS(S, T ) = minL Υ(S, T, L)
(c) 0 ≤ Υ(S, T, L∗

S,T ) = ΦS(S, T ) ≤ Υ(S, T, L) ∀L
(d) If Sk+1 > Sk andTk+1 > Tk, thenSk+2 > Sk+1 and
Tk+2 > Tk+1.

(e) If the pair(A,W 1/2) is observable andS = ΦS(S, T )
andT = ΦT (S, T ), thenS > 0 andT > 0.
Proof: Fact (a) can be easily checked by direct substitu-

tion.
(b) If U is invertible then it is easy to verify by substitution

that

Υ(S, T, L) = ΦS(S, T ) +

+ν̄(L−L
∗
S,T )′

�
U+B

′�(1−ᾱ)S+ᾱT
�
B
�
(L−L

∗
S,T )

≥ ΦS(S, T )

(c) The nonnegativeness follows form the observation that
Υ(S, T, L) a sum of positive semi-definite matrices. In fact
(1 − ν̄

1−ᾱ ) = γ̄(1−ν̄)
ν̄+γ̄(1−ν̄) ≥ 0 and 0 ≤ ᾱ ≤ 1. The equality

Υ(S, T, L∗
S,T ) = ΦS(S, T ) can be verified by direct substitu-

tion. The last inequality follows directly from Fact (b).
(d)

Sk+2 = ΦS(Sk+1, Tk+1) = Υ(Sk+1, Tk+1, L
∗
Sk+1,Tk+1

)
≥ Υ(Sk, Tk, L

∗
Sk+1,Tk+1

) ≥ Υ(Sk, Tk, L
∗
Sk,Tk

)

= ΦS(Sk, Tk) = Sk+1

Tk+2 = ΦT (Sk+1, Tk+1) ≥ ΦT (Sk, Tk) = Tk+1
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(e) First observe that S = ΦS(S, T ) ≥ 0 and
T = ΦT (S, T ) ≥ 0. Thus, to prove thatS, T > 0, we
only need to establish thatS, T are nonsingular. Suppose
they are singular, the there exist vectors0 6= vs ∈ N (S) and
0 6= vt ∈ N (T ), i.e. Svs = 0 and Tvt = 0, whereN (·)
indicates the null space. Then

0 = v′sSvs = v′sΦ
S(S, T )vs = v′sΥ(S, T, L∗

S,T )vs

= (1 − ν̄
1−ᾱ )v′sA

′SAvs + v′sWvs + ⋆

where⋆ indicates other terms. Since all the terms are positive
semi-definite matrices, this implies that all the term must be
zero:

v′sA
′SAvs = 0 =⇒ SAvs = 0 =⇒ Avs ∈ N (S)

v′sWvs = 0 =⇒W 1/2vs = 0

As a result, the null spaceN (S) is A-invariant. Therefore,
N (S) contains an eigenvector ofA, i.e. there existsu 6= 0
such thatSu = 0 and Au = σu. As before, we conclude
that Wu=0. This implies (using the PBH test) that the pair
(A,W 1/2) is not observable, contradicting the hypothesis.
Thus,N (S) is empty, proving thatS > 0. The same argument
can be used to prove that alsoT > 0.

Lemma 8.2: Consider the following operator:

Υ(S, T, L) = A′SA+W + 2ν̄A′SBL+

+ν̄L′
(
U +B′

(
(1 − ᾱ)S + ᾱT

)
B

)
L

(53)
Assume that the pairs(A,W 1/2) and (A,B) are observable
and controllable, respectively. Then the following statements
are equivalent:

(a) There exist a matrix̃L and positive definite matrices
S̃ and T̃ such that:

S̃ > 0, T̃ > 0, S̃ = Υ(S̃, T̃ , L̃), T̃ = ΦT (S̃, T̃ )

(b) Consider the sequences:

Sk+1 = ΦS(Sk, Tk), Tk+1 = ΦT (Sk, Tk)

where the operatorsΦS(·),ΦT (·) are defined in Equations
(49) and (50). For any initial conditionS0, T0 ≥ 0 we
have

lim
k→∞

Sk = S∞, lim
k→∞

Tk = T∞

andS∞, T∞ > 0 are the unique positive definite solution
of the following equations

S∞ = ΦS(S∞, T∞), T∞ = ΦT (S∞, T∞)
Proof: (a)⇒(b) The main idea of the proof

consists in proving convergence of several monotonic
sequences. Consider the sequencesVk+1 = Υ(Vk, Zk, L̃)
and Zk+1 = ΦT (Vk, Zk) with initial conditions
V0 = Z0 = 0. It is easy to verify by substitution that
V1 = W + ν̄L̃′UL̃ ≥ 0 = V0 and Z1 = W ≥ 0 = Z0.
Lemma 8.1(a) shows that the operatorΥ(V,Z, L̃) is linear
and monotonically increasing inV andZ, i.e.
(Vk+1 ≥ Vk, Zk+1 ≥ Zk) ⇒ (Vk+2 ≥ Vk+1, Zk+2 ≥ Zk+1).
Also the operatorΦT (V,Z) is linear and monotonically
increasing inV andZ. SinceV1 ≥ V0 andZ1 ≥ Z0, using
an induction argument we have thatVk+1 ≥ Vk, Zk+1 ≥ Zk

for all time k, i.e. the sequences are monotonically
increasing. These sequences are also bounded, in fact
(V0 ≤ S̃), (Z0 ≤ T̃ ) ⇒ (V1 = Υ(0, 0, L̃) ≤ Υ(S̃, T̃ , L̃) =
S̃), (Z1 = ΦT (0, 0) ≤ ΦT (S̃, T̃ ) = T̃ ) and the same
argument can be inductively used to show thatVk ≤ S̃ and
Zk ≤ T̃ for all K. Consider now the sequencesSk, Tk as
defined in the theorem initialized withS0 = T0 = 0. By
direct substitution we find thatS1 = W ≥ 0 = S0 and
T1 = W ≥ 0 = T0. By Lemma 8.1(d) follows that the
sequencesSk, Tk are monotonically increasing. Moreover,
by Lemma 8.1(c) it follows that(Sk ≤ Vk, Tk ≤ Zk) ⇒
(Sk+1 = ΦS(Sk, Tk) ≤ Υ(Sk, Tk, L̃) ≤ Υ(Vk, Zk, L̃) =
Vk+1), Tk+1 = ΦT (Sk, Tk) ≤ ΦT (Vk, Zk) = Zk+1).
Since this is verified fork = 0, it inductively follows
that (Sk ≤ Vk, Tk ≤ Zk) for all k. Finally sinceVk, Zk

are bounded, we have that(Sk ≤ S̃, Tk ≤ T̃ . Since
Sk, Tk) are monotonically increasing and bounded, it
follows that limk→∞ Sk = S∞ and limk→∞ Tk = T∞,
where S∞, T∞ are semi-definite matrices. From this
it easily follows that these matrices have the property
S∞ = ΦS(S∞, T∞), T∞ = ΦT (S∞, T∞). Definite
positiveness ofS∞ follows from Lemma 8.1(e) using
the hypothesis that(A,W 1/2) is observable. The same
argument can be used to prove thatT∞ > 0. Finally proof
of uniqueness of solution and convergence for all initial
conditionsS0, T0 can be obtained similarly to Theorem 1 in
[33] and it is therefore omitted.

(b)⇒(a) This part follows easily by choosing̃L = L∗
S∞,T∞

,
whereL∗ is defined in Lemma 8.1. Using Lemma 8.1(c) we
have S∞ = ΦS(S∞, T∞) = Υ(S∞, T∞, L̃), therefore the
statement is verified using̃S = S∞ and T̃ = T∞.

Lemma 8.3: Let us consider the fixed points of Equations
(49) and (50), i.e.S = ΦS(S, T ), T = ΦT (S, T ) whereS, T ≥
0. Let A be unstable. A necessary condition for existence of
solution is

|A|2(γ̄ + ν̄ − 2γ̄ν̄) < γ̄ + ν̄ − γ̄ν̄ (54)

where |A| ∆
= maxi |λi(A)| is the largest eigenvalue of the

matrix A.

Proof: To prove the necessity condition it is sufficient
to show that there exist some initial conditionsS0, T0 ≥ 0 for
which the sequencesSk+1 = ΦS(Sk, Tk), Tk+1 = ΦT (Sk, Tk)
are unbounded, i.e.limk→∞ Sk = limk→∞ Tk = ∞. To do
so, suppose that at some time-stepk we haveSk ≥ skvv

′

and Tk ≥ tkvv
′, wheresk, tk > 0, and v is the eigenvector

corresponding to the largest eigenvalue ofA′, i.e. A′v =
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λmaxv and |λmax| = |A′| = |A|. Then we have:

Sk+1 = ΦS(Sk, Tk) ≥ ΦS(skvv
′
, tkvv

′)

= min
L

Υ(skvv
′
, tkvv

′
, L)

= min
L

�
skA

′
vv

′
A + W + 2skν̄A

′
vv

′
BL +

+ν̄L
′�

U + B
′�(1 − ᾱ)skvv

′ + ᾱtkvv
′�

B
�
L
�

≥ min
L

�
sk|A|2vv

′ + 2skν̄λmaxvv
′
BL +

+ν̄L
′
B

′�(1 − ᾱ)skvv
′ + ᾱtkvv

′�
BL

�
= min

L

�
sk|A|2vv

′ − |A|2ν̄s2
k

ξk

vv
′ +

+ν̄ξk(λmaxs
2
kI +

1

ξk

BL)′vv
′(λmaxs

2
kI +

1

ξk

BL)
�

≥ sk|A|2vv
′ − |A|2ν̄s2

k

(1 − ᾱ)sk + ᾱtk

vv
′

= |A|2sk

�
1 − ν̄sk

(1 − ᾱ)sk + ᾱtk

�
vv

′

= sk+1vv
′

where I is the identity matrix andξk = (1 − ᾱ)sk + ᾱtk.
Similarly we have:

Tk+1 = ΦT (Sk, Tk) ≥ ΦT (skvv
′, tkvv

′)

= (1 − γ̄)tkA
′vv′A+ γ̄skA

′vv′A+W

≥ (1 − γ̄)tk|A2|vv′ + γ̄sk|A|2vv′
= |A|2

(
(1 − γ̄)tk + γ̄sk)

)
vv′

= tk+1vv
′

We can summarize the previous results as follows:

(Sk ≥ skvv
′, Tk ≥ tkvv

′) ⇒
⇒ (Sk+1 ≥ sk+1vv

′, Tk+1 ≥ tk+1vv
′)

sk+1 =φs(sk, tk) = |A|2sk

(
1 − ν̄sk

(1 − ᾱ)sk + ᾱtk

)
,

tk+1 =φt(sk, tk) = |A|2
(
(1 − γ̄)tk + γ̄sk)

)

Let us define the following sequences:

Sk+1 =ΦS(Sk, Tk), Tk+1 = ΦT (Sk, Tk), S0 = T0 = vv′

sk+1 =φs(sk, tk), tk+1 = φt(sk, tk), s0 = t0 = 1

S̃k = skvv
′, T̃k = tkvv

′

From the previous derivations we have thatSk ≥ S̃k, Tk ≥ T̃k

for all time k. Therefore, it is sufficient to find when the scalar
sequencessk, tk diverges to find the necessary conditions. It
should be evident that also the operatorsφs(s, t), φt(s, t) are
monotonic in their arguments. Also it should be evident that
the only fixed points ofs = φs(s, t), t = φt(s, t) ares = t =
0. Therefore we should be find when the origin is an unstable
equilibrium point, since in this caselimk→∞ sk, tk = ∞. Note
that t = φt(s, t) can be written as:

t = ΦT (s, t) = (1 − γ̄)|A|2t+ γ̄|A|2s

= ψ(s) =
γ̄|A|2s

1 − (1 − γ̄)|A|2
with the additional assumption1−(1−γ̄)A2 > 0. A necessary
condition for stability for the origin is that the origin of

restricted mapzk+1 = φ(zk, ψ(zk)) is stable. The restricted
map is given by:

zk+1 = |A|2zk


1 − ν̄

zk

(1 − ᾱ)zk + ᾱ γ̄|A|2

1−(1−γ̄)A2 zk




= |A|2

1 − ν̄

(1 − ᾱ) + ᾱ γ̄|A|2

1−(1−γ̄)A2


 zk

= |A|2
(

1 − ν̄(1 − (1 − γ̄)|A|2)
γ̄ + ν̄ − γ̄ν̄ − ν̄(1 − γ̄)|A|2

)
zk

=

(
γ̄(1 − ν̄)|A|2

γ̄ + ν̄ − γ̄ν̄ − ν̄(1 − γ̄)|A|2
)
zk

This is a linear map and it is stable only if the term inside the
parenthesis is smaller than unity, i.e.

(
γ̄(1 − ν̄)|A|2

γ̄ + ν̄ − γ̄ν̄ − ν̄(1 − γ̄)|A|2
)

< 1

γ̄ + ν̄ − γ̄ν̄ − ν̄(1 − γ̄)|A|2 > γ̄(1 − ν̄)|A|2
γ̄ + ν̄ − γ̄ν̄ > |A|2(γ̄ + ν̄ − 2γ̄ν̄)

which concludes the lemma.

Lemma 8.4: Let us consider the fixed points of Equations
(49) and (50), i.e.S = ΦS(S, T ), T = ΦT (S, T ) whereS, T ≥
0. LetA be unstable,(A,W 1/2) observable andB square and
invertible. Then a sufficient condition for existence of solution
is

|A|2(γ̄ + ν̄ − 2γ̄ν̄) < γ̄ + ν̄ − γ̄ν̄ (55)

where |A| ∆
= maxi |λi(A)| is the largest eigenvalue of the

matrix A.
Proof: The proof is constructive. In fact we find a

control feedback gaiñL that satisfies the conditions stated in
Theorem 8.2(a). Let̃L = −ηB−1A whereη > 0 is a positive
scalar that is to be determined. Also considerS = sI, T = tI,
whereI is the identity matrix ands, t > 0 are positive scalars.
Then we have

Υ(sI, tI, L̃) = A
′
sA + W − 2ν̄ηA

′
sA + ν̄A

′
B

−′

UB
−1

A +

+ν̄η
2
A

′�(1 − ᾱ)s + ᾱt
�
A

≤ |A|2
�
s − 2ν̄sη + ν̄

�
(1 − ᾱ)s + ᾱt

�
η
2
�
I + wI

= ϕ
s(s, t, η)I (56)

ΦT (sI, tI) = γ̄A
′
sA + (1 − γ̄)A′

tA + W

≤
�
γ̄|A|2s + (1 − γ̄)|A|2t

�
I + wI

≤ ϕ
t(s, t)I (57)

wherew = |W + ν̄A′B−′

UB−1A| > 0 andI is the identity
matrix. Let us consider the following scalar operators and
sequences:

ϕs(s, t, η) = |A|2(1 − 2ν̄η + ν̄(1 − ᾱ)η2)s+ ν̄ᾱη2t+ w

ϕt(s, t) = γ̄|A|2s+ (1 − γ̄)|A|2t+ w

sk+1 = ϕs(sk, tk, η), tk+1 = ϕt(sk, tk), s0 = t0 = 0

The operators are clearly monotonically increasing ins, t, and
since s1 = ϕs(s0, t0, η) = w ≥ s0 and t1 = ϕt(s0, t0) =
w ≥ t0, it follows that the sequencessk, tk are monotonically
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increasing. If these sequences are bounded, then they must
converge tos̃, t̃. Thereforesk, tk are bounded if and only if
there exist̃s, t̃ > 0 such that̃s = ϕs(s̃, t̃, η) and t̃ = ϕt(s̃, t̃).
Let us find the fixed points:

t̃ = ϕt(s̃, t̃) ⇒

t̃ =
γ̄|A|2

1 − (1 − γ̄)|A|2 s̃+ wt

wherewt
∆
= w

1−(1−γ̄)|A|2 > 0, and we must have1 − (1 −
γ̄)|A|2 > 0 to guarantee that̃t > 0. Substituting back into the
operatorϕs we have:

s̃ = |A|2(1 − 2ν̄η + ν̄(1 − ᾱ)η2)s̃ + ν̄ᾱη
2 γ̄|A|2
1 − (1 − γ̄)|A|2 s̃ +

+ν̄ᾱη
2
wt + w

= |A|2
�

1−2ν̄η+ν̄
�
(1−ᾱ)+

γ̄ᾱ|A|2
1−(1−γ̄)|A|2

�
η
2

�
s̃+w(η)

= |A|2
�

1−2ν̄η+ν̄
γ̄+ν̄−γ̄ν̄−ν̄(1−γ̄)|A|2

1−(1−γ̄)|A|2 η
2

�
s̃+w(η)

= a(η)s̃ + w(η)

wherew(η)
∆
= ν̄ᾱη2wt +w > 0. For a positive solutioñs to

exist, we must havea(η) < 1. Sincea(η) is a convex function
of the free parameterη, we can try to increase the basin of
existence of solutions by choosingη∗ = argminηa(η), which
can be found by solvingda

dη (η∗) = 0 and is given by:

η∗ =
1 − (1 − γ̄)|A|2

γ̄ + ν̄ − γ̄ν̄ − ν̄(1 − γ̄)|A|2
Therefore a sufficient condition for existence of solutionsare
given by:

a(η∗) < 1

|A|2
(

1 − ν̄
1 − (1 − γ̄)|A|2

γ̄ + ν̄ − γ̄ν̄ − ν̄(1 − γ̄)|A|2
)

< 1

(
γ̄(1 − ν̄)|A|2

γ̄ + ν̄ − γ̄ν̄ − ν̄(1 − γ̄)|A|2
)

< 1

which is the same bound for the necessary condition of
convergence in Lemma 8.3.

If this condition is satisfied thenlimk→∞ sk = s̃ and
limk→∞ tk = t̃. Let us consider now the sequencesS̄k =
skI, T̄k = tkI, Sk+1 = Υ(Sk, Tk, L̃) and Tk+1 =
ΦT (Sk, Tk), where L̃ = −η∗B−1A, S0 = T0 = 0, and
sk, tk where defined above. These sequences are all monoton-
ically increasing. From Equations (56) and (57) it follows
that(Sk ≤ skI, Tk ≤ tkI) ⇒ (Sk+1 =≤ sk+1I, Tk+1 ≤ tkI).
Since this is verified fork = 0 we can claim thatSk < s̃I and
Tk < t̃I for all k. SinceSk, Tk are monotonically increasing
and bounded, then they must converge to positive semidefinite
matricesS̃, T̃ ≥ 0 which solve the equations̃S = Υ(S̃, T̃ , L̃)
and T̃ = ΦT (S̃, T̃ ). Since by hypothesis the pair(A,W 1/2)
is observable, using similar arguments of Lemma 8.1(e), it
is possible to show that̃S, T̃ > 0. ThereforeS̃, T̃ , L̃ satisfy
the conditions of statement (a) Theorem 8.2, from which if
follows statement (b) of the same theorem. This implies that
the sufficient conditions derived here guarantee the claim of
the lemma.

We can use the previous lemmas to prove the following
theorems that states the properties of optimal control for no-
ACK protocols in the special scenario with no measurement
noise and full state observation.

Theorem 8.5: Consider the system (1)-(3) and consider the
problem of minimizing the cost function (5) within the classof
admissible policiesuk = f(Gk), whereGk is the information
available under UDP-like schemes, given in Equation (4).
Assume also thatR = 0 andC is square and invertible. Then:

(a) The optimal estimator gain is constant and in particular
Kk = I if C = I.

(b) The infinite horizon optimal control exists if and only
if there exists positive definite matricesS∞, T∞ > 0 such
thatS∞ = ΦS(S∞, T∞) andT∞ = ΦT (S∞, T∞), where
ΦS andΦS are defined in Equations (49) and (50).

(c) The infinite horizon optimal controller gain is constant:

limk→∞ Lk = L∞

L∞ = −(B′(ᾱT∞ + (1 − ᾱ)S∞)B + U)−1B′S∞A
(58)

(d) A necessary condition for existence ofS∞, T∞ > 0 is

|A|2(γ̄ + ν̄ − 2γ̄ν̄) < γ̄ + ν̄ − γ̄ν̄ (59)

where|A| ∆
= maxi |λi(A)| is the largest eigenvalue of the

matrixA. This condition is also sufficient ifB is square
and invertible.

(e) The expected minimum cost converges:

J∗
∞ = lim

k→∞

1

N
J∗

N = trace
(
(1− γ̄)T∞ + γ̄S∞)Q

)
(60)

Proof: (a) This fact follows from Equations (43)-
(45). Statements (b), (c) and (e) follow from Lemma 8.2
and Equations (47) and (52). Statement (d) corresponds
to Lemmas 8.3 and 8.4.
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