
1

Distributed multi-agent Gaussian regression via
finite-dimensional approximations

Gianluigi Pillonetto, Luca Schenato, Damiano Varagnolo

Abstract—We consider the problem of distributedly estimating
Gaussian processes in multi-agent frameworks. Each agent col-
lects few measurements and aims to collaboratively reconstruct
a common estimate based on all data. Agents are assumed
with limited computational and communication capabilities and
to gather M noisy measurements in total on input locations
independently drawn from a known common probability density.
The optimal solution would require agents to exchange all the M
input locations and measurements and then invert an M×M ma-
trix, a non-scalable task. Differently, we propose two suboptimal
approaches using the first E orthonormal eigenfunctions obtained
from the Karhunen-Loève (KL) expansion of the chosen kernel,
where typically E � M . The benefits are that the computation
and communication complexities scale with E and not with M ,
and computing the required statistics can be performed via
standard average consensus algorithms. We obtain probabilistic
non-asymptotic bounds that determine a priori the desired level
of estimation accuracy, and new distributed strategies relying
on Stein’s unbiased risk estimate (SURE) paradigms for tuning
the regularization parameters and applicable to generic basis
functions (thus not necessarily kernel eigenfunctions) and that
can again be implemented via average consensus. The proposed
estimators and bounds are finally tested on both synthetic and
real field data.

Index Terms—Gaussian processes, sensor networks, distributed
estimation, kernel-based regularization, nonparametric estima-
tion, average consensus

I. INTRODUCTION

Many modern engineering problems involve networks con-
taining a large number of agents which have to cooperate to
obtain a common goal. Several of these tasks can be seen as
problems of function estimation from sparse and noisy data, a
central issue in the machine learning field [1], [2]. Examples
include the determination of the wind speed and direction field
in a wind farm from local measurements of the turbines [3],
the reconstruction of the temperature field in a datacenter from
local measurements at each server [4], and weather forecasts
[5], [6]. Traditional centralized machine-learning estimation
approaches are computationally non-scalable when the net-
work is large. Moreover parallelization of computation using
client-server architectures, which can alleviate this problem,
might not be feasible. This happens, e.g., in applications where
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communication is peer-to-peer, as in wireless sensor networks
or multi-agent robotics, and where each agent is expected to
have a common copy of the global estimate. In these cases,
fully distributed cooperation approaches are ought [7].

A. State-of-the-art

This paper considers a distributed nonparametric Gaussian
regression approach. In this context, the unknown map is
modeled as a zero-mean Gaussian process whose covariance
(also called kernel in the machine learning literature) has to
embed expected properties like smoothness [8], [9]. Other
approaches to function estimation could be also adopted,
e.g., sparse regression based on the `1 norm, automatic
relevance determination or the elastic net [10], [11], [12],
[13], [14]. However, in our framework the implementation of
these approaches is not trivial and would require sophisticated
distributed optimization algorithms like ADMM [15]. In fact,
we consider a scenario where N agents first collect a total of
M direct and noisy measurements of the unknown map on
input locations drawn from a common and known probability
density. The aim is then to obtain a shared function estimate.
To simplify the exposition, we assume w.l.o.g. N = M , i.e.,
each agent collects a single measurement. We also assume
that computational and data storage capabilities are limited,
and that the communication network is peer-to-peer, i.e.,
agents are able only to communicate with a restricted number
of neighbors. As described below, this makes the problem
difficult also under Gaussian process assumptions, but we will
see that function estimation can be performed using simple
average operations.

Assuming that f and the measurements noise are jointly
Gaussian, achieving the minimum variance estimate requires
knowing all the M measurements and related input locations,
plus invert an M × M matrix with O(M3) operations, a
difficult task in a distributed fashion. When the data set size
M is large, the complexity is high also in centralized contexts.
Therefore, many alternative approaches have been developed
relying, e.g., on the notion of pseudo input locations [16], [17],
[18], the use of matrix factorizations [19] and approximations
of the kernel function [20], [21] through the Nyström method
or greedy techniques [22], [23], [24]. Along this way, KL
expansions [25] have been also used to decompose the kernel
in terms of eigenfunctions that are orthogonal w.r.t. the input
locations probability density. One can then approximate the
Gaussian process via the E kernel eigenfunctions associated
to the largest eigenvalues, an approximation that corresponds
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to perform the best process approximation before seeing the
data [25] (see Section III-A for more details). A posteriori, i.e.,
after seeing the measurements and their input locations, the
situation is instead more subtle since there exist E-dimensional
subspaces that allow to come closer to the minimum variance
estimator [26]. However, the a priori basis given by the KL
expansion has important advantages. In fact, as proved in [27],
the first E kernel eigenfunctions are asymptotically optimal,
i.e., they provide the best E-dimensional approximation of
the minimum variance estimator as the data set size M grows
to infinity. In addition, differently from the a posteriori basis
described in [26], the a priori basis can be computed off-line.
Moreover, as detailed in Section III-B, computing the final
estimates requires computing sufficient statistics that have the
structure of averages of M local matrices and local vectors
of dimension respectively E × E and E. This implies that
the basic building block of the estimators involves computing
averages over networks which can be more efficient from a
memory, computation and communication perspective when
E � M . Such averages can be computed via the so called
average consensus algorithms [28], [29] which require only
mild assumption on network connectivity and communication.
In particular, these algorithms require no global topological
information, only minimal local coordination and can be
implemented also in the context of asynchronous updates and
lossy communication [30].

B. Contribution

Our stream of research pairs the ones of other authors
focusing on distributed kernel regression. An example is [31],
that proposes a distributed regularized kernel Least Squares
(LS) regression algorithm that exploits successive orthogonal
projections, or [32] that extends [31] by designing strategies to
reduce the communication and synchronization needs. Estima-
tors with reduced order model complexity have been proposed
in [33], while nonparametric schemes using Nearest-Neighbors
interpolation strategies have been studied also in [34]. Another
Gaussian estimation approach is considered in [35], with focus
on the problem of sequentially predicting the most informative
future input locations to minimize simultaneously the predic-
tion error and the uncertainty in the regularization parameters.
Other distributed regression algorithms are proposed in [36]
with the aim of estimating a dynamic Gaussian process and its
gradient, while in [37] authors develop a distributed learning
and cooperative control algorithm where agents estimate a
static field modeled as a network of radial basis functions
whose centers locations are known in advance.

Despite the many research efforts, none of the aforemen-
tioned works on distributed regression have addressed the
following fundamental issue: assigned a Gaussian prior (the
kernel) and the input locations distribution, how much infor-
mation does the network need to exchange to obtain, with a
probability 1 − α, the desired level of estimation accuracy?
In this paper we will answer this question adopting KL-based
strategies which exploit E kernel eigenfunctions. In particular,
we will study two different estimators denoted by f̂A and f̂B

which have computational and communication complexities
of order O(E2) and O(E), respectively, originally proposed
in [38]. Differently from [38] which focused on finding Monte
Carlo based strategies for assessing the a posteriori statistical
performance of the estimators, in this work the focus is on
characterizing their a priori prediction capability on future
data by first assigning the kernel and the input locations
statistics, and then deriving non-asymptotic error bounds that
are functions of E, M and α. This analysis can be also seen
as the extension to the Bayesian context of the concept of
effective dimension developed in deterministic frameworks,
e.g., in [39]. There it has been shown that, in the worst case,
subspaces of dimension

√
M , i.e., sub-polynomial in the data

set size, capture the estimate. Parallel to this, our bound returns
information on the Bayesian effective dimension revealing
which subspace can be really influenced by the measurements.

Another major contribution provided in this work is to show
that both f̂A and f̂B are asymptotically optimal, i.e., for fixed
E, as M grows to infinity there is no other estimator which
can perform better in the mean squared error sense. We will
also see that, while f̂A is always consistent, i.e., convergent
in probability to the true function as E,M →∞, consistency
of f̂B requires E to grow slower than M . In some sense,
such result clarifies the price to pay when adopting a estimator
parsimonious in the information exchange.

Finally, in many applications the kernel scale factor is
unknown and its tuning is critical since it strongly affects the
performance of the Bayesian estimator. In addition, the kernel
expansion could be hard to be obtained and one would rather
use a different set of basis functions. In the terminal part of
the paper, we address these problems by proposing a novel
distributed tuning strategy based on the SURE criterion [40].
Standard approaches proposed in the literature in the context of
a centralized framework (like cross-validation and maximum
likelihood [41], [42], [43], [44], MAP estimation [45], ex-
pected improvement [46] and Markov chain Monte Carlo [47],
[48]) require high computation and communication overhead,
and are therefore not suited for distributed implementations.
Instead, our strategy allows for simultaneous hyperparameter
tuning and function estimation via a single average consensus
algorithm over a vector of size O(E2) when f̂A is employed,
and via only two averages of size O(E) when f̂B is employed.
Very importantly, the SURE criterion be used also for generic
basis functions, such as kernel sections or Nyström bases,
thus not necessarily restricted to be kernel eigenfunctions and
defined.

C. Paper outline

The paper is organized as follows. Section II formulates
the Bayesian estimation problem while Section III describes
the KL expansion of the Gaussian process and the distributed
estimators. Section IV provides the statistical characterization
of our distributed estimators, also deriving error bounds which
are then tested via some numerical experiments. Section V
proposes distributed strategies to tune the possibly unknown
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regularization parameter entering our estimators for generic
basis functions and discusses practical implementation issues.
These strategies are also tested on both synthetic and real data.
Section VI collects conclusions and future research directions
while proofs are collected in the Appendix.

II. BAYESIAN ESTIMATION

A. The measurements model

We consider the measurements model
ym = f (xm) + νm, m = 1, . . . ,M (1)

with the input locations xm following the stochastic generation
scheme

xm ∼ µ(X ) i.i.d., m = 1, . . . ,M, (2)
with µ a non-degenerate probability measure on the compact
X . The unknown function f : X → R is a zero-mean Gaussian
process with continuous covariance K : X × X → R, i.e.,

f ∼ N (0,K) . (3)
The measurement noise is also Gaussian of known variance
σ2
ν :

νm ∼ N
(
0, σ2

ν

)
.

Finally, {νm}Mm=1, {xm}Mm=1 and f are all assumed mutually
independent.

B. The Bayesian estimator

The Gaussian assumptions of Section II-A imply that the
posterior of f given the dataset {xm, ym}Mm=1 is still Gaussian.
Also, the Maximum A Posteriori (MAP) estimator coincides
with the minimum variance estimator and is given by

f̂MAP(x) =
[
K(x, x1) . . . K(x, xM )

]
HMAP

 y1

...
yM


with

HMAP :=


K(x1, x1) · · · K(x1, xM )

...
...

K(xM , x1) · · · K(xM , xM )

+ σ2
νI


−1

.

The storage and computational requirements needed to
compute f̂MAP are thus O

(
M2
)

and O
(
M3
)
, respectively.

The communication complexity is either O (dim(X )M) if
agents share the input locations xm or O

(
M2
)

if they share
the covariances K(xm, xm′). Thus, storage, computational and
communication complexities do not scale favorably with the
dataset size M . Our aim is thus to find good approximators
of f̂MAP that are suitable for distributed implementations.

III. FINITE-DIMENSIONAL APPROXIMATIONS OF THE
BAYESIAN ESTIMATOR

A. KL expansion: kernel

The kernel (3) can be expanded in terms of eigenfunctions
φe orthonormal w.r.t. the measure µ in (2) and related eigen-

functions λe [25]. They are defined by

λeφe(x) =

∫
X
K(x, x′)φe(x

′)dµ(x′), (4)

K(x, x′) =

+∞∑
e=1

λeφe(x)φe(x
′) λ1 ≥ λ2 . . . > 0, (5)

and, using δij for the Kronecker delta,∫
X
φi(x)φj(x)dµ(x) = δij . (6)

Let E be a positive integer. Then (4), (5) and (6) allow us
to reformulate the process f via the following KL expansion

f(x) =

E∑
e=1

aeφe(x)︸ ︷︷ ︸
=: fa(x)

+

+∞∑
e=1

beφE+e(x)︸ ︷︷ ︸
=: fb(x)

. (7)

The expansion coefficients have been thus divided into two
sets: a finite one composed by the E random variables ae,
and an infinite one given by the remaining variables be. The
elements in these two sets are all mutually independent, and
satisfy

ae ∼ N (0, λe) , e = 1, . . . , E (8a)
be ∼ N (0, λE+e) , e = 1, 2, . . . (8b)

It is well known that
S := span 〈φ1(·), . . . , φE(·)〉 (9)

is that E-dimensional subspace that captures the biggest part
of the statistical energy of f as measured by E

[∫
f2dµ

]
. In

other words, fa is the best E-dimensional approximation of f
in the mean square sense [27].

In what follows, it is always assumed that all the kernel
eigenfunctions are contained in a ball of finite radius in the
space of continuous functions, i.e.,

Assumption 1 There exists a k < +∞ s.t.
sup
x∈X
|φe(x)| ≤

√
k < +∞ e = 1, 2, . . . . (10)

Assumption 1 is satisfied by all the finite-dimensional ker-
nels and also by classical covariances like the spline kernels,
e.g., see [49] for the case of uniform µ. In practice, if the KL
expansion is not available in closed form, it can be obtained
numerically with arbitrary accuracy, as for example described
in [50], also permitting to compute the constant k.

B. KL expansion: measurement model

Our next step is to search for finite-dimensional estimators
of f suitable for distributed implementations. Below, we
introduce two different estimators, denoted by f̂A and f̂B ,
which assume values in the finite-dimensional subspace S
defined in (9). First, it is useful to rewrite model (1) in a
more compact form.

Let
x := [x1, . . . , xM ]

T

y := [y1, . . . , yM ]
T

ν := [ν1, . . . , νM ]
T (11)
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a := [a1, . . . , aE ]
T

b := [b1, b2, . . .]
T (12)

G :=

G11 . . . G1E

...
...

GM1 . . . GME

 Z :=

 Z11 Z12 . . .
...

...
ZM1 ZM2 . . .


(13)

Gme := φe(xm), m = 1, . . . ,M, e = 1, . . . , E,

Zme := φE+e(xm), m = 1, . . . ,M, e = 1, 2, . . . (14)

Considering decomposition (7), definitions (11)-(14) and us-
ing classical algebraic notation to handle infinite-dimensional
objects, the measurements model (1) becomes

y = Ga+ Zb+ ν. (15)
With this novel notation Ga accounts for the contribution from
fa while Zb accounts for the contribution from fb.

C. The E-dimensional estimator f̂A

Let
f̂A(x) :=

[
φ1(x) · · · φE(x)

]
HAy (16)

where

HA :=

(
GTG

M
+
σ2
ν

M
Λ−1
E

)−1
GT

M
(17)

and ΛE := diag (λ1, . . . , λE). The estimator f̂A is suitable
for distributed computations. In fact, defining

Gm := [φ1(xm), . . . , φE(xm)]

one has
GTG

M
=

1

M

M∑
m=1

GTmGm,
GTy

M
=

1

M

M∑
m=1

GTmym. (18)

Since GTmGm ∈ RE×E and GTmym ∈ RE are local quantities,
(18) points out that f̂A can be distributedly computed through
the parallelization of two average consensus strategies: one on
the GTmGm’s and one on the GTmym’s, for a total of E2 +
E scalars. This estimator would correspond to the Minimum
Variance Unbiased Estimator (MVUE) estimator if the process
f in (7) were truncated just to fa.

D. The E-dimensional estimator f̂B

As stated in (6), one has

E

[[
GTG

M

]
e,e′

]
=

∫
X
φe(x)φe′(x) dµ(x) = δe,e′ .

and, given the assumptions in Section II-A and Assumption 1,
the following convergence in probability holds

GTG

M
=

1

M

M∑
m=1

GTmGm
M→+∞−−−−−→ E

[
GTG

M

]
= I.

Thus, it is tempting to use the approximation
GTG

M
≈ I (19)

and use, in place of HA in (16), the matrix

HB :=

(
I +

σ2
ν

M
Λ−1
E

)−1
GT

M
. (20)

In turn, this approach approximates f̂A with
f̂B(x) :=

[
φ1(x) · · · φE(x)

]
HBy.

The estimator f̂B is more advantageous than f̂A for distributed
computations. In fact, it requires an average consensus on
just the column vectors GTmym’s, for a total of E scalars
(differently from the E2 +E ones required by f̂A), and does
not require any expensive matrix inversion since I +

σ2
ν

M Λ−1
E

is diagonal.

IV. STATISTICAL ANALYSIS OF f̂A AND f̂B

Ideally one would like to compute E
[
‖f − f̂A‖2

]
and

E
[
‖f − f̂B‖2

]
, or at least some bounds that quantify the per-

formance of the estimator for any specified E and M a priori.
However, the computation of such quantities is intractable or,
at least, requires an expensive Monte Carlo analysis, possi-
bly to be repeated for many different design variables like,
e.g., M,E, σ2

ν . To circumvent this challenge, we will exploit
the assumption that the input locations are randomly drawn
from a known distribution µ and the orthonormality of the
eigenfunctions to find bounds on E

[
‖f − f̂A‖2

]
that hold with

arbitrarily high probability. More specifically, the key idea is
to find an event E that occurs with arbitrarily high probability
such that informative bounds on E

[
‖f − f̂A‖2 | E

]
can be

computed. This is formally described in the next sections.

A. Performance indexes and lower bound

Two important performance indexes we consider for f̂A and
f̂B are the errors defined by the conditional expectations

ErrA(x) := E
[∥∥∥f − f̂A∥∥∥2

| x
]

ErrB(x) := E
[∥∥∥f − f̂B∥∥∥2

| x
] (21)

where

‖g‖2 :=

∫
X
g2(x)dµ(x).

The variables ErrA(x) and ErrB(x) are stochastic, since they
are functions of the random input locations x that in our
settings are assumed random as described in (2). Hence, the
crux of our analysis will be how to account for the randomness
coming from x. Note also that ‖ · ‖ depends on µ so that
ErrA and ErrB quantify the prediction errors on future data
independently drawn from the same training set distribution.

Exploiting the KL expansion introduced in Section III-A a
lower bound on the errors ErrA(x) and ErrB(x) can be also
easily obtained. More generally, the following result bounds
the performance achievable by any generic E-dimensional
estimator of f .

Theorem 2 Let f̂? be any generic estimator of f , function of
x and y and assuming values in any generic E-dimensional
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space fixed a priori. Then

min
f̂?

E
[
‖f − f̂?‖2 | x

]
≥

+∞∑
e=E+1

λe. (22)

The following definition will be especially important for our
future developments.

Definition 3 We say that ErrA ≤ q or ErrB ≤ q with proba-
bility 1−α if there exists an event E in the σ-algebra induced
by x of probability at least 1− α such that, respectively,

E [ErrA(x) | E ] ≤ q (23)
or

E [ErrB(x) | E ] ≤ q. (24)

Thus, if α is close to zero saying that ErrA ≤ q with
probability 1 − α is equivalent to saying that the average
error associated to f̂A is smaller than q with high probability.
Finally, note that setting E to the entire sample space, the
conditional expectations in the Left Hand Side (LHS) of (23)
and (24) become unconditional ones, and actually correspond
to the Mean Square Errors (MSEs) of f̂A and f̂B , i.e.,

MSEf̂A =

∫
X

ErrA(x)dµ(x), (25)

MSEf̂B =

∫
X

ErrB(x)dµ(x). (26)

B. Non asymptotic error bounds

The key issue is to bound the performance indexes ErrA
and ErrB for any finite number of measurements M and
eigenfunctions E. The following theorem provides the desired
bounds. It depends on the input locations distribution µ, the
kernel eigenvalues λe and constant k defined in (4) and (10),
the number of eigenfunctions E and measurements M . In
addition the bound is also function of a parameter ε ∈ (0, 1]
connected to maximal and minimal (stochastic) eigenvalue of
GTG
M , as detailed in the proof contained in the Appendix.

Theorem 4 Let the assumptions in Section II-A and Assump-
tion 1 hold, α ∈ (0, 1) be a desired confidence level (e.g., 0.01
or 0.05), and ε ∈ (0, 1] be given. If E,M and k satisfy

1− ε+ ε log(ε) ≥ Ek

M
log

(
E

α

)
(27)

then with probability at least 1− α it holds that
ErrA ≤ BndA (28)

with

BndA :=
kM

1− α

(
E∑
e=1

λ2
e

(εMλe + σ2
ν)2

)(
+∞∑

e=E+1

λe

)

+
σ2
ν

1− α

(
E∑
e=1

λe
εMλe + σ2

ν

)
+

(
+∞∑

e=E+1

λe

)
.

(29)

Under the same assumption but with E,M and k now
satisfying

1− ε+ ε log(ε) ≥ Ek

M
log

(
2E

α

)
, (30)

then with probability at least 1− α it holds that
ErrB ≤ BndB (31)

with

BndB :=
kM

1− α

(
E∑
e=1

λ2
e

(Mλe + σ2
ν)

2

)(
+∞∑

e=E+1

λe

)

+
σ2
ν

1− α

(
E∑
e=1

λe
εMλe + σ2

ν

)
+

(
+∞∑

e=E+1

λe

)

+κ

(
E

M
σ2
ν +

E∑
e=1

λe

) (32)

where

κ =
1

1− α

(
ε+

λ−1
1 σ2

ν

M

)−4

(1− ε)2(2− ε)2 (33)

The obtained bounds are now tested via a numerical exam-
ple.

C. Numerical study

Consider the first-order spline kernel [51] which corre-
sponds to the Brownian motion covariance, i.e.,

K(x, x′) = min(x, x′) =

∞∑
e=1

λeφe(x)φe(x
′)

with the input locations probability measure µ in (2) set to the
uniform distribution on [0, 1]. With these settings

φe(x) =
√

2 sin (x(eπ − π/2)) , λe =
1

(eπ − π/2)2

and k = 2. To make the bounds only depend on E we set
M = 10000, 1 − α = 0.95, the noise variance σ2

ν = 0.12,
and ε ∈ (0, 1] that minimizes the bound while satisfying (27)
or (30) accordingly.

The thick lines in the two top panels of Figure 1 show
how BndA (left) and BndB (right) vary with E (bounds are
normalized using the prior process variance

∑∞
e=1 λe). For

the sake of comparison we also display the true (normalized)
MSEs (dashed line) as defined in (25) and (26), calculated via
a Monte Carlo of 1000 runs, and its lower bound (thin line),
i.e.,

∑∞
e=E+1 λe/

∑∞
e=1 λe as illustrated in Theorem 2.

As for BndA, it is interesting to notice that just 20 eigen-
functions are needed to obtain an high estimation accuracy in
both the cases. In addition, the curve is very close to the true
error profile (which in turn is close to the lower bound) and is
monotonically decreasing. Indeed, as discussed in the proof of
Theorem 7 contained in the next subsection, when one adopts
f̂A one should set E as large as possible (compatibly with
communication capabilities) since, at the limit, convergence
to the minimum variance estimator holds.

The profile of BndB is instead different and exhibit a
clear minimum at E = 7. The reason is that f̂B relies on
the asymptotic matrix approximation (19). The bound BndB
then points out that if E is too large then the quality of this
approximation can worsen, hence leading to an increment of
the corresponding MSE. One can see that also the true error
profile is not monotonically decreasing (indeed, we will see in
the next subsection that for M fixed and E going to infinity
f̂B is not guaranteed to converge to the minimum variance
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Figure 1. BndA and BndB (normalized by the a priori function variance) as a function of E, with α = 0.05,M = 10000 and for different eigenvalues
decay rates.

estimator). Note that, in this case, BndB is close to truth only
for low values of E and that the Monte Carlo analysis suggests
the best E to be around 50. Overall, this indicates that the
eigenfunctions number has to be seen as an important design
parameter for f̂B to optimize the performance. This point will
be the focus of Section V.

Finally, the two bottom panels of Figure 1 display the
same bounds except that the kernel eigenvalues now decay
exponentially to zero as λe = exp(−0.1e). Exponentially
decaying eigenvalues are typical for Gaussian kernels, and
therefore of practical relevance. The shapes of the curves
change but the same comments hold true.

D. Asymptotic behaviors of the estimators and of the bounds

Now, we start investigating the asymptotic properties of our
estimators considering a situation where their dimension E is
fixed while the number of measurements M grows to infinity.
The next result then shows that f̂A and f̂B asymptotically
reach the lower bound (22).

Theorem 5 Given the assumptions in Section II-A and As-
sumption 1,

lim
M→+∞

ErrA =

+∞∑
e=E+1

λe in probability

lim
M→+∞

ErrB =

+∞∑
e=E+1

λe in probability.

We now discuss the statistical consistency of our estimators.
In this case, the conditions under which f̂A and f̂B converge to
f as both E and M grow to infinity are different, as illustrated
in the following two results.

Theorem 6 Given the assumptions in Section II-A and As-
sumption 1,

lim
M→+∞

lim
E→+∞

ErrA = 0 in probability (34)

Theorem 7 Let E = E(M) such that
E(M) logEδ(M) ≤Mδ, lim

M→+∞
E(M) = +∞

for some δ ∈ (0, 1). Given the assumptions in Section II-A
and Assumption 1, then

lim
M → +∞
E = E(M)

ErrB = 0 in probability (35)

Remark 8 The sufficient condition required in the theorem in
terms of the growth rate of E(M) as a function of M is tight
according to the Chernoff’s bound. In fact, our requirement
is that M grows up a bit more slowly w.r.t. the relationship
E logE = M . Now, assume instead that E logE = M , i.e.,
δ = 1 and fix any rule such that ε → 1 and α → 0. Recall
that

1− ε+ ε log(ε) ≥ Ek

M
log

(
2E

α

)
must be satisfied. Asymptotically, the lhs tends to 0+ while the
second term becomes k − Ek

M log(α/2) and is larger than k
when α is sufficiently close to zero. One would thus need 0 ≥ k
but this is not possible. Also note that the previous theorem
implies that any sublinear power growth of E(M) = Ma, for
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any a ∈ (0, 1), satisfies the consistency condition, which can
be readily verified by choosing δ = 1+a

2 .

The consistency properties of f̂A and f̂B are thus remark-
ably different. For what regards f̂A, as M goes to infinity its
consistency is guaranteed without any control on the growth
rate of the dimension E. Indeed, as E increases such estimator
can approximate arbitrarily well the optimal f̂MAP. This agrees
with what already discussed in the previous subsection: when
using f̂A it is convenient for the network to use a dimension
E as large as possible, just compatible with its communication
constraints. Differently, the estimator f̂B is instead consistent
only if M augments sufficiently faster than E.

V. DISTRIBUTED TUNING OF THE REGULARIZATION
PARAMETER

The statistical bounds obtained in the previous section
quantify the performance of f̂A and f̂B assuming that the prior
function model is correct. Beyond their theoretical interest, in
real applications these bounds can give useful guidelines to
select the amount of information that agents need to exchange.
However, the covariance K is often defined only except for a
scalar factor γ. In addition, the prior is never perfect and the
tuning of γ could also hinder possible undermodeling. So, in
place of (3), in practical applications it is beneficial to consider

f ∼ N
(
0, γ−1K

)
with γ to be estimated from the observed noisy outputs and
related input locations. Furthermore, when f̂B is considered, it
has been shown that also the parameter E plays an important
role since, for a fixed number of samples M , its performance
degrades if E is too small or too large. Hence, it could be
desirable to adjust also the number of eigenfunctions forming
the estimate after seeing the data.

In the following we will follow the SURE approach for
tuning the free parameters. Although alternative approaches
are possible, such as cross validation and marginal likelihood
optimization, we will see that SURE has the advantage to
require less communication and computation processing, and
also to be suitable for distributed implementations. We start
by reporting a result obtained through a simple generalization
of the arguments in [44][Section 7.4].

Theorem 9 Let η be a deterministic unknown parameter
vector. Assume that the measurements model is

z = η + e
and consider also future measurements

z∗ = η + e∗

where the noises e and e∗ are uncorrelated, zero mean with
covariance Σ. Then, given the linear estimator ẑ = Sz, an
unbiased estimator of the risk E

[
‖z∗ − ẑ‖2

]
is given by:

‖z − ẑ‖2 + 2tr (SΣ) . (36)

The quantity tr (SΣ) entering the second part of the objective
(36) is connected to the concept of equivalent degrees of
freedom [52], [53].

In what follows, we assume that γ is unknown but belongs
to the finite set Γ which is known in advance to the network.
In addition, let us assume that the estimation step has been
performed adopting a certain value E. Hence, if f̂A has been
used, each agent has stored GTG

M and GT

M y so that, letting

HA(γ) :=

(
GTG

M
+
γσ2

ν

M
Λ−1
E

)−1
GT

M
,

it can compute HAy for any γ ∈ Γ.

If f̂B has been adopted, then also the optimal number of
eigenbases E′ has to be found within the set E′ ∈ Ω. In this
case, each agent knows only GT

M y and, letting

HB(γ,E′) := IE′
(
I +

γσ2
ν

M
Λ−1
E

)−1
GT

M
, (37)

where

IE′ :=

[
IE′

0E−E′

]
, (38)

it can compute HBy for any γ ∈ Γ and integer E′ ∈ Ω.

A. Distributed SURE for f̂A: tuning of γ

The first strategy is suited for f̂A. Surprisingly, we will
see that the tuning of γ can be performed by the network
using only local operations, without the need of performing
any additional consensus operation. Now, let us reconsider our
measurements model

y = Ga+ Zb+ ν
where a is E-dimensional. Hereby, we break away from the
assumptions on prior correctness by thinking of Ga+ Zb as
a deterministic vector. It thus corresponds to the deterministic
function f sampled on the realizations of the input locations.

We then create a (projected) measurement model via pre-
multiplication by GT /M , i.e.,

GTy

M︸ ︷︷ ︸
z

=
GTG

M
a+

GTZ

M
b︸ ︷︷ ︸

η

+
GTν

M︸ ︷︷ ︸
e

(39)

where the correspondences with the key quantities defining
the risk estimator (36) have been pointed out. From such
definitions, we also obtain ẑ = GTG

M HAy = Sz where

S :=
GTG

M

(
GTG

M
+
γσ2

ν

M
Λ−1
E

)−1

and

Σ = σ2
ν

GTG

M2
.

Recall that the matrix V = GTG
M = 1

M

∑M
m=1G

T
mGm and

the vector z = 1
M

∑M
m=1G

T
mym have been already computed

by each agent via a distributed consensus algorithm [29] to
implement f̂A. Then, since the network cardinality M is
known, each agent can tune γ by optimizing the SURE score
(36) connected with the prediction risk on the future data
z∗ = GTy∗

M , i.e.,
γ̂A = arg min

γ∈Γ
JA (γ) (40)
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with
JA (γ) := ‖(I − S)z‖2 + 2tr (SΣ)

=

∥∥∥∥∥γσ2
ν

M

(
V ΛE +

γσ2
ν

M
I

)−1

z

∥∥∥∥∥
2

+

+
2σ2

ν

M
tr

(
V 2

(
V +

γσ2
ν

M
Λ−1
E

)−1
)
.

To understand the rationale underlying this strategy we
have just to consider that the novel process (39) is formed
by E measurements, each corresponding to the projection of
the original ones on the space of the sampled eigenfunctions
[φe(x1) · · · φe(xM )]. For large M , the quantity GTZb van-
ishes so that η ≈ a. This means that the SURE score becomes
an unbiased estimator of those signal components which are
expected to capture the most part of the energy.

Remark 10 Based on the previous analysis, it is straightfor-
ward to observe that the SURE strategy described above is not
suited for f̂B . In fact, it requires each agent to know GTG

M .
But if this quantity were known, each agent could implement
f̂A, an estimator that has more favorable features than f̂B .

B. Distributed SURE for f̂B: tuning of E and γ

The second strategy is designed for f̂B . It tunes γ ∈ Γ
and E′ ∈ Ω just using an additional average consensus
on a vector of size E dim(Ω) dim(Γ). Our starting point
is still (39), i.e., the E-dimensional projected measurement
space, where z = GTy

M = 1
M

∑M
m=1G

T
myi ∈ RE has

been computed to implement f̂B via a standard distributed
consensus algorithm and is therefore known to each agent. Let
us define â(γ,E′) = HB(γ,E′)y ∈ RE . Clearly â(γ,E′) for
E′ < E is simply the truncated version of â(γ,E) where the
last E−E′ components are set to zero. Moreover, the vectors
â(γ,E′) can be independently computed by each agent for
each value of γ ∈ Γ, E′ ∈ Ω once z is available. The output
prediction can be written as

ẑ(γ,E′) =
GTG

M
â(γ,E′) =

1

M

M∑
m=1

GTmGmâ(γ,E′) ∈ RE .

Hence, each agent can compute the vectors ẑ(γ,E′) for each
γ ∈ Γ and E′ ∈ Ω by running an additional consensus of size
O(dim(Ω) dim(Γ)E). As so, the first part of the SURE score
‖z − ẑ(γ,E′)‖2 can be readily computed by each agent.

As for the second part of SURE related to the equivalent
degrees of freedom, we need to compute tr (S(γ,E′)Σ) where

S(γ,E′) =
GTG

M
IE′

(
I +

γσ2
ν

M
Λ−1
E

)−1

, Σ =
σ2
ν

M

GTG

M
.

Obviously, this would not make too much sense in the context
of f̂B since the computation of V = GTG

M would allow us to
compute f̂A which has better performance anyways. Therefore
we will approximate such matrix V (similarly to what we did
to obtain f̂B) by replacing it with an identity matrix. This
corresponds to use a sort of expected equivalent degrees of

freedom:

tr
(
S(γ,E′)Σ

)
≈ σ2

ν

M
tr

(
IE′

(
I +

γσ2
ν

M
Λ−1
E

)−1
)

=
σ2
ν

M

E′∑
e=1

λe
λe + γσ2

ν/M
.

The optimal tuning of the parameter is then obtained as(
γ̂B , ÊB

)
= argmin
γ∈Γ,E′∈Ω

JB (γ,E′) (41)

with

JB (γ,E′) := ‖z − ẑ(γ,E′)‖2 + 2
σ2
ν

M

E′∑
e=1

λe
λe + γσ2

ν/M
.

Note that this strategy for tuning f̂B is more efficient from a
communication and computational point of view than f̂A only
if dim(Ω) dim(Γ) < E.

C. Practical implementation issues

We now illustrate how to implement the proposed dis-
tributed estimators, also in connection with the properties of
the SURE tuning strategies described above. We discuss first
the use and the derivation of the KL expansion and then
how f can be estimated in a distributed way also adopting
basis functions different from the kernel eigenfunctions. All
the code developed for implementing the algorithms below
is publicly available in the repository github.com/damianovar/
Gaussian-regression-via-finite-dimensional-approximations.

1) Computing the KL expansions: Assume that the prior
on f is correct and that the input locations distribution µ is
known. Then, according to Theorem 5, at least for large data
set size M , the use of the eigenfunctions in (5) is statistically
optimal. Obtaining the kernel expansion in closed form is
in general difficult but important exceptions are the popular
spline and Gaussian kernel. In particular, for uniform µ the
expansion of the linear and cubic smoothing spline kernel is
reported in [49]. For Gaussian µ on the real line, the Gaussian
kernel expansion is given via Hermite polynomials, as reported
in [27][Section 4]. Such result then immediately generalizes to
multi-dimensional domains: if µ(·) and K(·, ·) are tensor prod-
ucts of one-dimensional distributions and kernels, respectively,
the expansion involves tensor products of the one-dimensional
eigenfunctions.

Assume then that the kernel expansion is not available in
closed form. It is worth pointing out that in many relevant
distributed problems the dimension of the function domain
X is limited to 2 or 3, and this makes the numerical deter-
mination of the eigenfunctions and eigenvalues viable. More
specifically, let {x̃e}qe=1 be independent samples from µ, and
let K be the q × q kernel matrix whose (i, j)-entry is

[K]ij = K (x̃i, x̃j) , i = 1, . . . , q, j = 1, . . . , q (42)
Then, according to [50][Lemma 9 and Corollary 10], the
eigenvalues and (normalized) eigenvectors from the Singular
Values Decomposition (SVD) of K converge to the eigenval-
ues and eigenfunctions of K(·, ·) as q → +∞. Hence, the
agents can be equipped with arbitrarily accurate approxima-
tions of the KL expansion.

github.com/damianovar/Gaussian-regression-via-finite-dimensional-approximations
github.com/damianovar/Gaussian-regression-via-finite-dimensional-approximations
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2) Generic basis functions: Kernel sections: As discussed
above, in some circumstances the kernel eigenfunctions could
be not available in closed form, or have a complex functional
form that makes storing them in the agents’ memory unpracti-
cal. In such cases, one would rather use basis functions which
admit simple closed-form expressions, possibly also non or-
thonormal. Even if the bounds developed in Section IV cannot
be used anymore, we will see that the SURE strategies for
hyperparameters tuning generalize well also to this situation.

We limit our discussion to the use of the kernel sections as
basis (an important case also in view of their connections with
the representer theorem [54], [55]). This basis is associated to
a set {x̃e}Ee=1 of input locations1 which could be drawn from
µ or selected in a deterministic way to cover sufficiently well
X . We then define our E basis functions as

φ1(·) = K (x̃1, ·) . . . φE(·) = K (x̃E , ·) .

Using the kernel sections in the decomposition (7), we can
think of fa as

fa(x) =

E∑
e=1

aeK (x̃e, x)

where the vector a := [a1, . . . , aE ]
T is now zero-mean

Gaussian with covariance proportional to the inverse of the
kernel matrix

[K]ij = K (x̃i, x̃j) , i = 1, . . . , E, j = 1, . . . , E

i.e.,
a ∼ N

(
0, γ−1K−1

)
.

In fact, if the prior were correct, this would indeed correspond
to see fa sampled on {x̃e}Ee=1 as zero-mean Gaussian with
covariance γ−1K−1.

Since the kernel sections are generally not orthonormal
w.r.t. µ, even if M → ∞ the projected measurements GTy

M
do not converge to the expansion coefficients ae. However,
these can be still used to tune the regularization parameters.
In particular, for what concerns f̂A, the distributed SURE
estimator introduced in Section V-A can estimate f and γ
with a single consensus just replacing Λ−1

E with K. Thus,
this estimator does not even need the knowledge of µ and the
agents can implement it once they know the function K (·, ·)
and the expansion grid {x̃e}Ee=1. The estimator f̂A is thus
given by:

â(γ) :=

(
GTG

M
+
σ2
ν

M
K

)−1
GTy

M

S(γ) :=
GTG

M

(
GTG

M
+
γσ2

ν

M
K

)−1

Consider now the implementation of f̂B through the kernel
sections with the estimator defined by the set of potential E′ ∈
Ω. In particular, for the sake of simplicity, assume that each E′

is associated to the kernel sections induced by the first E′ input
locations in the (ordered) set {x̃e}Ee=1. Given a generic matrix
A, the submatrix obtained by retaining its first E′ rows and

1As in (42), the set {x̃e}qe=1 is available a priori and has not to be confused
with the input locations {xm}Mm=1 then visited by the agents.

columns is denoted by [A]E′ . Assume moreover that the same
notation applies to vectors to retain only their first E′ elements.
Then, the same SURE strategy developed in Section V-B can
be adopted by setting

â (γ,E′) =

[
IE′

0

]([
E
GTG

M

]
E′

+
γσ2

ν

M
[K]E′

)−1[
GTy

M

]
E′

and

S(γ,E′) =

[
E
GTG

M

]
E′

[
IE′

0

]([
E
GTG

M

]
E′

+
γσ2

ν

M
[K]E′

)−1

where, instead of using IE′ defined in (38), we use IE′ and
0 ∈ R(E−E′)×E′ to account for the non-diagonal nature of the
matrices now at stake, with the trace of S given by the sum of
the its (i, i) entries with i = 1, . . . , E′, and where E

[
GTG
M

]
substitutes I in (37), since the kernel sections are generally
not orthonormal. The exact expectation of E

[
GTG
M

]
can be

explicitly computed in some special cases as in the example
below, or can be approximated via its sampled version, i.e.,
E
[
GTG
M

]
= E

[∑M
m=1

GTmGm
M

]
≈ 1

E

∑E
e=1

G̃Te G̃e
E where G̃e

are computed on the input locations {x̃e}Ee=1 that shall be used
for computing this empirical expectation, not to be confused
with the set of a-posteriori input locations {xm}Mm=1 used in
the actual coefficients estimation step.

Example 11 An interesting case, relevant for many applica-
tions, arises when one wants to use the Gaussian kernel and
its kernel sections as basis with µ a mixture of Gaussians. In
this case E

[
GTG
M

]
can be obtained in closed form. In fact,

consider first a scalar scenario, i.e., x ∈ R, with a mixture of
Gaussians made of a single component:

K(x, x′) = exp

(
− (x− x′)2

η

)
, µ ∼ N (µ0, a

2).

After simple computations, one finds that the (e, e′)-entry of
E
[
GTG
M

]
is∫ +∞

−∞

exp
(
− (x−xe)2

η − (x−xe′ )
2

η − (x−µ0)2

2a2

)
√

2πa
dx =

=

√
η√

η + 4a2
exp

(
− ?

η2 + 4ηa2

)
with ? = η

(
x2
e − 2µ0xe + x2

e′ − 2µ0xe′ + 2µ2
)

+

2a2 (xe − xe′)2. In the multivariate case, assume that

K(x, x′) = e−
‖x−x′‖2

η while µ is given by tensor products of
one-dimensional Gaussian densities. Then, the result is still
available in closed form: E

[
GTG
M

]
corresponds to convex

combinations of Hadamard products of the matrices obtained
in the scalar case.

3) Generic basis functions: Nyström method: The analysis
provided in the previous section can also be applied to the
popular Nyström method [56], [57]. The idea is to find a basis
for f of dimension E which has almost the same performance
of the basis composed of q � E kernel sections with q
an arbitrary number as in Section V-C1. More specifically,
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let {x̃n}qn=1 be q input location defined a-priori2he Nys-
tröm method closely resembles the eigenfunctions/eigenvalues
numerical computation method presented in Section V-C1,
the difference being that in Nyström the parameter q is in
general not extremely large and the input locations {x̃n}qn=1

are not generated by µ but are randomly extracted from the
training set. from µ, and consider both the corresponding
kernel matrix K ∈ Rq×q defined in (42) and its SVD
decomposition K = V DqV

T with V := [v1, . . . , vq] the
orthonormal eigenvectors of K and Dq the diagonal matrix
formed by the corresponding eigenvalues of K sorted in non-
increasing order. If VE := [v1, . . . , vE ] and DE ∈ RE×E is
the diagonal matrix with the first E sorted eigenvalues of K,
then KE = VEDEV

T
E is the best rank-E approximation of

K. The a priori basis

φe(x) :=

q∑
n=1

ve(n)K(x̃n, x), e = 1, . . . , E

with ve(n) the n-th element of the vector ve, can then be used
to define

fa(x) =

E∑
e=1

aeφe(x)

where a := [a1, . . . , aE ]
T is a zero-mean Gaussian vector

with
a ∼ N

(
0, γ−1

(
V TEKVE

)−1
)

= N
(
0, γ−1D−1

E

)
.

We can then use once again (13) to build G using the
φe’s above, and exploit the same strategies considered in
Section V-C2 just replacing K with DE .

D. Numerical study on synthetic data

Let us consider the same data generators based on the
spline and the exponentially decaying kernels described in
Section IV-C. The unknown function has to be reconstructed
from M = 10000 measurements by f̂A and f̂B . The errors
are still the MSEs defined in (25) and (26) normalized by
the prior variance (the same definition was used to build
Figure 1). The difference however is that our estimators now
depend on unknown hyperparameters that need to be inferred
from data. More specifically, when f̂A is adopted we fix
E = 400 and the regularization parameter is searched over a
grid Γ containing 50 logarithmically spaced values between
10−3 and 103. When using f̂B the grid Γ contains only
the three values {10−3, 0, 103} while E is estimated from
data over Ω = {1, 5, 10, 20, 50, 100, 200, 300, 400}. We still
consider a Monte Carlo study of 1000 runs where at any run
independent realizations of f , of the M input locations and
of the measurement noises are generated. Hyperparameters
tuning is then performed by:

• “f̂A+ oracle” and “f̂B+ oracle”, where “oracle” indicates
that these approaches know at any run the realization of
f (which is the object to estimate) and select exactly
those hyperparameters that minimize the MSE achiev-
able by those two estimators. For instance, assume that

2T

Data set size M = 100 M = 1000 M = 10000
Sp 0.93 0.987 0.99

Table I
SURE’S PERFORMANCE INDEX Sp SUMMARIZING FOUR MONTE CARLO

STUDIES AS A FUNCTION OF THE NUMBER M OF AVAILABLE
MEASUREMENTS. A VALUE OF Sp CLOSE TO 1 INDICATES THAT SURE’S
PERFORMANCE IS CLOSE TO THAT OF THE ORACLE. FOR M = 10000, Sp

REPRESENTS A RESUME OF THE ENTIRE FIGURE 2.

f =
∑∞
e=1 aeφe is the realization of the function at a

certain run. Let also â(γ,E′) denote the vector with the
estimates of the first E′ coefficients ae returned by f̂B .
Then f̂B+ oracle determines the hyperparameters as(

γ̂, Ê
)

:= arg min
γ∈Γ,E′∈Ω

∞∑
e=1

(
ae − âe(γ,E′)

)2
where âe(γ,E′) := 0 for e > E′. Thus, this estimator
is not implementable in practice and provides the lower
bound on the MSEs (25) and (26) achievable by the two
estimators;

• “f̂A+ SURE” and “f̂B+ SURE”, where the hyperparam-
eters tuning step is performed following the SURE ap-
proaches described in the previous subsection. Recall that
“f̂A+ SURE” requires only a single consensus on a vector
of size O(E2) to obtain simultaneously both the hyper-
parameters and function estimates, while “f̂B+ SURE”
requires two consensus operations of size O(E).

Figure 2 compares with a scatter-plot the various (nor-
malized) MSEs obtained by the oracle- and SURE-based
approaches as a function of the Monte Carlo run. Remarkably,
SURE’s performance (dashed lines) is very close to that of the
oracle (solid lines). When using “f̂B+ SURE” (right panels)
the curves are in practice indistinguishable.

The set of four Monte Carlo experiments have been also
repeated adopting different data set sizes M . To synthesize
SURE’s performance with an index function only of M , let
Sp ∈ [0, 1] denote the ratio between the mean of the 400 errors
obtained by the oracle and the SURE strategies respectively
for a certain value of M . Note that a value of Sp = 1 indicates
that SURE is performing as well as the oracle and that, for
M = 10000, Sp becomes the distillate of Figure 2. Table I
reports Sp for M = 100, 1000, 10000: one can see that the
proposed hyperparameter estimation procedure behaves very
nicely.

E. Numerical study on field data – Colorado rain

Let us now consider the reconstruction of monthly pre-
cipitations using data collected in Colorado in the years
1995-1997 [58]. Many alternative solutions are available in
the context of weather forecasts, but they are limited to
centralized solutions, such as [5], [6], for example, thus
not suitable in our distributed framework. Measurements ym
are a series of monthly average precipitations measured at
367 stations within the rectangular longitude/latitude region
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Figure 2. Comparison of the MSE indexes obtained by the SURE- and oracle-based strategies. Each circle corresponds to the result of a certain Monte Carlo
run (the x-axis being associated to oracle-based estimators, and the y-axis to SURE-based ones). The fact that the circles groups are close to the bisector of
the first quadrant indicates that the performance of SURE is almost equivalent to that of the oracle.

[−109.5,−101]× [36.5, 41.5] remapped for convenience into
the unitary square so that xm ∈ [0, 1]2 for every m.

We test the SURE strategies (40) and (41). When using
f̂A we set E = 20 and Γ to the grid containing 50 values
logarithmically spaced between 10−5 and 105. When adopting
f̂B we use Γ = 0 and Ω = {2, 4, . . . , 20}, i.e., consider only
E′ as a regularization parameter. In both cases, we consider
the Gaussian kernel

K(x, x′) = exp
(
−10‖x− x′‖2

)
.

The eigenfunctions are computed by assuming that the input
locations are not know a-priori and extracted uniformly from
the monitored region, i.e., µ(x) is a uniform distribution. We
design a Monte Carlo study of 1000 runs where, at any run,
we select randomly two months within the 1995-1997 dataset
obtaining three different sets. The first one is a training set
Dtrain of average precipitations obtained by selecting randomly
and uniformly 2/3 of the measurements from the first selected
month. The second is a test set Dtest corresponding to the
remaining 1/3 measurements from the first selected month.
The last one is Dσ2

ν
and contains measurements in the second

selected month which are used to estimate the noise variance
via least squares based on E eigenfunctions. This corresponds
to using f̂A with γ = 0 obtaining as estimate of the noise
variance

σ̂2
ν =

1

dim(Dσ2
ν
)− E

dim(Dσ2ν )∑
m=1

(
f̂A (xm; 0)− ym

)2

where dim(Dσ2
ν
) is the cardinality of Dσ2

ν
. Overall, this

represents a situation where noise levels are determined by
a centralized approach before running the estimators f̂A and
f̂B .

The following tuning strategies are used:

1) “f̂A+ oracle” and “f̂B+ oracle”, where “oracle” now
indicates that these approaches can select those hyperpa-
rameters minimizing the following prediction errors on
the test set

RSSA (γ) :=
1

dim(Dtest)

dim(Dtest)∑
m=1

(
f̂A (xm; γ)− ym

)2

(43)

RSSB
(
γ,E′

)
:=

1

dim(Dtest)

dim(Dtest)∑
m=1

(
f̂B
(
xm; γ,E′

)
− ym

)2
(44)

where (xm, ym) are all elements of Dtest. Note that RSSA
and RSSB can be seen as approximations of the MSEs
(25) and (26) and that the oracle provides a lower bound
on their values;

2) “f̂A+ SURE” and “f̂B+ SURE”, where the hyperparam-
eters tuning step is performed minimizing the estimated
risks JA (γ) and JB (γ,E′) defined in (40) and (41).

Figure 3 compares with a scatter-plot the prediction errors
(43) and (44) achieved by the estimators after the 1000 Monte
Carlo runs. The situation is not dissimilar from the case
of synthetic data: as for the estimators “f̂A+ SURE” and
“f̂B+ SURE”, the performance of the SURE strategies is close
to that of the oracles.

0 2 4 ·103
0

2

4

·103

oracle

SU
R

E

f̂A

0 2 4 ·103
0

2

4

·103

oracle

SU
R

E

f̂B

Figure 3. Comparison of the RSS prediction error indexes obtained by
the oracle- and SURE-based strategies. Each opaque circle corresponds to
the result of one of the 1000 Monte Carlo runs. The closer the circles are
to the bisector of the first quadrant performance means that the closer the
performance of that SURE-based or Nyström-SURE estimator is to the ones
of the oracle-based estimator.

Specifically considering the SURE-based strategies, Fig-
ure 4 also compares the estimated risks JA (γ) and JB (γ,E′)
against the indexes RSSA (γ) and RSSB (γ,E′) in (43)
and (44) in the first Monte Carlo run. The curves show that
hyperparameters values have a major effect on the estimation
performance and that our SURE approach leads to a good
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CCPP CPU
f̂A f̂B f̂A f̂B

fit oracle 99.3 73.3 75.7 76.1
fit SURE 99.3 73.3 71.2 66.5
γ oracle 10−3 - 10−4 -
γ SURE 10−3 - 10−5 -
E′ oracle - 2.00 - 10.00
E′ SURE - 2.00 - 27.00

Table II
SUMMARY OF THE PERFORMANCE OF THE PROPOSED PARAMETERS

CALIBRATION STRATEGIES AGAINST ORACLES FOR DIFFERENT PUBLICLY
AVAILABLE DATASETS. "CCPP" INDICATES THE UCI COMBINED CYCLE
POWER PLANT REGRESSION DATASET, WITH 9568 INSTANCES AND A

4-DIMENSIONAL INPUT DOMAIN X . "CPU" INDICATES THE UCI
COMPUTER HARDWARE REGRESSION DATASET, WITH 209 INSTANCES
AND A 6-DIMENSIONAL INPUT DOMAIN X (CORRESPONDING TO THE
QUANTITATIVE FEATURES AVAILABLE IN THE DATASET). FOR EACH

DATASET 1/3 OF THE DATA HAS BEEN USED FOR TEST PURPOSES.

regularization tuning. The related function estimates are visible
in Figure 5.

−4 −2 0 2 4
102

103

log10 (γ)

RSSA (γ)

JA (γ)

0 5 10 15 20

103

104

E′

RSSB
(
0, E′

)
JB
(
0, E′

)

Figure 4. Comparison of the predictive performance of the estimators f̂A
(left panel) and f̂B (right panel) over the test set in Figure 5 for γ ∈ Γ and
E′ ∈ Ω against the SURE scores JA (γ) and JB (γ) in the first Monte Carlo
run.

F. Numerical study on field data – UCI datasets

The second study is performed on two datasets from the
public UCI repository, and is executed using the Nyström-
based strategy described in Section V-C3 to compute the basis
functions for the estimators using all the input locations that
define the training set. Our purpose is here to compare the pro-
posed SURE-based strategy for tuning the regularization pa-
rameters against an oracle that selects as the best regularization
parameters that ones that give the best fit performance in the
test set. As for the kernel, we consider a Gaussian kernel with
an unitary variance (not accurately tuned, since the purpose of
this section is more checking that the proposed SURE strategy
chooses the regularization parameters accurately rather than
actually maximizing the generalization capabilities of the
regression algorithms). As for the grid for tuning γ, we then
consider the set Γ = {0, 10−5, 10−4, . . . , 102}; as for E′, we
consider Ω = {1, 2, . . . , 30}. Table II summarizes then the
obtained results, and numerically confirms the efficacy of the
proposed parameters tuning strategies.

Figure 5. Visualization of the training and test sets (top panel, respectively
173 and 87 samples), and of the estimates returned by “f̂A+ SURE”,
“f̂A+ oracle”, “f̂B+ SURE”, and “f̂B+ oracle” in the first Monte Carlo run.
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VI. CONCLUSIONS

Distributed function estimation is an important problem
where agents with limited computational, data storage and
communication capabilities collect noisy measurements and
have to reconstruct an unknown map in a collaborative way.
In this context, we have studied Gaussian regression provid-
ing rigorous statistical bounds on the performance of two
distributed estimators, also characterizing their asymptotic
behavior. On the practical side, our study indicates how the
dimension E of the adopted estimator has to depend on the
number of measurements M collected by the agents to guar-
antee the desired statistical performance. The analysis clarifies
merits and limitations of the two approaches also in function of
the different amount of information exchange required to the
network (linear or quadratic in E). We have also introduced
novel distributed strategies which learn from data possibly
unknown hyperparameters entering the estimators, and that
do not necessarily require solving potentially numerically
intensive eigenfunctions-eigenvalues decompositions of kernel
functions. For the first time, to our knowledge, this paper
has shown how it is possible to estimate the regularization
parameter and the unknown function via a single average
consensus operation.

Overall, the theoretical achievements and the numerical
strategies here described provide sound tools to reconstruct
static functions in distributed networks. An important future
direction is to extend all the analysis to an even more chal-
lenging situation where the unknown map may change in time
and has to be tracked in an on-line manner.

APPENDIX

A. Preliminary results

The following result will be especially useful in what fol-
lows. In fact, it will be often used to obtain bounds on intricate
conditional expectations just calculating unconditional means.

Lemma 12 Let Ω denote a sample space, ω ∈ Ω its generic
element. Let E be an event such that

P [ω ∈ E ] ≥ 1− α. (45)

If g(ω) is positive and (45) holds then

E [g(ω) | ω ∈ E ] ≤ 1

1− α
E [g(ω)] .

Proof of Lemma 12: Let η be the probability measure on the
σ-algebra Ω is equipped with. In general, for every E ′,

P [ω ∈ E ′ |ω ∈ E ] =
P [ω ∈ E ′ ∩ E ]

P [ω ∈ E ]

≤ P [ω ∈ E ′]
P [ω ∈ E ]

≤ 1

1− α
P [ω ∈ E ′] .

If ηE denotes the probability measure η conditional on E , one
then has ∫

E
g(ω)dηE(ω) ≤ 1

1− α

∫
E
g(ω)dη(ω)

≤ 1

1− α

∫
Ω

g(ω)dη(ω).

�

The following result exploits the Chernoff bound and will
be important to obtain BndA and BndB . It will also clarify
the role played by the ε entering the bounds.

Lemma 13 Let α ∈ (0, 1) be a desired confidence level (e.g.,
0.01 or 0.05), and ε ∈ (0, 1] represent a given distance index
for λmin and λmax as specified in (46) and (47). If E,M and
k in (10) satisfy (27) then

P
[
λmin

(
GTG

M

)
≥ ε
]
≥ 1− α. (46)

If instead E,M and k satisfy (30) then

P
[
λmin

(
GTG

M

)
≥ ε ∩ λmax

(
GTG

M

)
≤ 2− ε

]
≥ 1− α.

(47)

Proof of Lemma 13: Since the assumptions in [59, Thm. 1.1]
are satisfied, for any ε ∈ (0, 1] one has

P
[
λmin

(
GTG

M

)
≤ ε
]
≤ E

(
e−(1−ε)

εε

)M
Ek

. (48)

Condition (27) is obtained by picking α larger than the Right
Hand Side (RHS) of (48) and manipulating this inequality.
Then, (46) follows from (48) just considering that if ? is the
complementary of ? then P [?] ≤ α⇔ P [?] ≥ 1−α. Now, we
can use again [59, Thm. 1.1] to claim that, for every ε ∈ [0, 1],

P
[
λmax

(
GTG

M

)
≥ 2− ε

]
≤ E

(
e(1−ε)

(2− ε)(2−ε)

)M
Ek

.

(49)
Let the arguments in the P [·] in the LHS of (48) and (49)
be respectively ?λmin

and ?λmax
. Let also the RHSs of (48)

and (49) be upper bounded respectively by αλmin
and αλmax

.
Then, it follows that

P [?λmin ∪ ?λmax ] ≤ P [?λmin ] + P [?λmax ]
≤ αλmin + αλmax ≤ 2αλmin

with the last inequality following from the fact that ε ∈
[0, 1] =⇒ αλmin

≥ αλmax
since

e−(1−ε)

εε
≥ e(1−ε)

(2− ε)(2−ε) .

Thus, letting the novel α be 2αλmin
(i.e., assuming (30) to be

satisfied), we obtain
P [?min ∩ ?max] ≥ 1− α,

and this proves (47).

�

The following lemma is just a generalization of the fact that
convergence in mean (L1-norm) of random variables implies
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convergence in probability. The proof is simple and therefore
omitted.

Lemma 14 Let g(x) denote a stochastic variable whose ran-
domness derives from the input locations x := [x1, . . . , xM ]

T .
Assume that g(x) ≥ q almost surely with q independent of M .
In addition, assume also that for any 1 − α and ε > 0 there
exists M0 such that ∀M ≥M0 one has

g(x) ≤ q + ε with probability 1− α,
in accordance with Definition 3. Then

lim
M→+∞

g(x) = q in probability.

�

B. Proof of Theorem 4

We start by computing the general expression for ErrA(x)
in (21), then evaluate its expectation like in (23), and finally
transport the results to the case of ErrB(x).

As for finding the general expression for ErrA(x), we recall
the decomposition of the estimand as f = fa + fb in (7), the
definition of S in (9) and the design requirement f̂A, f̂B ∈ S,
that imply fa, f̂A ∈ S and fb ∈ S⊥. By construction, then,
‖f‖2 = ‖fa‖2 + ‖fb‖2 and

E
[∥∥∥f − f̂A∥∥∥2

| x
]

= E
[∥∥∥fa − f̂A∥∥∥2

| x
]

+ ‖fb‖2 (50)

where the expectations are w.r.t. the noises ν, so that
E
[
‖fb‖2 | x

]
= ‖fb‖2 since ν, fb and x are all mutually

independent. Notice that a similar decomposition holds also
for f̂B .

As for E
[∥∥∥fa − f̂A∥∥∥2

| x
]

in (50), we notice that∥∥∥f̂A∥∥∥2

= ‖â‖22 = ‖HAy‖22. Since (15) implies
â = HA (Ga+ Zb+ ν) ,

and since both a ⊥ b and ν ⊥ b, it eventually follows that
ErrA(x) = E

[
‖a−HA(Ga+ ν)‖22 | x

]
+E

[
‖HAZb‖22 | x

]
+ ‖fb‖2 .

(51)

Proof of equations (28) and (29):

Let E be the event

E :=

{
λmin

(
GTG

M

)
≥ ε
}
, (52)

and assume ε, α, M and E satisfy (27). Since in this case we
can apply Theorem 13, it holds that P

[
E
]
≥ 1− α.

We can now write the LHS of (23) as

E
[
ErrA(x)

∣∣ E ] = E
[
E
[∥∥∥f − f̂A∥∥∥2

| x
] ∣∣ E ] .

Since fb ⊥ E , (51) implies
E
[
ErrA(x)

∣∣ E ] =

E
[
E
[
‖a−HA(Ga+ ν)‖2 | x

] ∣∣ E ]
+E

[
E
[
‖HAZb‖2 | x

] ∣∣ E ]
+E

[
‖fb‖2

]
.

(53)

As for E
[
‖fb‖2

]
, we know from (7), (8b) and the mutual

independence of the be’s, that

E
[
‖fb‖2

]
=

+∞∑
e=E+1

λe. (54)

This term is thus an approximation error influenced only by
the dimension E of our search space S.

Given (54), what we actually need to bound is the first two
terms in the RHS of (53). We perform this task in the next
two subsections.

Bounding E
[
E
[
‖HAZb‖2 | x

] ∣∣ E ] in (53)

Exploiting the nature of the event E to bound HA in (17),
it is not difficult to prove that

E
[
E
[
‖HAZb‖2 | x

] ∣∣ E ] ≤ E

∥∥∥∥∥
(
εIE +

σ2
ν

M
Λ−1
E

)−1
GTZ

M
b

∥∥∥∥∥
2∣∣ E

 .
(55)

Defining

de :=
εMλe + σ2

ν

Mλe
, e = 1, . . . , E, (56)

it follows that(
εIE +

σ2
ν

M
Λ−1
E

)−1

= diag
(
d−1

1 , . . . , d−1
E

)
. (57)

Consider moreover that from the definition of fb in (7), of b
in (12) and of Z in (14) it follows that [Zb]m = fb (xm). Let
then

ce :=
[
GTZb

]
e

=

M∑
m=1

φe (xm) fb (xm) e = 1, . . . , E

(58)
so that

bTZTG

(
εIE +

σ2
ν

M
Λ−1
E

)−2

GTZb =

E∑
e=1

c2e
d2
e

. (59)

Combining (57) and (59), and considering that the de’s are
deterministic, we can thus rewrite (55) as

E
[
E
[
‖HAZb‖2 | x

] ∣∣ E ] ≤ 1

M2

E∑
e=1

E
[
c2e
∣∣ E ]

d2
e

≤ 1

(1− α)M2

E∑
e=1

E
[
c2e
]

d2
e

,

(60)
where in the last inequality we applied Lemma 12. In view of
the definition of the ce’s in (58) and the linearity of E [·], one
has

E
[
c2e
]

=

M∑
m=1

E
[
φ2
e (xm) f2

b (xm)
]

+
∑
m 6=m′

E [φe (xm)φe (xm′) fb (xm) fb (xm′)] .

(61)
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As for the first term in the RHS of (61), combining (8b) with
bound (10), one immediately has

E
[
φ2
e (xm) f2

b (xm)
]
≤ k

+∞∑
e=E+1

λe.

As for the second term in the RHS of (61), due to the
independence of the {xm}Mm=1 we know that

E [φe (xm)φe (xm′) fb (xm) fb (xm′) | fb ] =
E [φe (xm) fb (xm) | fb ]E [φe (xm′) fb (xm′) | fb ] .

Moreover, since e = 1, . . . , E, from the definition of fb in (7)
it comes that

E [φe (xm) fb (xm) | fb ] = 0.
Combining the two results, one has

E
[
c2e
]
≤ kM

+∞∑
e=E+1

λe e = 1, . . . , E. (62)

Finally, combining (56), (60), (62) and Lemma 12 one
obtains

E
[
E
[
‖HAZb‖2 | x

] ∣∣ E ] ≤
≤ kM

1− α

(
E∑
e=1

λ2
e

(εMλe + σ2
ν)2

)(
+∞∑

e=E+1

λe

)
.

(63)

Bounding E
[
E
[
‖a−HA(Ga+ ν)‖2 | x

] ∣∣ E ] in (53)

To characterize ‖a−HA(Ga+ ν)‖2, note that this term
corresponds to the MSE of a classical MAP estimator for a
standard linear and finite-dimensional Gaussian model (where
the term b is not involved). More precisely, if the measure-
ments models conditional on x were

y = Ga+ ν, a ∼ N (0,Λ), v ∼ N (0, σ2
ν) (64)

with a independent of ν, the optimal estimator would indeed
be

âA = HAy = HA(Ga+ ν). (65)

Exploiting standard results on Gaussian estimation, the covari-
ance matrix of the error is

var (a−HA(Ga+ ν) | x ) =
σ2
ν

M

(
GTG

M
+
σ2
ν

M
Λ−1
E

)−1

.

(66)
Applying Lemma 12 and using (52) to bound HA in (17),
from definitions (56) and (57) it follows that

E
[
E
[
‖a−HA(Ga+ ν)‖2 | x

] ∣∣ E ] ≤ σ2
ν

1− α

(
E∑
e=1

λe

εMλe + σ2
ν

)
.

(67)
Hence, the bound on ErrA(x) is obtained by combin-
ing (54), (63) and (67). �

Proof of equations (31) and (32):

Let E be now the event

E :=

{
λmin

(
GTG

M

)
≥ ε ∩ λmax

(
GTG

M

)
≤ 2− ε

}
,

and assume that ε, α, M and E satisfy (30). Substituting HA

with HB in the derivation of (53) one obtains
E
[
ErrB(x)

∣∣ E ]
= E

[
E
[
‖a−HB(Ga+ ν)‖2 | x

] ∣∣ E ]
+E

[
E
[
‖HBZb‖2 | x

] ∣∣ E ]
+E

[
‖fb‖2

]
(68)

We already know that E
[
‖fb‖2

]
=
∑+∞
e=E+1 λe. Hence, we

have to bound the first two terms in the RHS of (68).

Bounding E
[
E
[
‖HBZb‖2 | x

] ∣∣ E ] in (68)

From the definition of HB in (20), one has

E
[
E
[
‖HBZb‖2 | x

] ∣∣ E ] ≤ E

∥∥∥∥∥
(
IE +

σ2
ν

M
Λ−1
E

)−1
GTZ

M
b

∥∥∥∥∥
2∣∣ E

 ,
which corresponds to (55) with ε = 1. Thus, we just need to
plug ε = 1 in (63) to obtain the desired result, i.e.,

E
[
E
[
‖HBZb‖2 | x

] ∣∣ E ] ≤
≤ kM

1− α

(
E∑
e=1

λ2
e

(Mλe + σ2
ν)

2

)(
+∞∑

e=E+1

λe

)
.

Bounding E
[
E
[
‖a−HB(Ga+ ν)‖2 | x

] ∣∣ E ] in (68)

It is useful again to reason as if the measurements were
generated according to (64) so that y = Ga+ ν. Then, let

âB = HBy
and

ΦB = var (a− âB |x) .

Recalling (65) and (66), let also
âA = HAy

and

ΦA = var (a− âA|x) =
σ2
ν

M

(
GTG

M
+
σ2
ν

M
Λ−1
E

)−1

.

After some simple calculations one obtains
ΦB = ΦA + (HA −HB)(GΛGT + σ2

νI)(HA −HB)T︸ ︷︷ ︸
Φ̃

.

The bound for E
[
tr (ΦA)

∣∣ E ] was already obtained in (67)
so that now we can just focus on bounding E

[
tr
(

Φ̃
) ∣∣ E ].

Define

A =
GTG

M
+
σ2
νΛ−1

M
, B = I +

σ2
νΛ−1

M
.

Then, it follows that
Φ̃ = (A−1 −B−1)

(
GTG
M ΛGTG

M + GTG
M2 σ

2
ν

)
(A−1 −B−1)

= A−1(B −A︸ ︷︷ ︸
=:C

)B−1
(
GTG
M ΛGTG

M + GTG
M2 σ

2
ν

)
×B−1(B −A)A−1

so that
tr
(

Φ̃
)

= tr
(
B−1CA−2CB−1

(
GTG
M ΛGTG

M + GTG
M2 σ

2
ν

))
= tr

(
Λ1/2GTG

M B−1CA−2CB−1GTG
M Λ1/2

)
+ tr

(
σ2
νA
−1CB−1GTG

M2 B
−1CA−1

)
.
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Since

εI ≤ GTG

M
≤ (2− ε)I, Λ ≤ λ1I

we obtain
A ≥

(
ε+

λ−1
1 σ2

ν

M

)
I,

B ≥
(

1 +
λ−1
1 σ2

ν

M

)
I ≥

(
ε+

λ−1
1 σ2

ν

M

)
I,

C2 =
(
I − GTG

M

)2

≤ (1− ε)2I.

Exploiting such inequalities and Lemma 12 we obtain
E
[
tr
(

Φ̃
) ∣∣ E ] ≤(

ε+
λ−1

1 σ2
ν

M

)−4

(1− ε)2 (2− ε)2

1− α

(
σ2
ν

E

M
+

E∑
e=1

λe

)
which, combined with (67), provides the desired result, also
leading to the overall bound for ErrB(x).

C. Proof of Theorem 5

For both the cases the proof is obtained using Lemma 14.
In particular, for both the estimators the lower bound is

q =

+∞∑
e=E+1

λe

according to Theorem 2. Then, from the expressions of the
bounds (29) and (32), it is immediate to verify that, for fixed
E and α, they are monotonically decreasing in M . Now, for
any 0 < δ < 1, let α = δ and ε such that κ < δ

2
4δ

1−α
∑∞
e=1 λe.

Then, there exists M0 such that for M > M0 conditions (27)
and (30) are satisfied and

ErrA ≤ q + δ with probability 1− δ
and

ErrB ≤ q + δ with probability 1− δ.

As anticipated, the use of Lemma 14 then concludes the proof.

D. Proof of Theorem 6

For what regards (34), it is sufficient to recall that, for finite
M , as E → +∞ the estimator f̂A coincides with the MAP
estimator which is consistent, see [60][Appendix] for details.

E. Proof of Theorem 7

The convergence (35) related to f̂B is more delicate and we
will exploit bound (31). The rationale is to establish conditions
on the convergence of E,M to infinity to make both the
confidence level α and the bound (32) tend to zero. As for
α, we can make it vanish to zero by setting α = 1

E1−δ

with δ ∈ (0, 1) . As for the bound (32), its first components
naturally vanish with E → +∞, while the last two do not.
In particular, one needs κ in (33) to go to zero and this
requires ε → 1. Hence, we set ε such that (1−ε)2

2k = 1
M1−δ .

However, the convergence of α and (32) is not enough, since
condition (30) must be always satisfied. This condition is
indeed verified since
Ek

M
log

E

α
=
Ek

M
logEδ ≤ kM δ

M
=

(1− ε)2

2
≤ 1−ε+ε log ε.
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