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Finding Potential Support Vectors
in Separable Classification Problems

Damiano Varagnolo, Simone Del Favero, Francesco Dinuzzo,
Luca Schenato and Gianluigi Pillonetto

Abstract—The paper considers the classification problem using
Support Vector Machines, and investigates how to maximally re-
duce the size of the training set without losing information. Under
separable dataset assumptions, we derive the exact conditions
stating which observations can be discarded without diminishing
the overall information content. For this purpose, we introduce
the concept of Potential Support Vectors, i.e., those data that
can become Support Vectors when future data become available.
Complementary, we also characterize the set of Discardable
Vectors, i.e., those data that, given the current dataset, can never
become Support Vectors. These vectors are thus useless for future
training purposes, and can eventually be removed without loss
of information. We then provide an efficient algorithm based on
linear programming which returns the potential and discardable
vectors by constructing a simplex tableau. Finally we compare
it with alternative algorithms available in the literature on some
synthetic data as well as on datasets from standard repositories.

Index Terms—Separable datasets, Support Vector Machines,
Data discardability conditions, Potential Support Vectors, Dis-
cardable Vectors, Linear Programming.

I. INTRODUCTION

The high generalization capabilities and interesting mathemat-
ical properties of Support Vector Machines (SVMs) triggered
their success in pattern recognition. Despite their good qual-
ities [1], SVMs may suffer from computational complexity
problems in both training and evaluation phases. Instructing
SVMs, in fact, requires solving a Quadratic Program (QP)
with dimension equal to the number of data points [2].

A challenging problem arises when training steps cannot
be performed exploiting the whole dataset simultaneously
because of computational or memory constraints. The aim is
then to derive suitable incremental learning techniques that
divide the main problem into subtasks and compute a final
outcome close to the one obtainable by a batch training [3],
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[4], [5], [6]. Similar difficulties are also encountered when
assuming that additional training data will become available
in the future. In both cases it may be beneficial to discard
the non informative data, i.e., those data that cannot affect the
final outcome.

As recalled in [7], data-discarding techniques can be divided
into two main classes depending if they use or do not use
the SVM classifier. Among the procedures that do not use
previously trained SVMs, the one suggested in [8] computes
the centroids of the two classes and then discards an example
if it close to the centroid of its class and far from the centroid
of the other classes. In [9], the following conjecture is instead
suggested: if the class of a given example does not coincide
with the one estimated by a k-Nearest Neighbors (k-NN)
classifier then that example has high probability of becoming
a Support Vector (SV). In [10], this probability is related
to the variability of the labels of its neighbors, while the
approach described in [11] exploits the distance of data from
the discriminant function obtained from a Fisher Discriminant
Analysis (FDA). In [12], first the dataset is clustered through a
k-means algorithm and then the clusters containing the data of
the same class are condensed into a single point (namely the
cluster centroid). The following are instead dataset-reduction
strategies that exploit previously trained SVM decision func-
tions. In [13], the authors train an approximate decision surface
choosing a subset of the training basis functions via a greedy
algorithm. The works [14], [15] instead propose to create
a virtual dataset of a fixed size by defining the decision
function which best approximates the one obtained using the
true dataset. The approach developed in [16] exploits the fact
that, for linearly separable datasets, the Optimal Separating
Hyperplane (OSH) is the median hyperplane of the smallest
segment joining the convex hulls of the observations. Then,
the SVM is trained using approximate descriptions of these
points. Other authors condensate linearly dependent SVs [17],
[18], based on approximated solutions [19], [20] or based on
opportune projection-based operations [7], [21]. In [22], all
the data sufficiently far from the separating hyperplane are
discarded. In [23], authors propose to opportunely modify
the original training set by removing or flipping the labels
of misclassified data.

Despite offering several and often effective strategies, the
literature reviewed above provides only heuristics to address
the following problem:
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Question 1 which is the smallest subset of the data that
carry all the information useful for future retraining pur-
poses?

To answer this question, it is needed to understand if an
observation can be discarded at the present time without
affecting the forthcoming generalization capabilities. Inciden-
tally, this issue is especially important also in distributed
SVMs scenarios, where communication constraints require to
minimize the amount of information to be exchanged among
agents [24], [25], [26], [27], [28], [29].

To the best of our knowledge, even under linear separability
assumptions, an answer to the question reported above has
not been provided, i.e., the necessary and sufficient conditions
that establish when an example can carry information in the
future are not available in the literature. The aim of this paper
is to provide a full and detailed answer under separability
assumptions. In particular, we propose a novel discardability
concept based on a precise mathematical formulation of the
information content of a data set: an observation contains
information if and only if it can become a SV, and we refer to
these types of examples as Potential Support Vectors (PSVs).
Then, we show that the discardability conditions can be veri-
fied by a simplex-based algorithm, i.e., by a Linear Program
(LP). A peculiarity of the data discarding algorithm presented
in this paper is that it can be improved only with respect to
its computational time, not on the outcome that it returns. Our
findings also show that many standard heuristics, such as those
rejecting an example considering only its distance from the
OSH, may be misleading and bringing to information losses.

The paper is organized as follows: Sec. II reports some
useful notation while Sec. III briefly introduces the linear SVM
framework and the concepts of Discardable Vectors (DVs)
and PSVs. Sec. IV offers various characterizations of these
concepts, while Sec. V translates them into numerical data
discardability-checking procedures. Sec. VI then extends the
previous findings to nonlinear separability problems, while
Sec. VII compares the performances of our strategy with some
algorithms available in the literature by means of numerical
experiments on standard dataset repositories and synthetic
data. Finally Sec. IX contains some concluding remarks and
discusses future research directions.

II. NOTATION

The following notation will be adopted in what follows:

• bold fonts indicate vectorial quantities or functions whose
range is vectorial, plain italic fonts indicate scalar quan-
tities or functions whose range is a scalar, capital italic
fonts indicate matrix quantities;

• i indexes the elements in the dataset;
• d is the dimension of the domain of the inputs;
• xi = [xi,1, . . . xi,d]

T ∈ Rd is a generic input location;
• ψ : Rd 7→ H is a generic feature map transforming input

locations xi into the corresponding ψ(xi)’s in the feature
space H;

• K : Rd×Rd 7→ R is the kernel corresponding to the fea-
ture map ψ(·), i.e., is s.t. 〈ψ(x1), ψ(x2)〉H = K(x1,x2)
for all x1,x2 ∈ Rd;

• yi ∈ {+1,−1} is the generic output;
• 0 := (0, . . . , 0) ∈ Rd;
• D := {(xi, yi)}i=1,...,n is the dataset. “\” indicates the

set-theoretic subtraction;
• n is the total number of data in D;
• X := {xi}i=1,...,n is the set of input locations;
• the sets of input locations corresponding to positive and

negative outputs are respectively denoted by

X+ := {xi ∈ X such that yi = +1} (1)

and
X− := {xi ∈ X such that yi = −1} ; (2)

• ∂A indicates the boundary of the set A (under the
classical Euclidean topology);

• int (A) indicates the interior of the set A (under the
classical Euclidean topology);

• to a generic vector (w, b) ∈ Rd+1 we associate the
hyperplane Hw,b :=

{
(x, y)

∣∣x ∈ Rd, y = wTx+ b
}

with elements in Rd+1, and the hyperplane H0
w,b :={

x ∈ Rd
∣∣wTx+ b = 0

}
on the reduced space Rd.

We also recall some basic definitions and facts on geometry
and convex analysis:
• a cone K ⊆ Rd is a set such that if x ∈ K and λ ≥ 0

then λx ∈ K;
• a convex cone K ⊆ Rd is a set such that if x1,x2 ∈ K

and λ1, λ2 ≥ 0 then λ1x1 + λ2x2 ∈ K;
• the convex hull of the set {x1, . . . ,xn} is defined as

conv (x1, . . . ,xn) :=

n∑
i=1

λixi (3)

with the additional constraints λi ≥ 0 for i = 1, . . . , n
and

∑n
i=1 λi = 1;

• the conical hull of the set {x1, . . . ,xn} is defined as

coni (x1, . . . ,xn) :=

n∑
i=1

λixi (4)

with the additional constraint λi ≥ 0 for i = 1, . . . , n.
Notice that every conical hull is a convex cone;

• the lineality of a convex cone K is defined as

Lin (K) := K ∩−K (5)

and corresponds to the smallest subspace contained in K;
• the polar of a cone K is indicated with K◦ and corre-

sponds to the set of vectors forming angles not smaller
than 90◦with every x ∈ K, i.e.

K◦ := {z ∈ Rd
∣∣ zTx ≤ 0 ∀x ∈ K} . (6)

In addition, if K is a closed convex cone, one has

(K◦)⊥ = Lin (K) . (7)
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III. LINEAR SUPPORT VECTOR CLASSIFICATION

Here and in Sections IV, V we analyze the linear classification
case. All the results will be then extended to the nonlinear case
in Sec. VI.

Given then a dataset D, the goal is to find the (w, b) ∈ Rd+1

whose associated hyperplane H0
w,b is s.t. all the inputs of the

same class lie on the same side, and the minimal distance
between the various inputs and H0

w,b is maximized. The
existence of such an hyperplane is ensured if D satisfies the
following definition [30]:

Definition 2 The dataset D is said to be linearly separable
if there exists (w, b) s.t. yi(wTxi + b) ≥ 1 ∀i.

Assumption 3 D is linearly separable, and all the future data
added to D will lead to a new dataset which is still linearly
separable. Moreover D contains elements of both classes.

A. Classification for linearly separable datasets
If the dataset D is linearly separable, the SVMs framework
considers as the optimal classification rule the one that solves
the convex optimization problem

(w∗, b∗) := arg minw,b ‖w‖2
s.t. yi

(
wTxi + b

)
≥ 1, i = 1, . . . , n .

(8)
We refer to the hyperplane Hw∗,b∗ associated to the optimal
solution as to the OSH. The minimum distance between the
OSH H0

w∗,b∗ and any generic input xi, namely

m := min
xi∈X ,x s.t. w∗Tx+b∗=0

‖x− xi‖2 =
1

‖w∗‖2
(9)

is called the optimal margin. The elements of the dataset s.t.
the distance between their input xi and the OSH is exactly m
are called SVs. We can thus define the set

SV (D) :=

{
(xi, yi) ∈ D

∣∣∣∣ min
x s.t. w∗Tx+b∗=0

‖x− xi‖2 = m

}
.

(10)
The following definition is fundamental for our purposes.

Definition 4 (xi, yi) ∈ D is a Potential Support Vector
(PSV) for the dataset D if there exists a dataset D∗ such
that (xi, yi) is a SV for the augmented dataset D ∪ D∗.
Complementary, (xi, yi) is a Discardable Vector (DV) if is
not a PSV.

Let PSV (D) indicate the set of all the PSVs contained in
D, while DV (D) indicate the set of all discardable vectors.
Note that the definition implies that the set of support vectors
is included in the set of potential support vectors and that each
element of the dataset is either a potential support vector or a
discardable vector, i.e.,

SV (D) ⊆ PSV (D) , PSV (D) ∪ DV (D) = D,
PSV (D) ∩ DV (D) = ∅ .

In the following section we provide some necessary and
sufficient conditions characterizing these sets.

IV. CHARACTERIZATION OF THE POTENTIAL SUPPORT
VECTORS

We provide two different but equivalent conditions character-
izing PSV (D) and DV (D). The first, presented in Sec. IV-A,
is inherently geometrical and has the advantage to be intuitive
and simple to be stated. The second, presented in Sec. IV-B, is
more algebraic and technical, but has the advantage to suggest
an algorithm to practically compute the PSVs.

A. Characterization in the space of the hyperplanes parame-
ters

Hereby, it is useful to identify the (d+ 1)-dimensional hyper-
plane Hw,b also with its generating parameters (w, b). Hence,
with a little abuse of notation, (w, b) is sometimes referred to
as an hyperplane.

The generic example (xi, yi) splits the space of all the
plausible hyperplanes {(w, b)} in two sets: the first is the
set satisfying the inequality constraints present in (8), being
defined by

Vi :=
{

(w, b)
∣∣ yi (wTxi + b

)
≥ +1

}
. (11)

The other set is complementary to Vi. With this definition
in mind, it is immediate to recognize that the set of feasible
solutions (w, p) for (8), i.e., the set of hyperplanes (w, b) that
correctly separate D, is given by

C :=
⋂
i

Vi . (12)

C is thus the so-called version space, i.e., the subset of
all hypotheses that are consistent with the observed training
examples. With definition (12) we can thus rewrite (8) as
follows:

(w∗, b∗) = arg min
(w,b)∈C

‖w‖2 . (13)

The set C is convex, being the intersection of convex sets, and
non-empty under Assumption 3. Indeed it is not difficult to see
that it is also a cone. We notice that Assumption 3 implies also
that C 6= ∅ will continue to hold even when future data will
be added.

Graphical intuitions can be gathered considering the sets{ L+ := {(w, b) |w = 0, b ≥ +1} (14a)
L− := {(w, b) |w = 0, b ≤ −1} (14b)

for which it holds that if yi = +1 then L+ ⊆ Vi, while if
yi = −1 then L− ⊆ Vi, for every (xi, yi). This geometrically
corresponds to the fact that if yi = +1 then Vi must “look
upwards”, while if yi = −1 then Vi must “look downwards”
(cf. Fig. 1).

Let now Bi be the boundary of Vi, i.e.,

Bi := ∂Vi =
{

(w, b)
∣∣ wTxi + b = yi

}
. (15)

We notice that the definition of SV given in (10) implies
immediately that (xi, yi) is a SV if and only if (w∗, b∗) ∈ Bi.
The following constitutes the exact characterization of the set
DV (D) under assumption 3:
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Figure 1. Pictorial representation of how a dataset composed by three
examples halves the space of the plausible parameters (w, b) and generates
the version space C. To each example (xi, yi) corresponds a set Vi that splits
the space of parameters (w, b) into two distinct half-spaces. The version space
C corresponds to the intersection of all these half-spaces, and thus contains all
and only the parameters (w, b) that simultaneously satisfy all the inequality
constraints (8). Notice that, in this case, (x3, y3) does not characterize C in
the sense that it does not contribute to the definition of its boundary.

Proposition 5 Let D be linearly separable. Then (xi, yi) ∈
DV (D) if and only if C ⊂ int (Vi). Equivalently, (xi, yi) ∈
PSV (D) if and only if Bi ∩ C 6= ∅.

From the proof of the previous proposition, it follows that
if an example is a PSV, then it is always possible to add just
a single additional example to turn it into a SV, as formally
stated in the following corollary.

Corollary 6 Let D be linearly separable. If (xi, yi) ∈
PSV (D), then there exists (xF , yF ) such that D := D ∪
(xF , yF ) is still linearly separable and (xi, yi) ∈ SV

(
D
)
.

Recall also, from the definition of discardability that, if an
example is a DV, then under assumption 3 it will always
remain a DV. In other words, if D and D ∪ D are linearly
separable and (xi, yi) ∈ DV (D) then (xi, yi) ∈ DV

(
D ∪D

)
.

We remark that the propositions proposed in this section
provide a geometrically intuitive interpretation of the PSVs
and the DVs, but do not lead to algorithms to practically
compute these sets. The next subsection instead provides an
alternative characterization that directly leads to an algorithm
for the computation of PSV (D) and DV (D).

B. Characterization in the inputs space

We derive a characterization of the PSVs in the inputs space
that is alternative but equivalent to Prop. 5. Before continuing
we need the following:

Definition 7 The hyperplane (w, b) ∈ Rd+1 is said to quasi
linearly separate a dataset D if yi(wTxi + b) ≥ 0 for all i.

The following constitutes a characterization of the set of all
Potential Support Vectors of a given linearly separable dataset
D:

Proposition 8 Let D be linearly separable. Then (xi, yi) ∈
PSV (D) if and only if there exists a quasi linearly separating
hyperplane (w, b) ∈ Rd+1 s.t.wTxi+b = 0 and s.t.wTxj+
b 6= 0 for all j s.t. yj 6= yi.

We remark that the quasi-separating hyperplane cited in
the above proposition must pass through (xi, 0), must not
pass through any point (xj , 0) of the opposite class, and can
pass through points (xj , 0) of the same class. Fig. 2 offers a
graphical intuition of Prop. 8 for the case d = 2 (i.e., x ∈ R2).

(a)

(c)
(b)

hyperplanes passing through this locus
assure (c) to be in PSV (D)

Figure 2. Graphical intuition behind Prop. 8 for d = 2. Notice that the points
in the picture are of the form (x, 0), and that for d = 2 hyperplanes are made
of points (x,wTx+b) in R3. Prop. 8 then states that an example (xi, yi) is
in PSV (D) if and only if at least one of all the hyperplanes passing through
(xi, 0) quasi separates D while not not passing through any point (xj , 0),
with (xj , yj) of the opposite class. The figure shows the limit case where
the examples (a) and (b) are not PSVs. In fact, all the hyperplanes that pass
through them and that quasi separate D pass through at least an example of
the opposite class, and thus violate the proposition. The example (c), instead,
is a PSV.

To transform Prop. 8 into a numerically evaluable condition,
consider a generic (xi, yi) ∈ D, and let (cf. Fig. 3)

∆ij := yiyj (xi − xj) , j = 1, . . . , n, j 6= i (16)

The following proposition provides another full characteri-
zation of the PSVs under separability assumptions:

Proposition 9 Let D be linearly separable. Then the follow-
ing assertions are equivalent:

1) (xi, yi) ∈ PSV (D);
2) there exists w ∈ Rd s.t.{

∆T
ijw ≤ 0, ∀j ∈ {j | yi = yj , j 6= i} (17a)

∆T
ijw < 0, ∀j ∈ {j | yi 6= yj} . (17b)

From Prop. 9 it is possible to obtain the following well
known sufficient condition for data discardability [31]:

Corollary 10 Let D be linearly separable. If xi ∈
int
(

conv
(
{xj}j | yi=yj

))
then (xi, yi) ∈ DV (D).
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DV:

PSV:

Figure 3. Computation of the various ∆ij ’s defined in (16) for a linearly
separable dataset. The top panel considers the ∆ij ’s constructed starting from
a DV, while the bottom panel refers to the case of a PSV. The gray arrow
in the bottom panel indicates a w satisfying the conditions stated in Prop. 9.
Importantly, the set of ∆ij ’s is invariant w.r.t. the class assignment.

The intuition behind Cor. 10 is the following: if the input
of (xi, yi) is inside the convex hull of the inputs of the data
of its class then there is no vector w that can satisfy (17a).

We also notice that if an example is a DV, then this property
does not depend on the presence of other DVs, as formally
stated in the following:

Proposition 11 Let D be linearly separable. If
(xi, yi), (xj , yj) ∈ DV (D) then (xj , yj) ∈
DV (D \ (xi, yi)).

This proposition implies that it is not required to sort the
dataset before running data-removal steps, since the discard-
ability of a vector is not affected when removing other discard-
able vectors. This property will be useful for implementation
purposes as shown in the next section.

We also notice that Prop. (11) implicitly describes a scala-
bility property of the consequent numerical procedures. In fact
it enables incremental analyses, where the original dataset is
split into parts that are then treated consequently.

V. NUMERICAL COMPUTATION OF THE POTENTIAL
SUPPORT VECTORS UNDER LINEARITY ASSUMPTIONS

We now provide a numerical procedure to compute the sets
PSV (D) and DV (D) that is based just on checking whether
a suitable LP is unbounded or not. Consider in fact the
following:

Lemma 12 Let D be linearly separable and (xi, yi) ∈ D.
Consider the following (feasible) LP

max
ω∈R, w∈Rd

ω

s.t.


ω ≥ 0

∆T
ijw ≤ 0 if yj = yi, j 6= i

∆T
ijw + ω ≤ 0 otherwise.

(18)

If (xi, yi) ∈ PSV (D) then (18) is unbounded. If instead
(xi, yi) ∈ DV (D) then (18) has ω∗ = 0 as optimum.

Lemma 12 can thus be translated into the following Alg. 1,
that just checks whether it is possible to move away from the
feasible solution (w, ω) = (0, 0) or not.

Algorithm 1 (SVM-PSV) Computation of PSV (D) for lin-
early separable datasets

set PSVlist = D
1: for i = 1, . . . , n do
2: for (xj , yj) ∈ PSVlist, i 6= j do ∆ij = (xi − xj)yiyj
3: end for
4: check whether the LP (18) admits a non-null feasible

solution or not (case that would imply ω∗ = 0)
5: if ω∗ = 0 then PSVlist = PSVlist \ (xi, yi)
6: end if
7: end for

In the following we will refer to Alg. 1 to as SVM-PSV.
Such procedure correctly returns the list of all the potential
support vectors in view of Prop. 11 and Lemma 12.

A. Analysis of the computational complexity of Algorithm 1

Since the algorithm requires to check just whether the LP (18)
is unbounded or not, we can construct a simplex pivot table
starting from the feasible solution (w, ω) = (0, 0) and then
check if it is unbounded or not exploiting, e.g., Step 3 in [32,
p. 47] (the procedure is reported in Appendix for sake of
completeness).

The complexity of the proposed approach1 is thus the fol-
lowing: the construction of the LP (18) requires the construc-
tion of a simplex pivot table with O (d× n) elements. Check-
ing its unboundedness corresponds to perform O (d× n) sums
and to check O (n) inequalities. If no recursive strategy is
implemented, the dimensionality of the pivot table deriving
from LP (18) decreases as the iteration counter increases when
data are discarded. The worst-case scenario is thus when all
the points are not discarded and all the simplex tables derive
from LPs with |D| constraints.

We also notice that the algorithm is suitable for parallel
computations.

1We notice that solving the entire simplex algorithm in its original form
has an exponential worst-case complexity. The existence of variations of the
simplex algorithm with polynomial or sub-exponential worst-case complexi-
ties is instead, at the best of our knowledge, still an open problem. We also
notice that our approach practically corresponds to perform just one simplex
step.
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B. Pre-discardability through convex hulls

When the dimensionality d of the inputs xi is small it may
be meaningful to perform an early data-discarding step based
on the sufficient condition given in Cor. 10. In these situations
it may then be preferable to run the following Alg. 2 before
applying SVM-PSV.

Algorithm 2 (SVM-CH) Data-discarding by means of convex
hulls

1: compute conv (X+) and conv (X−);
2: discard from D all the data (xi, yi) s.t. xi ∈

int (conv (X+)) or xi ∈ int (conv (X−)).

Alg. 2 has already been suggested in literature, see,
e.g., [31]. Its computational complexity strongly depends on
how steps (1) and (2) are performed, see, e.g., [33, chap. 33.3].
Nonetheless, all the algorithms that solve step (1) have in
general prohibitive computational costs when d is large, e.g.,
when the inputs are mapped into high-dimensional feature
spaces through basis expansions. For instance, the quick-
hull algorithm [34] has worst-case computational complexity

O

(
n
rbd/2c−1

bd/2c!

)
where n is the number of points for which

the convex hull has to be computed, r is the number of vertexes
of the hull, and d is the geometric space dimensionality. Other
algorithms instead, e.g., the gift wrapping algorithm [35], [36],
may be simpler to implement but have worse computational
complexity.

Step (2) (generally referred to as the redundancy removal
problem) can be implemented for general d’s by means of LPs,
which can be solved in (weakly) polynomial time. We even-
tually notice that checking whether xi /∈ conv ({xj |yi = yj})
is extremely simple for d = 2. Embedding the various points
in the set of complex numbers C and assuming that the xj’s
with yj = yi are sorted s.t. arg (xj − xi) < arg (xj+1 − xi),
then

xi /∈ conv ({xj |yi = yj}) ⇔
∑
j

arg

(
xj+1 − xi
xj − xi

)
6= 2π .

(19)

C. Analysis of the output of Algorithm 1

If a dataset D is linearly separable then the list of PSVs is
non-empty, since containing also the SVs. Thus if D is linearly
separable then Alg. 1 returns a non-empty list of PSVs. On
the contrary:

Proposition 13 Consider implementations of Alg. 1 where
DVs are not removed from the dataset. If D is not linearly
separable then the list of returned PSVs is empty.

Prop. 13 might suggest to test the linear separability of a
given dataset D by repeatedly applying Alg. 1 to the various
training points. We then notice that this choice would be
inefficient, since2:

2Other separability tests can be found in [37], [38, Chap. 5].

Lemma 14 Consider the following LP

max
ω∈R, w∈Rd, b∈R

ω

s.t.
{
ω ≥ 0
yi
(
wTxi + b

)
− ω ≥ 0 i = 1, . . . , n.

(20)
The dataset D is linearly separable if and only if (20) is
unbounded. On the contrary, the dataset D is not linearly
separable if and only if the optimum in (20) is ω∗ = 0.

It is faster to check the separability through (20) rather than
through Prop. 13, since the former requires less and smaller
simplex pivot tables. We recall that testing the unboundedness
of an LP like (20) does not require to compute its solution,
but rather to just construct a simplex pivot table from ω =
0,w = 0, b = 0 and perform Step 3 in [32, p. 47], consisting
in testing a set of scalar inequalities.

VI. EXTENSION TO THE NONLINEAR CASE

Non linearly separable datasets are often approached by map-
ping the original data into alternative Hilbert spaces, then ap-
plying the linear classification approach described before [39,
Sec. 12.3] [40, Sec. 10.5].

Formally, this is performed using opportune kernels K :
Rd×Rd 7→ R, i.e., continuous, symmetric and positive definite
functions that, when restricted to compact domains, satisfy the
following [39, Sec. 5.8]:

Assumption 15 K admits the eigen-decomposition

K(x1,x2) =

+∞∑
e=1

λeφe(x1)φe(x2), λe ≥ 0,

+∞∑
e=1

λ2e < +∞

(21)
where the eigenfunctions φe : Rd 7→ R are continuous.

Kernels as in (21) define nonlinear functions ψ : Rd 7→ H,
called feature maps, transforming the generic vector xi ∈ Rd
into elements ψ(xi) of a separable Hilbert space H, e.g.,

ψ(x) =
[√
λ1φ1(x),

√
λ2φ2(x), . . .

]T
,

〈ψ(x1), ψ(x2)〉H = ψ(x1)Tψ(x2).
(22)

Through (22), the original points xi ∈ Rd are mapped into
another Hilbert space H, equal either to Rf (if the set of non-
null λe’s is finite and has cardinality f ) or to `2, the set of
square summable series.

After mapping the original data, linear classification is per-
formed on the novel set of points. It comes that all the previous
concepts (Propositions 5, 8, 9, 11 13, Corollaries 6, 10, Def. 7,
Lemmas 12, 14, Alg. 1) apply to the nonlinear case as soon
as the original xi ∈ Rd, (w, b) ∈ Rd+1 and (x, y) ∈ Rd+1

are substituted with their counterparts in the feature space
χi := ψ(xi) ∈ H, (v, b) ∈ H×R and (χ, y) ∈ H×{+1,−1}.
For example, problem (8) and system (18) in Lemma 12
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become
(v∗, b∗) := arg minv,b ‖v‖2

s.t. yi
(
vTχi + b

)
≥ 1, i = 1, . . . , n ,

(23)

max
ω∈R,v∈H

ω

s.t.


ω ≥ 0

yiyj
(
vTχi − vTχj

)
≤ 0 if yj = yi, j 6= i

yiyj
(
vTχi − vTχj

)
+ ω ≤ 0 otherwise.

(24)
In certain cases, especially when the dimensionality of H

is high or infinite, it might be beneficial to rephrase (24)
exploiting the fact that, by construction, K(x1,x2) =
〈ψ(x1), ψ(x2)〉H for all x1,x2 ∈ Rd. In particular, first notice
that v can be always decomposed as v = v⊥ +

∑n
i=1 ciχi,

where v⊥ is orthogonal to span 〈χ1, . . . ,χn〉, and this even-
tually implies

vTχ` =

(
n∑
i=1

ciχi

)T
χ` =

n∑
i=1

ci 〈χi,χ`〉H =

n∑
i=1

ciK(xi,x`).

Letting ki := [K(xi,x1), . . . ,K(xi,xn)]T and c :=
[c1, . . . , cn]T , (24) becomes

max
ω∈R,c∈Rn

ω

s.t.


ω ≥ 0

yiyj
(
kTi c− kTj c

)
≤ 0 if yj = yi, j 6= i

yiyj
(
kTi c− kTj c

)
+ ω ≤ 0 otherwise.

(25)
The LP (25) can then be used to check the discardability
of (xi, yi) by simply constructing the corresponding simplex
pivot table and performing Step 3 in [32, p. 47] on it.

Finally, notice that whether it is better to use formula-
tion (24) or (25) depends on the dimensionality of the input
and feature spaces as well as the dataset size.

VII. NUMERICAL EXPERIMENTS

We consider illustrative linearly separable datasets reduc-
tion problems, and numerically compare SVM-PSV with the
heuristics offered in [41] and in [12], and with Alg. 2 as
proposed in [31].

In general, in dataset reduction problems the aim is to
reduce as much as possible the size of the current dataset
without reducing the generalization capabilities, considering
that new data may become available in the future. As dis-
cussed previously, under separability assumptions only PSVs
should to be retained: keeping discardable data only increases
computational complexity of possible successive trainings.

Description of the datasets

We consider the Iris dataset [42], available at http://archive.
ics.uci.edu/ml/datasets/Iris, and other 5 synthetic datasets.

The Iris dataset collects measured characteristics of the
flowers of three particular Iris species (setosa, virginica and
versicolor). Input space has dimension d = 4, since for each
flower four inputs are measured. The dataset consists of 50

samples for each class: the data belonging to the first class
(setosa) are separable with respect to the data belonging to
the other two classes. We thus consider the two datasets Iris12
and Iris13, the first containing samples of Iris setosa and Iris
virginica, and the second containing samples of Iris setosa and
Iris versicolor.

The synthetic datasets we use are denoted with the prefix
synt. synt#1 has n = 50 data points and the inputs belong to
R2, i.e., d = 2. Inputs of the positive outputs are sampled
from N ([1, 1], [ 0.1 0.025

0.025 0.1 ]), i.i.d., while the ones of the
negative outputs are sampled from N ([0, 0],

[
0.1 −0.02
−0.02 0.05

]
),

i.i.d. Separability of synt#1 is verified a-posteriori, eventually
discarding examples leading to non-separable datasets and
resampling.

We also consider other 4 synthetic datasets, denoted with
synt#2.d, with d = 2, 3, 4, 5 indicating also their input location
dimensionality. These datasets are generated as follows: con-
sider the hyperplane (w, b), w = [1, . . . , 1]T ∈ Rd, b = −1,
then generate inputs with the uniform probability on [0, 1]d,
i.i.d., and classify them as positive or negative depending on
their signed distance from the hyperplane (w, b).

Three dataset reduction heuristics

Katagiri and Abe proposed in [41] the following geometric
intuition: if a point is either surrounded by other points of the
same class or very far from the points of the opposite class
then it is not likely to become a SV. Hence, the procedure
in [41] first trains the SV classifier on the current dataset.
Then, it discards the data that lie inside two suitably defined
regions, one per each class, and each corresponding, in the
separable case, to the union of:
• an hypersphere that has the same center and ρ times the

radius of the minimum-volume hypersphere enclosing all
the data of the given class (ρ ∈ [0, 1]);

• an hypercone having its vertex at the center of the
previous hypersphere, its axis orthogonal to the OSH,
opening towards the data of the corresponding class and
with its surface forming an angle of θ ∈ [0, 180] degrees
with the OSH (cf. Fig. 4).

Informally, larger ρ’s and smaller θ’s imply larger dataset
reductions and larger risk to discard PSVs.

Fig. 4 shows an example of these regions obtained with
ρ = 0.5 and θ = 10◦ on an instance of synt#2.2, with n = 50.
In Fig. 4, points inside the shaded regions are discarded. In
the following we will refer to this heuristic as to SVM-KA,
KA being the initials of authors Katagiri and Abe.

In [12] instead authors perform dataset reduction without
requiring preceding training steps. This is beneficial in appli-
cations with large amount of data, where training might be
computationally demanding or even infeasible. In particular,
the algorithm proposed in [12] starts clustering the training set
using k-means, a low computational-complexity unsupervised
clustering technique [39, Sec. 13.2.1]. Then it substitutes every
cluster that contains data of an unique class with an example,
positioned in the centroid of the cluster. Fig. 5 shows the
outcome of this algorithm for the same experiment of Fig. 4.
For instance, in Fig. 5 all the inputs of cluster 5 are associated

http://archive.ics.uci.edu/ml/datasets/Iris
http://archive.ics.uci.edu/ml/datasets/Iris
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Figure 4. Illustration of the heuristic SVM-KA proposed in [41] with ρ = 0.5
and θ = 10. The gray zone indicates the region where data are discarded.
The dataset D is a particular instance of synt#2.2, with n = 50.
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Figure 5. Illustration of the heuristic SVM-KM proposed in [12] with k =
10. Numbers indicate the labels assigned by the k-means classification step.
The dataset D is the same of Fig. 4.

to the output −1. These data are then discarded and substituted
with the centroid of cluster 5. As done in [12], we will refer
to this heuristic as to SVM-KM, KM recalling k-means.

We also consider the convex-hulls based data-discarding
Alg. 2. Fig. 6 shows the two convex hulls for the same
experiment of Fig. 4. In the following we will refer to this
heuristic as to SVM-CH, CH standing for Convex Hull.

Figures 7, 8 and 9 compare the outcomes of SVM-PSV with
the SVM-KA, SVM-KM and SVM-CH heuristics respectively.

In the example of Fig. 7 SVM-KA erroneously discards a
PSV but does not discard any SV, and this because its starting
point is an already trained SVM.

Fig. 8 shows instead that, for the same example, SVM-KM
erroneously discards a PSV and a SV. We notice that there
exist no intuitive relations between the number of clusters k,
the dataset reduction properties and the risks to discard PSVs
and SVs.

Figure 6. SVM-CH heuristic described in Alg. 2. The gray zone indicates
the region where data are discarded. The dataset D is the same of Fig. 4.

PSVs
SVs
SVM-KA

Figure 7. Comparison of the outcome of SVM-PSV with the one of the
SVM-KA heuristic in [41] with ρ = 0.5, θ = 10◦, and the same dataset of
Fig. 4.

PSVs
SVs
SVM-KM

Figure 8. Comparison of the outcome of SVM-PSV with the one of the
SVM-KM heuristic in [12] with k = 10 and the same dataset of Fig. 4.
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dataset properties SVM-PSV SVM-KA [41] SVM-KM [12] SVM-CH

n
number
of SVs

number
of PSVs reduction reduction discarded

SVs
discarded

PSVs reduction discarded
SVs

discarded
PSVs reduction discarded

SVs
discarded

PSVs

synt#
1

50 2.75 5.64 88.7% 72.0% 0 0.39
(6.1%) 77.3% 1.90

(69.0%)
4.55

(77.3%) 71.8% 0 0

synt#
2.2

50 3.00 4.74 90.5% 81.4% 0 0.46
(8.6%) 56.5% 0.65

(21.7%)
1.06

(22.7%) 70.0% 0 0

synt#
2.3

100 3.99 8.46 91.5% 66.3% 0 0.72
(8.3%) 58.6% 0.55

(13.8%)
1.35

(16.1%) 59.1% 0 0

synt#
2.4

200 4.91 12.27 93.9% 57.9% 0 1.15
(9.0%) 72.2% 0.58

(11.7%)
2.33

(18.6%) 55.8% 0 0

synt#
2.5

400 5.91 20.07 95.0% 53.9% 0 1.93
(9.6%) 81.6% 0.70

(11.9%)
5.36

(25.5%) 51.3% 0 0

Iris
12

100 3.00 37.00 63.0% 88.0% 0 26.00
(70.3%) 90.0% 3.00

(100.0%)
37.00

(100.0%) 50.0% 0 0

Iris
13

100 3.00 36.00 64.0% 89.0% 0 28.00
(77.8%) 90.0% 3.00

(100.0%)
36.00

(100.0%) 51.0% 0 0

Table I
SUMMARY OF THE NUMERICAL COMPARISONS OF THE DATASET REDUCTION PERFORMANCES OF ALG. 1, OF THE HEURISTIC PROPOSED IN [41], AND OF

THE HEURISTIC PROPOSED IN [12]. FOR EACH SYNTHETIC DATASET, THE REPORTED DATA CORRESPOND TO THE AVERAGE PERFORMANCE OBTAINED
CONSIDERING 100 INDEPENDENT EXPERIMENTS.

PSVs
SVs
SVM-CH

Figure 9. Comparison of the outcome of SVM-PSV with the one of the
SVM-CH heuristic described in Alg. 2 on the same dataset of Fig. 4.

Finally, Fig. 9 shows that SVM-CH never discards any PSV
but does retain discardable points.

Analysis of the results

We report in Tab. I some experimental results on the dataset
reduction capabilities of SVM-PSV, of the SVM-KA heuristic
(ρ = 0.5, θ = 0, as suggested by the authors), of the SVM-KM
heuristic (k = 10) and of the SVM-CH heuristic.

We recall that the dataset reduction capabilities are defined
as the number of discarded data over the cardinality of the
dataset. For the synthetic datasets, results are the averages
over 100 independent experiments. For each dataset the table
reports: its size n, the actual number of SVs and the number
of PSVs, the dataset reduction performance and the number
of SVs and PSVs discarded by the various algorithms. In the
following

The results presented lead to the following considerations:

• SVM-PSV provides the largest possible dataset reduction
performances without information loss, therefore it can be used
as a benchmark for comparing different heuristics as the SVM-
KA, SVM-KM and SVM-CH.
• SVM-KA heuristic performs satisfactorily, especially for
low dimensional dataset. In fact it rarely discards PSVs and it
retains a fairly limited number of discardable points. However
the performances get worse significantly as the inputs dimen-
sionality increases. For datasets Iris12 and Iris13 it achieves
a larger reduction rate than the one of SVM-PSV, obviously
at the price of a larger discard of of PSVs.
• SVM-KM heuristic seems less effective than the other two
methods, and discards more often PSVs and SVs. Nonetheless,
and oppositely to SVM-KA, its performances tend to increase
with the dimensionality of the inputs. Its data reduction
performances on the real datasets Iris12 and Iris13 are similar
to the ones of SVM-KA.
• In agreement with its theoretical characterization, the SVM-
CH heuristic retains all the PSVs, leading to no information
losses. It nonetheless retains several discardable points and
therefore exhibits a reduce compression capability which fur-
ther degrades as the dimension of the input space increases. We
also notice that SVM-CH compression capabilities are always
poorer as compared to SVM-KA.
• The datasets Iris12, Iris13 retain a much larger percentage
of PSVs as compared to the synthetic dataset synt#2.4, which
has the same input dimension d = 4. This means that the
geometry of Iris12, Iris13 is more complicated than the one
of synt#2.4 therefore, to avoid information losses, they require
to retain a larger amount of information.
• Finally, we recall that SVM-KA requires a preceding SVM
training step while SVM-KM, SVM-PSV and SVM-CH do
not.
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VIII. HEURISTICS FOR NON SEPARABLE DATASETS

In the previous sections we shown that under separability
assumptions all the DVs can be discarded without affecting
the generalization capabilities of the SV classifier. In non-
separable cases the classification problem considers as the
optimal classification rule the one that solves the convex
optimization problem [39, Sec. 12.2]

(w∗, b∗) := arg min
w,b,{χi}

1

2
‖w‖22 + C

n∑
i=1

χi

s.t. χi ≥ 0
s.t. yi

(
wTxi + b

)
≥ 1− χi, i = 1, . . . , n .

(26)
In this case it can be easily shown that any (xi, yi) ∈ D can
become a SV, i.e., PSV (D) = D. In other words, without
additional assumptions it is not possible to discard samples
guaranteeing no information losses.

Nonetheless, Alg. 1 suggests the following dataset reduc-
tion heuristic, formalized in Alg. 3: a) train a SV classifier
through (26) on the original dataset D, b) a obtain the
separable sub-dataset Ds := D\SV (D), i.e., let Ds be D
without its SVs, c) remove from D the DVs of Ds.

Algorithm 3 (SVM-PSVh) Potential Support Vector Inspired
Heuristic

1: evaluate the dataset separability using Lemma 14
2: if D is separable then
3: compute PSV (D) with Alg. 1 and then discard

DV (D)
4: else
5: train the SV classifier on D solving (26), then compute

SV (D)
6: set Ds := D\SV (D)
7: compute PSV (Ds) with Alg. 1
8: retain SV (D) ∪ PSV (Ds).
9: end if

Numerical Experiments
We compare Alg. 3 (SVM-PSVh) and the two previously

analyzed algorithms SVM-KM and SVM-KA on three real
non-separable datasets:

1) UCI Skin / NonSkin (http://archive.ics.uci.edu/ml/
datasets/Skin+Segmentation, 3 features), from which we
randomly extract ntrain = 104 features for training and
ntest = 104 for testing;

2) UCI Chess Endgame (http://archive.ics.uci.edu/
ml/datasets/Chess+%28King-Rook+vs.+King%29, 6
features), from which we randomly extract ntrain = 5 ·103

features for training and ntest = 5 · 103 for testing. The
dataset contains 18 classes representing the depth-
of-win of chess endgame. In our simulations we
classify “ten”, “eleven” and “twelve” against “fourteen”,
“fifteen’,“sixteen” and “draw’;

3) CodRNA (http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets/binary.html, 8 features), from which we ran-
domly extract ntrain = 7 · 103 features for training and
ntest = 5 · 103 for testing.

On each dataset we perform 20 Monte Carlo runs of the
following experiment:

1) divide the training set in chunks of 103 samples;
2) train four SV classifiers using a 2nd-order polynomial

kernels and a regularization parameter C = 1, choices
which lead to satisfactory prediction capabilities. The first
is trained on the full dataset. The second, third and fourth
are instead iteratively retrained on the reduced datasets
that are obtained using respectively the three heuristics
SVM-PSVh, SVM-KM and SVM-KA;

3) test the generalization capabilities of the final Support
Vector Classifier (SVC) on the test set.

The results are summarized in the following Figures 10 -
15. In particular, Fig. 11 summarizes how efficiently the SVM-
PSVh, SVM-KA and SVM-KM heuristics compress the Skin
/ NonSkin dataset: the figure in fact plots how the size of
the retained datasets evolved after the various iterations and
over the 20 Monte Carlo runs. The results show that SVM-KA
achieves a better compression with respect to SVM-KM and
SVM-PSVh outperforms both the other heuristics.

Fig. 10 sketches the empirical distribution of the test errors
on the Skin / NonSkin dataset. In this case, despite
retaining the largest amount of data, SVM-KM gives the
largest errors. SVM-KA and SVM-PSVh have instead similar
generalization-performance degradations.

full dataset
SVM-PSVh

SVM-KM
SVM-KA

0 5 10 15 20
test error (% of misclassified data)

Figure 10. Empirical distribution of the test errors achieved by the SVC
strategies full dataset, SVM-PSVh and SVM-KM on 20 Monte Carlo runs on
the Skin / NonSkin dataset.
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Figure 11. Efficiency in compressing the training set relative to the Skin
/ NonSkin dataset. The solid areas indicate 90% confidence intervals.

Similarly, Fig. 13 and Fig. 12 illustrate data reduction and
generalization capabilities of the three proposed heuristics on
the Chess Endgame dataset. Here SVM-KM has almost
no reduction capabilities. Thus, since it retains almost all the
examples, its generalization performance are identical to the
classifier trained on the whole training set. SVM-PSVh instead

http://archive.ics.uci.edu/ml/datasets/Skin+Segmentation
http://archive.ics.uci.edu/ml/datasets/Skin+Segmentation
http://archive.ics.uci.edu/ml/datasets/Chess+%28King-Rook+vs.+King%29
http://archive.ics.uci.edu/ml/datasets/Chess+%28King-Rook+vs.+King%29
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
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achieves a significant data reduction with almost no perfor-
mance degradation. The fact that the test set-error distribution
is very close to the one achieved using the full dataset indicates
that, on this dataset, the SVM-PSVh heuristic successfully
retains all the relevant information. Finally, using the SVM-
KA heuristic one obtains a larger dataset reduction, but at the
cost of a visible generalization performance degradation.

full dataset
SVM-PSVh

SVM-KM
SVM-KA

0 10 20 30 40 50
test error (% of misclassified data)

Figure 12. Empirical distribution of the test errors achieved by the SVC
strategies full dataset, SVM-PSVh and SVM-Km on 20 Monte Carlo runs on
the Chess Endgame dataset.
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Figure 13. Efficiency in compressing the training set relative to the Chess
Endgame dataset. The solid areas indicate 90% confidence intervals.

Finally, Fig. 14 and Fig. 15 illustrate data reduction and
generalization capabilities of the three considered heuristics
on the CodRNA dataset. Also in this case SVM-KM retains
almost the whole training set. SVM-PSVh and SVM-KA in-
stead achieve similar data reductions, with SVM-PSVh having
slightly better generalization performance.

full dataset
SVM-PSVh

SVM-KM
SVM-KA

0 5 10 15 20 25 30 35
test error (% of misclassified data)

Figure 14. Empirical distribution of the test errors achieved by the SVC
strategies full dataset, SVM-PSVh and SVM-Km on 20 Monte Carlo runs on
the CodRNA dataset.
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Figure 15. Efficiency in compressing the training set relative to the CodRNA
dataset. The solid areas indicate 90% confidence intervals.

IX. CONCLUSIONS

We have considered the problem of assessing if an element of
a training set can become a support vector when new data
become available. Under separability assumptions, possibly
satisfied also using a suitable feature map, we have fully
answered this question formalizing the notions of Potential
Support Vectors and Discardable Vectors, and characterizing
them via necessary and sufficient conditions.

Geometrical and analytical intuitions underlying the concept
of discardability have been provided. In particular, it has been
shown that it is possible to check if an example does not
bring information in the future just verifying if a certain
linear program is unbounded by building a simplex tableau.
The algorithm compares favorably with other well known
heuristics used to reduce the training set size in synthetic and
real-world datasets. In addition, we have also proposed an
heuristic based on PSV concepts for classification problems
involving nonseparable datasets. Simulations reveal that also
in this scenario the approach can be effective for data reduction
purposes.

APPENDIX

Proof (of Prop. 5)

(a) C ⊂ int (Vi) ⇒ (xi, yi) ∈ DV (D): we start noticing
that C ⊂ int (Vi) ⇒ C ∩ Bi = ∅. This implies that (xi, yi) is
not a SV, since (xi, yi) is a SV if and only if (w∗, b∗) ∈ Bi.
Since adding new future data cannot lead to expansions of the
version space C, this eventually implies (xi, yi) ∈ DV (D) (cf.
Fig. 1).

(b) (xi, yi) ∈ DV (D) ⇒ C ⊂ int (Vi): assume ab
absurdo that (xi, yi) ∈ DV (D) implies that C ⊆ int (Vi),
or equivalently, that C ∩ Bi 6= ∅. Consider then any

(
w, b

)
∈

C ∩ Bi.
(
w, b

)
which must exists because, as just stated, this

intersection is not empty. The proof then proceeds showing
that since this

(
w, b

)
exists then it is possible to add opportune

data to D that make (xi, yi) a SV, absurd.
To show this, we consider that the vector

(
w, b

)
has two

properties:
•
(
w, b

)
6= (w∗, b∗), where (w∗, b∗) is the OSH for D

since
(
w, b

)
= (w∗, b∗) would imply that (xi, yi) is a

SV which is in contradiction with the hypothesis that
(xi, yi) is discardable.
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Algorithm 4 (Unboundedness check) (adapted from [32,
Ch. 3])

1: write LP (18) in standard form, i.e., as

max
w′

cTw′

s.t.
{
Aw′ = b
w′ ≥ 0

(27)

for opportune A = [a1, . . . ,an] , b, c,w′;
2: consider that particular w′0 corresponding to (w, ω) =

(0, 0) (that, by construction, is a basic feasible solu-
tion of 27). For notational simplicity, let it be w′0 =
(w′1, . . . , w

′
m, 0, . . . , 0), so that the corresponding simplex

pivot tableau corresponding to the constraints Aw′ = b is

a1 . . . am am+1 . . . an b
1 . . . 0 ψ1,m+1 . . . ψ1,n w′1

. . .
...

...
...

0 . . . 1 ψm,m+1 . . . ψm,n w′m

(28)

with the ψ’s satisfying

aq = ψ1,qa1 + . . .+ ψm,qam; (29)

3: let rj := cj −
∑m
i=1 ciψi,j ;

4: if rj ≥ 0 for all j = m+ 1, . . . , n then
(w, ω) = (0, 0) is the optimal solution, i.e., ω∗ = 0;

5: else
the problem is unbounded.

6: end if

• wTxi + b = yi, because
(
w, b

)
∈ Bi.

Consider now the new vector (xF , yF ) s.t.

xF = xi −
(

2
yi

‖w‖22

)
w, yF = −yi . (30)

It is then immediate to check that wTxF + b = yF , and thus
that (w, b) is the OSH for D =

{
(xi, yi), (x

F , yF )
}

. Up to
this point we thus have two datasets: the original one, D, for
which (xi, yi) is a DV, and D, for which the same (xi, yi) is
a SV.

Let CD be the version space, i.e., the set of hyperplanes
correctly separating D defined in (12). Then CD ∩C is the set
of hyperplanes that correctly separate the dataset D ∪ D =
D ∪

(
xF , yF

)
((xi, yi) is shared by the two datasets). Notice

that, by construction,
(
w, b

)
∈ CD and also

(
w, b

)
∈ C, and

this implies that
(
w, b

)
∈ CD ∩ C. Importantly, this implies

that D ∪
(
xF , yF

)
is linearly separated by

(
w, b

)
.

Consider now the following fact: let A be a generic set of
elements, and B ⊆ A one of its subsets. Let a ∈ A be the
optimal element of A under a certain metric. Then a ∈ B
implies that a is also the optimal element of B, under the
same metric.

Being now
(
w, b

)
the OSH for D and setting A = CD,

B = CD ∩ C, we thus have that(
w, b

)
= arg min

(w,b)∈CD
‖w‖2 ⇒

⇒
(
w, b

)
= arg min

(w,b)∈CD∩C
‖w‖2 .

(31)

This means that
(
w, b

)
is the OSH for the augmented

dataset D ∪
(
xF , yF

)
. This implies that (xi, yi) is a SV for

D ∪
(
xF , yF

)
, i.e., (xi, yi) ∈ PSV (D), thus leading to a

contradiction with the initial hypothesis that (xi, yi) is a DV.

Proof (of Cor. 6) If (xi, yi) ∈ PSV(D), then from Prop. 5 it
follows that there exists

(
w, b

)
∈ C ∩ Bi. Then the example

(xF , yF ) that satisfies the claim of this corollary can be
constructed as shown in the proof of Prop. 5.

Proof (of Prop. 8) We assume w.l.o.g. yi = +1. Similar
derivations can be performed for the case yi = −1.

(a) (xi, yi) ∈ PSV (D)⇒ ∃ a quasi-separating (w, b): from
Cor. 6 it follows that, if (xi, yi) ∈ PSV (D) then there exists a
future example

(
xF , yF

)
s.t. (xi, yi) is a SV for D∪

(
xF , yF

)
.

If (w, b) is the OSH for D ∪
(
xF , yF

)
, then (w, b) is also a

separating hyperplane for D. Moreover (xi, yi) is a SV for
D ∪

(
xF , yF

)
, thus wTxi + b = +1
wTxj + b ≥ +1 if yj = +1
wTxj + b ≤ −1 if yj = −1 .

(32)

Consider now the hyperplane (w, b′) = (w, b+ yi). It follows
that  wTxi + b′ = 0

wTxj + b′ ≥ 0 if yj = +1
wTxj + b′ ≤ −2 if yj = −1

(33)

i.e., (w, b′) quasi-separates D. The proof is then complete
considering that wTxj + b′ ≤ −2 ⇒ wTxj + b′ < 0, i.e.
wTxj + b′ 6= 0.

(b) ∃ a quasi-separating (w, b) ⇒ (xi, yi) ∈ PSV (D): for
hypothesis it must be wTxj +b < 0 for all the xj ∈ X−, i.e.,
for all the data s.t. yj = −1. Letting cj := wTxj + b, this
hypothesis thus states that cj < 0 for the data with yj = −1.

Consider then

x∗ := arg min
xj∈X−

|cj | , (34)

i.e., the (negative) example (x∗,−1) ∈ D that has as its input
the one that is the closest to the hyperplane wTx+b = 0. Let
then c∗ := wTx∗ + b, cf. Fig. 16.

The hyperplane (w, b′) =
(
w, b− c∗

2

)
is then s.t.{

wTxj + b′ ≥ − c∗

2 if yj = +1

wTxj + b′ ≤ cj − c∗

2 if yj = −1
(35)

and geometrically corresponds to the hyperplane bisecting the
space between (w, b) and its translation onto

(
x∗j ,−1

)
. Since

− c∗2 > 0 and cj − c∗

2 < 0, (w, b′) correctly separates D.
The hyperplane (w, b′′) = (w, b− c∗) is instead s.t.{

wTxj + b′′ ≥ − c∗ if yj = +1

wTxj + b′′ ≤ cj − c∗ if yj = −1
(36)
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(w, b) (w, b′)(w, b′′)

xF

Figure 16. Geometrical interpretation of the quantities involved in the proof
of Prop. 8 for the case d = 2.

and geometrically corresponds to the translation of (w, b) onto(
x∗j ,−1

)
. Since −c∗ > 0, cj − c∗ ≤ 0, and wTx∗ + b′′ = 0,

(w, b′′) strictly quasi separates D.
Consider the plausible future example

(
xF ,−1

)
, where

xF := xi − 2 ci
‖w‖22

w. Geometrically xF corresponds to the
projection of xi onto wTx+ b′′ = 0.

Since (w, b′′) quasi-separates D, the whole
conv

({
X− ∪ xF

})
lies in one of the half spaces induced

by the hyperplane wTx + b′′ = 0. For the same reason, the
whole conv ({X+}) lies in one of the half spaces induced by
the hyperplane wTx+ b = 0.

By construction, the distance between the half space induced
by wTx + b′′ = 0 that contains conv

({
X− ∪ xF

})
and the

half space induced by wTx+b = 0 that contains conv ({X+})
is exactly given by the length of the segment connecting xi
and xF . The distance between conv

({
xF ,xj s.t. yj = −1

})
and conv ({xj s.t. yj = +1}) can thus not be smaller than
the length of the segment connecting xi and xF . Since the
two points belong respectively to their relative convex hulls,
they are thus the extrema of the smallest segment connecting
conv

({
xF ,xj s.t. yj = −1

})
and conv ({xj s.t. yj = +1}),

i.e. (xi, yi) and (xF , yF ) are the closest points belonging to
these two convex hulls.

The convex-hulls based geometrical interpretation of SVCs,
see, e.g., [16, Sec. 2], states now that under separability
assumptions the OSH bisects the smallest segment con-
necting the two convex hulls conv ({xj s.t. yj = +1}) and
conv ({xj s.t. yj = −1}). This implies that the OSH for
D ∪

(
xF ,−1

)
is given by a scaled version of (w, b′), say

(αw, αb′) for an opportune not-null α ∈ R. Being by
construction xF and xi the closest points to the hyperplane
α
(
wTx+ b′

)
= 0, (xF , yF ) and (xi, yi) are for sure SVs for

the dataset D ∪ (xF , yF ). This eventually implies (xi, yi) ∈
PSV (D).

Proof (of Prop. 9) Prop. 8 states that (xi, yi) ∈ PSV (D) if
and only if there exists (w, b) s.t. yi

(
wTxi + b

)
= 0

yj
(
wTxj + b

)
≥ 0 if yi = yj , i 6= j

yj
(
wTxj + b

)
> 0 if yi 6= yj .

(37)

Properly subtracting member to member the various inequal-
ities and the first equality, we obtain{

wT (xi − xj) yj ≤ 0 if yi = yj , i 6= j
wT (xj − xi) yj < 0 if yi 6= yj .

(38)

In both the cases yi = +1 or yi = −1, given definition (16),
(38) can be transformed into system (17).

Proof (of Cor. 10) xi ∈ int (conv ({xj | yi = yj})) implies
that for each direction v ∈ Rd, ‖v‖2 = 1 there exists an
amplitude α > 0 s.t. xi + αv ∈ conv ({xj | yi = yj}), i.e.,

xi + αv =
∑

j|yi=yj
λjxj (39)

with λj ≥ 0 and
∑
j λj = 1. Since xi =

∑
j|yi=yj λjxi we

have that
αv =

∑
j|yi=yj

λj (xj − xi) . (40)

Exploiting definition (16) we can write

−v =
∑

j|yi=yj
λ
′

j∆ij (41)

with λ
′

j =
λj

α ≥ 0, thus −v ∈ coni ({∆ij |yi = yj}). Since v
is a generic direction in Rd, one has

coni ({∆ij |yi = yj}) = Rd (42)

and thus that
coni ({∆ij}) = Rd . (43)

We now prove that this implies (xi, yi) ∈ DV (D). Letting
K := coni ({∆ij}), in fact, it holds that

K = Rd ⇔ Lin (K) = Rd ⇔ K◦ = {0} . (44)

Thus 
∆T
i1w ≤ 0

...
∆T
inw ≤ 0

(45)

holds only for w = 0. This implies that condition 2 in Prop. 9
is not satisfied, thus (xi, yi) ∈ DV (D).

Proof (of Prop. 11) Assume yi = yj . Since D is linearly
separable, ∃ (w, b) s.t.

y`
(
wTx` + b

)
≥ +1 (46)

for all x` ∈ X . Let c := yi
(
wTxi + b

)
, c > 0 because (w, b)

correctly separates D. Assume ab absurdo that (xj , yj) ∈
DV (D) but (xj , yj) ∈ PSV (D \ (xi, yi)). Exploiting Prop. 8,
(xj , yj) ∈ PSV (D \ (xi, yi)) implies that there exists

(
w̃, b̃

)
s.t. 

yj

(
w̃Txj + b̃

)
= 0 (47a)

y`

(
w̃Tx` + b̃

)
≥ 0 y` = yj , ` 6= j (47b)

y`

(
w̃Tx` + b̃

)
> 0 y` 6= yj . (47c)

Since (xj , yj) ∈ DV (D),
(
w̃, b̃

)
must wrongly classify xi,

i.e., it must be c̃ := yi

(
w̃Txi + b̃

)
< 0. Exploiting the
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previous relation, the fact that yi = yj , (46) and the definitions
of c and c̃, we can write

yi

(
wT

c
xi +

b

c

)
= 1 (48a)

yi

(
w̃T

c̃
xi +

b̃

c̃

)
= 1 . (48b)

Subtracting (48a) and (48b) term by term we obtain

yi


(
w

c
− w̃

c̃

)T
︸ ︷︷ ︸

=: w

xi +

(
b

c
− b̃

c̃

)
︸ ︷︷ ︸

=: b

 = 0 (49)

i.e., an hyperplane
(
w, b

)
passing through (xi, 0). Dividing

now each term of (46) by c, each term of (47a) − (47c) by
−c̃ and then opportunely summing term by term the various
equations of the obtained systems we get

yi
(
wTxi + b

)
= 0

y`
(
wTx` + b

)
≥ c−1 y` = yj , ` 6= j

y`
(
wTx` + b

)
> c−1 y` 6= yj .

(50)

This implies
(
w, b

)
to be an hyperplane quasi separating D,

i.e., (xi, yi) ∈ PSV (D) which is a contradiction. Hence, it
must be (xj , yj) /∈ DV (D \ (xi, yi)). The case yi 6= yj can
be handled using analogous arguments.

Proof (of Lemma 12)

(a) (xi, yi) ∈ PSV (D) ⇒ (18) unbounded: if (xi, yi) ∈
PSV (D) then ∃w′ 6= 0 satisfying (17). Considering w′ as
fixed, problem (18) attains its maximum for some of the
∆ij’s relative to a datum of the other class, i.e., it must be
ω′ = −maxj|yj 6=yi ∆T

ijw
′. But then every αw′ with α > 0

satisfies (17), and is s.t. (18) attains its maximum at αω′,
thus (18) is in this case unbounded.

(b) (xi, yi) ∈ DV (D) ⇒ (18) maximized for ω = 0: if
(xi, yi) ∈ DV (D) then system (17) admits no solution. Since
feasible solutions of (18) must satisfy constraints ∆T

ijw ≤ 0
for yi = yj , this implies that ∆T

ijw ≥ 0 for some yi 6= yj .
It then immediately follows that for problem (18) an optimal
situation corresponds to ∆T

ijw = 0 for all j’s and ω = 0.

Proof (of Prop. 13) Consider the assumption that the DVs
are not removed from the dataset. Then the propositions
equivalently states that if D is not linearly separable then
every generic point in the dataset is DV. But this follows
immediately since in non-linearly separable datasets do not
admit hyperplanes satisfying Prop. 8.

Proof (of Lemma 14) Consider the constraints in (8). As-
suming ω ≥ 0, they can be rewritten as

yi

((
ωw
)T
xi +

(
ωb
))
− ω ≥ 0, i = 1, . . . , n. (51)

It follows immediately that if (20) is unbounded then there
exist finite ω 6= 0, w 6= 0 satisfying (51). I.e., (8) admits at

least one feasible solution, meaning that the dataset is linearly
separable.

On the contrary, if the dataset is linearly separable then
there exists at least one feasible solution of (8). This leads
to a couple ω 6= 0, w 6= 0 satisfying (51), i.e., to an un-
bounded (20) since this couple can be multiplied by arbitrary
positive constants.

The other co-implication then follows since the considered
concepts are dichotomies.

REFERENCES

[1] V. N. Vapnik, The Nature of Statistical Learning Theory. New York:
Springer-Verlag, 1995.

[2] ——, Estimation of Dependences Based on Empirical Data. Berlin:
Springer-Verlag, 1982.

[3] T. Joachims, “Making large-scale support vector machine learning
practical,” in Advances in Kernel Methods, B. Schölkopf, C. J. C.
Burges, and A. Smola, Eds. The MIT Press, 1998.

[4] G. Cauwenberghs and T. Poggio, Incremental and Decremental Support
Vector Machine Learning. MIT Press, 2000, vol. 13, pp. 409–415.

[5] A. Shilton, M. Palaniswami, D. Ralph, and A. C. Tsoi, “Incremental
training of support vector machines,” IEEE Transactions on Neural
Networks, vol. 16, no. 1, pp. 114–131, january 2005.

[6] F. Orabona, C. Castellini, B. Caputo, L. Jie, and G. Sandini, “On-line
independent support vector machines,” Pattern Recognition, vol. 43,
no. 4, pp. 1402 – 1412, April 2010.

[7] X. Liang, “An effective method of pruning support vector machine
classifiers,” IEEE Transactions on Neural Networks, vol. 21, no. 1, pp.
26–38, January 2010.

[8] S. Abe and T. Inoue, “Fast training of support vector machines
by extracting boundary data,” in Proceedings of the International
Conference on Artificial Neural Networks, vol. 2130, 2001, pp.
308–313.

[9] B. Li, “Distance-based selection of potential support vectors by kernel
matrix,” in Advances in Neural Networks - ISNN 2004, ser. Lecture
Notes in Computer Science. Springer Berlin / Heidelberg, 2004, pp.
468–473.

[10] H. Shin and S. Cho, “Fast pattern selection for support vector
classifiers,” in Advances in Knowledge Discovery and Data Mining,
ser. Lecture Notes in Computer Science. Springer Berlin / Heidelberg,
2003, vol. 2637.

[11] H. Lei and Q. Long, “Locate potential support vectors for faster
sequential minimal optimization,” in IEEE International Conference on
Natural Computation, July 2011, pp. 367–372.

[12] M. Barros de Almeida, A. de Padua Braga, and J. Braga, “SVM-KM:
speeding SVMs learning with a priori cluster selection and k-means,”
in 6th Brazilian symposium on Neural Networks, november 2000.

[13] S. S. Keerthi, O. Chapelle, and D. DeCoste, “Building support vector
machines with reduced classifier complexity,” Journal of Machine
Learning Research, vol. 7, pp. 1493–1515, 2006.

[14] C. J. C. Burges, “Simplified support vector decision rules,” in
Proceedings of the 13th International Conference on Machine
Learning, 1996, pp. 71–77.

[15] C. J. C. Burges and B. Schölkopf, “Improving the accuracy and speed
of support vector learning machines,” in Proceedings of the 9th NIPS
Conference, 1997, pp. 375–381.

[16] A. Bordes and L. Bottou, “The huller: A simple and efficient
online svm,” in Machine Learning: ECML 2005. Springer Berlin /
Heidelberg, 2005, pp. 505–512.

[17] T. Downs, K. E. Gates, and A. Masters, “Exact simplification of
support vector solutions,” Journal of Machine Learning Research,
vol. 2, pp. 293–297, December 2001.

[18] X. Liang, R.-C. Chen, and X. Guo, “Pruning support vector machines
without altering performances,” IEEE Transactions on Neural Networks,
vol. 19, no. 10, pp. 1792–1803, October 2008.

[19] Y. Engel, S. Mannor, and R. Meir, “Sparse online greedy support vector
regression,” in Machine Learning: ECML 2002. Springer Berlin /
Heidelberg, 2002, vol. 2430, pp. 1–3.

[20] T. Kobayashi and N. Otsu, “Efficient reduction of support vectors
in kernel-based methods,” in 16th IEEE International Conference on
Image Processing, November 2009, pp. 2077–2080.



15

[21] F. Orabona, J. Keshet, and B. Caputo, “Bounded kernel-based online
learning,” Journal of Machine Learning Research, vol. 10, pp.
2643–2666, 2009.

[22] S. Katagiri and S. Abe, “Incremental training of support vector
machines using hyperspheres,” Pattern Recognition Letters, vol. 27,
no. 13, pp. 1495–1507, October 2006.

[23] D. Geebelen, J. A. K. Suykens, and J. Vandewalle, “Reducing the
number of support vectors of svm classifiers using the smoothed
separable case approximation,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 23, no. 4, pp. 682–688, 2012.

[24] R. U. Pedersen, “Using support vector machines for distributed machine
learning,” Ph.D. dissertation, University of Copenhagen, August 2004.

[25] D. A. Tran and T. Nguyen, “Localization in wireless sensor networks
based on support vector machines,” IEEE Transactions on Parallel and
Distributed Systems, vol. 19, no. 7, pp. 981–994, July 2008.

[26] W. Kim, J. Park, and H. Kim, “Target localization using ensemble
support vector regression in wireless sensor networks,” in IEEE Wireless
Communications and Networking Conference, Sydney, Australia, April
2010.

[27] A. Navia-Vazquez, D. Gutierrez-Gonzalez, E. Parrado-Hernandez, and
J. J. Navarro-Abellan, “Distributed support vector machines,” IEEE
Transactions on Neural Networks, vol. 17, no. 4, pp. 1091–1097, July
2006.

[28] D. Wang, J. Li, and Y. Zhou, “Support vector machine for distributed
classification: A dynamic consensus approach,” in IEEE Workshop on
Statistical Signal Processing, August 2009.

[29] D. Wang, J. Zheng, Y. Zhou, and J. Li, “A scalable support vector
machine for distributed classification in ad hoc sensor networks,”
Neurocomputing, vol. 74, no. 1-3, pp. 394–400, December 2010.

[30] M. Pontil and A. Verri, “Properties of support vector machines,” Neural
Computation, vol. 10, no. 4, pp. 955–974, may 1998.

[31] E. Osuna and O. De Castro, “Convex hull in feature space for support
vector machines,” in 8th Ibero-American conference on Artificial
Intelligence, 2002, pp. 411–419.

[32] D. G. Luenberger and Y. Ye, Linear and Nonlinear Programming,
2nd ed. Springer, 2008.

[33] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 2nd ed. MIT Press and McGraw-Hill, 2001.

[34] B. C. Barber, D. P. Dobkin, and H. Huhdanpaa, “The quickhull
algorithm for convex hulls,” ACM Transactions on Mathematical
Software, vol. 22, no. 4, pp. 469–483, December 1996.

[35] D. R. Chand and S. S. Kapur, “An algorithm for convex polytopes,”
Journal of the Association for Computing Machinery, vol. 17, no. 1,
pp. 78–86, 1970.

[36] R. A. Jarvis, “On the identification of the convex hull of a finite set of
points in the plane,” Information Processing Letters, vol. 2, no. 1, pp.
18–21, 1973.

[37] D. Elizondo, “The linear separability problem: Some testing methods,”
IEEE Transactions on Neural Networks, vol. 17, no. 2, pp. 330–344,
March 2006.

[38] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification. Wiley
Interscience, 2000.

[39] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning, 2nd ed. Springer, 2008.

[40] V. N. Vapnik, Statistical Learning Theory. New York: Springer-Verlag,
1998.

[41] S. Katagiri and S. Abe, “Incremental training of support vector
machines using truncated hypercones,” in Artificial Neural Networks in
Pattern Recognition, ser. Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2006, vol. 4087, pp. 153–164.

[42] R. Fisher, “The use of multiple measurements in taxonomic problems,”
Annals of Eugenics, vol. 7, no. 2, pp. 179–188, 1936.


	Introduction
	Notation
	 Linear Support Vector Classification 
	Classification for linearly separable datasets

	 Characterization of the PSV 
	Characterization in the space of the hyperplanes parameters
	Characterization in the inputs space

	 Numerical computation of the PSV under linearity assumptions 
	Analysis of the computational complexity of Algorithm 1
	Pre-discardability through convex hulls
	Analysis of the output of Algorithm 1

	Extension to the nonlinear case
	Numerical Experiments
	Heuristics for Non Separable Datasets
	Conclusions
	References
	References

