
AverageTimeSynch: a consensus-basedprotocol for clock

synchronization inwireless sensornetworks

Luca Schenato a, Federico Fiorentin b

a Department of Information Engineering
University of Padova, Padova, Italy

b Accenture S.p.a, Milan, Italy

Abstract

This paper describes a new consensus-based protocol, referred to as Average TimeSync (ATS), for synchronizing the clocks
of a wireless sensor network. This algorithm is based on a cascade of two consensus algorithms, whose main task is to average
local information. The proposed algorithm has the advantage of being totally distributed, asynchronous, robust to packet
drop and sensor node failure, and it is adaptive to time-varying clock drifts and changes of the communication topology. In
particular, a rigorous proof of convergence to global synchronization is provided in the absence of process and measurement
noise and of communication delay. Moreover, its effectiveness is shown through a number of experiments performed on a real
wireless sensor network.

Key words: Consensus, Time synchronization, drift compensation, networked systems, node failure.

1 Introduction

Recent technological advances in miniaturization and
wireless communication are promoting the use of a large
number of networkeddevices for fine-grain ambient mon-
itoring and control. In particular, a special class of these
networked systems, known as wireless sensor networks
(WSNs), have gained interest and popularity for being
self-configuring, rather inexpensive, and useful for a very
wide range of possible applications from building climate
control to target tracking, from environment monitoring
to industrial automation. WSNs are networks of small
programmable devices with computational, sensing and
memory capabilities that can communicate with their
neighbors via a wireless channel. In many of the afore-
mentioned applications, it is essential that the nodes act
in a coordinated and synchronized fashion. In particular,
many applications require a global clock synchroniza-
tion, that is all the nodes of the network need to share
a common notion of time.

⋆ This work has been partially supported by European
Union project FP7-ICT-223866-FeedNetBack, by the Italian
CaRiPaRo Foundation project ”Wise-Wai”. Corresponding
author Luca Schenato Ph. +390498277925

Email addresses: schenato@dei.unipd.it (Luca
Schenato), f.fiorentin@gmail.com (Federico Fiorentin).

However, global clock synchronization is particularly
challenging in the context of wireless sensor networks
for several reasons. The first reason is that the nodes
cannot communicate directly with each other but they
have to do it via multi-hop communication. Therefore,
it is not possible to choose a reference node to which all
other nodes can be directly synchronized to. Secondly,
wireless communication is often unreliable and it is sub-
ject to unpredictable packet losses. Finally, wireless sen-
sor networks are made of inexpensive devices that often
incur failure, replacement or relocation, thus creating
a dynamic communication topology both in terms of
communication links and number of nodes. Therefore,
many dedicated strategies and protocols have been pro-
posed to address the problem of time synchronization
in WSNs, as surveyed in [25][28][8][24].

A common approach to deal with the multi-hop nature of
a sensor network is to organize the network into a rooted
tree as in the Time-synchronization Protocol for Sensor
Networks (TPSN) [10] and in the Flooding Time Syn-
chronization Protocol (FTSP) [16]. Initially one node is
elected to be the global clock reference, then a span-
ning tree rooted at that node is built. Afterwards, each
node synchronizes itself with its parent by compensat-
ing its offset, i.e., the instantaneous clock difference, and
its relative clock drift, i.e., the relative clock speed, us-
ing its parent clock readings as the direct reference. This

Preprint submitted to Automatica 29 January 2011

approach suffers from two major limitations. The first
limitation arises because if the root node or a non-leaf
node dies, then a new root-election or parent-discovery
procedure needs to be initiated, thus adding substan-
tial overhead to the code and potentially long periods
of network de-synchronization. The second limitation is
due to the fact that geographically close nodes might be
far in terms of path-length in the constructed tree, and
this distance is directly related to the clock synchroniza-
tion error. This is particularly harmful for many appli-
cations such as target tracking or time division medium
access (TDMA) scheduling, for which it is really impor-
tant that clock errors between one node and the others
degrade sufficiently smoothly as a function of geographic
distance.

Another approach is to divide the network into inter-
connected single-hop clusters, as suggested in the Ref-
erence Broadcast Synchronization (RBS) scheme [6]. In
this protocol, within every cluster a reference node is se-
lected to synchronize all the other nodes. The reference
nodes of different clusters are synchronized together and
act as gateways by converting the synchronized clock
readings of one cluster into the consistent local clock
readings of another cluster when needed. Like the TPSN,
also RBS suffers from large overhead necessary to di-
vide the network into clusters and to elect the reference
nodes. Moreover it is somewhat fragile to node failures.

The last approach is to have a fully distributed communi-
cation topology where there are no special nodes such as
roots or gateways, and all nodes run exactly the same al-
gorithm. This approach has the advantage of being very
robust to node failure and new node appearance, but re-
quires specific algorithms for the synchronization since
there is no reference node. One example of a completely
distributed synchronization strategy is the Reachback
Firefly Algorithm (RFA), inspired by the firefly syn-
chronization mechanism proposed in [31]. In this algo-
rithm every node periodically broadcasts a synchroniza-
tion message and anytime a node hears a message, then
it slightly shifts forward the phase of its internal clock
which is used to schedule the periodic message broad-
casting. Eventually all nodes will advance their phase
till they are all synchronized, i.e., they “fire” a message
at the same time. This approach however does not com-
pensate for clock drift, therefore the firing period needs
to be rather small. Alternatively, in [26] the authors
proposed a Distributed Time Synchronization Protocol
(DTSC) which is fully distributed and compensates the
clock drifts. This protocol is formulated as a distributed
gradient descent optimization problem as shown in [12].
Recently, different authors proposed the use of consen-
sus algorithms, i.e., algorithms whose goal is to have all
agents of a network to agree upon a common variable, for
distributed time syncronization. For example, in [15] the
authors propose a consensus-based algorithm to com-
pensate the clock offsets but not the clock drifts, while in
[23] the authors studied distributed frequency compen-

sation, i.e., clock drift compensation, for phase locked
loops (PLLs) using consensus algorithms. More recently,
in [4] a proportional-intergral (PI) consensus-based con-
troller was proposed which consists in a second-order
consensus algorithm to compensate both clock offsets
and clock drifts.

In this paper, a new synchronization protocol for WSN,
named Average TimeSynch (ATS), is proposed based on
the cascade of two consensus algorithms where the first
consensus synchronizes clock speeds and the second syn-
chronizes the clock offsets. The original contribution of
this paper is twofold. The first being that, as compared
to other fully distributed algorithms that compensate
for both drift and offset [26][27], here a rigorous proof
of convergence is provided under the assumptions of ab-
sence of process noise, measurement noise, and propa-
gation delay. As compared to the proportional-integral
(PI) time-synchronization algorithm [4] which requires
a pseudo-synchronous implementation, the ATS is to-
tally asynchronous, thus being resilient to packet losses,
and node failure, replacement or relocation. The second
main contribution is the presentation of extensive ex-
perimental results from a real WSN including a compar-
ison with the FTSP protocol [16], which is considered
the de-facto standard for time synchronization in WSN.
Moreover, the proposed algorithm is adaptive to slowly
time-varying clock drifts and requires minimal memory
and computational resources. Preliminary results about
this work have appeared in [2],[21] and [20].

The paper is organized as follows. Section 2 introduces
some mathematical tools and definitions that will be in-
strumental for the proof of convergence of the proposed
ATS protocol. Section 3 introduces a model for the clock
dynamics and formally defines the synchronization ob-
jectives, while Section 4 describes the ATS protocol and
provides a formal proof of convergence under ideal con-
ditions. Finally, Section 5 describes the experimental ap-
paratus of a typical WSN and presents a set of experi-
ments that test the proposed algorithm and compare it
with an alternative protocol available in the literature.
Section 6 briefly summarizes the results obtained and
proposes potential research directions. To improve read-
ability, the proofs of the theorems are reported in the
Appendix section at the end of this paper, unless other-
wise stated.

2 Mathematical Preliminaries

This section introduces the necessary mathematical
tools to prove convergence of the ATS protocol proposed
in the next sections. In particular, some well known re-
sults about the positivness of the product of stochastic
matrices based on graph properties of their associated
graphs are first recalled (Theorem 1), and then the prop-
erty of a Lyapunov function suitable for stochastic ma-
trices is given (Lemma 2). These two results are finally

2

employed in the main theorem of this section to provide
convergence conditions for time-varying systems subject
to exponential decaying disturbances (Theorem 3).

Communication in a WSN is modeled as a directed graph
G = (N , E), where N = {1, 2, . . . , N} represents the
nodes in the WSN and the edge set E represents the
available directed communication links, i.e., (i, j) ∈ E if
node j sends information to node i. The symbol Ni =
{j | (i, j)} ∈ E , i 6= j} represents the set of neighbors of
i, and |Ni| its cardinality. A matrix P ∈ RN×N is said to

be stochastic if Pij ≥ 0 and
∑N

j=1 Pij = 1, ∀i ∈ N , where
Pij indicates the i − j entry of matrix P . To simplify
notation the previous constraints will be denoted as P ≥
0, and P1 = 1, where 1 = [1 1 · · · 1]T ∈ RN . Given
a stochastic matrix P its associated graph is defined as
GP = (N , EP) where (i, j) ∈ EP if and only if Pij > 0.
A stochastic matrix P is said to be consistent with a
graph G = (N , E), denoted as P ∼ G, if GP ⊆ G, i.e.,
EP ⊆ E . The union of two graphs is defined as G =
G1 ∪ G2 = (N , E) where E = E1 ∪ E2. The symbol Gsl =
{G = (N , E) | (i, i) ∈ E , ∀i ∈ N} indicates the set of
graphs with all self-loops. A graph G = (N , E) is said
to be strongly connected if there is a path between any
pair of nodes i, j ∈ N , i.e., there exist k1, . . . kℓ ∈ N
such that (i, k1), (k1, k2), . . . , (kℓ, j) ∈ E , and it is said
to be complete if (i, j) ∈ E , ∀i, j ∈ N , i.e., all nodes are
directly connected. Note that GP is complete if and only
if P > 0.

From now on it is assumed that the WSN connectivity
graph GWSN = (N , E) (i) is undirected, i.e., (i, j) ∈ E if
and only if (j, i) ∈ E , (ii) it contains all self loops, i.e.,
G ∈ Gsl, and (iii) it is strongly connected. These hy-
potheses are realistic since the wireless channel is sym-
metric, each node has access to its own information,
and the graph is not disconnected. However, the chan-
nel is only half-duplex, i.e., two nodes cannot transmit
and receive at the same time. As a consequence, the
communication protocols that are suggested later in this
work, such as the broadcast communication, will give
rise to non-symmetric stochastic matrices whose associ-
ated graphs are directed.

The previous definitions are instrumental in the next
theorem to provide sufficient conditions that guarantee
strictly positiveness of products of time-varying stochas-
tic matrices. The positiveness is a useful property to
prove convergence of time-varying consensus algorithms.
The proof of this theorem and more general conditions
can be readily derived from [18] and [3]. Similar results
are also available in the context of convergence of Markov
Chains [22].

Theorem 1 Consider the sequence of stochastic matri-
ces {Pk}∞k=0 such that GPk

∈ Gsl. If there exist integers
0 = h0 < h1 < . . . < hℓ < . . ., where hℓ+1 − hℓ < H <

∞, such that Gℓ := ∪hℓ+1

m=hℓ
GPm

is strongly connected for

all ℓ = 0, 1, . . ., then there exists a positive integer K
such that Qℓ = P(ℓ+1)K−1 . . . PℓK+1PℓK > 0 for all ℓ.

It was shown in [18] that the previous condition on the
graph sequence GPk

is also necessary, i.e., it is the weak-
est condition to have Qℓ > 0. In other words, the theo-
rem states that the communication graph does not need
to be connected at all time instants, but only over an
arbitrarily long but finite time window.

In order to prove the main theorem of this section, the
next technical lemma introduces a Lyapunov function
and its property in the context of systems whose dynam-
ics is given by a stochastic matrix:

Lemma 2 Let x ∈ RN and P ∈ RN×N a stochastic
matrix. Let V (x) = max(x) − min(x), then

V (Px) ≤ (1 − N
max
j=1

N

min
i=1

{Pij})V (x)

where max(x) = maxN
i=1{xi} and min(x) = minN

i=1{xi}.

The proof can be found in [32]. It is important to note

that (maxN
j=1 minN

i=1{Pij}) > 0 if and only if there is at
least one column of P whose elements are all positive,
i.e., if there is at least one node that is directly connected
to all the others.

It is now possible to provide a general theorem for con-
vergence of linear iterative stochastic matrices subject
to exponentially decaying disturbances.

Theorem 3 Let us consider the following linear system

x(k + 1) =
(

P (k) + ∆(k)
)

x(k) + v(k) (1)

where x(k) ∈ RN , P (k) ∈ RN×N are stochastic matrices,
and ∆(k) ∈ RN×N and v(k) ∈ RN are unknown and
||∆(k)||∞ ≤ aρk, and ||v(k)||∞ ≤ aρk for some a > 0
and ρ ∈ [0, 1). If there exists an integer K such that Qℓ =
P(ℓ+1)K−1 . . . PℓK+1PℓK ≥ ǫ > 0 for all ℓ = 0, 1, . . .,
then there exists α ∈ R such that

lim
k→∞

x(k) = α1

exponentially fast.

The previous theorem states that if the sequence of the
consensus matrices P (k) gives rise to a connected graph
over an arbitrary but finite time window of length K,
even in the presence of both multiplicative and additive
but exponentially decaying disturbance, then all nodes
will eventually converge to consensus exponentially fast
where the consensus parameter α is constant. Consensus
subject to multiplicative and additive disturbances has
also been addressed in [13], but assuming a special case

3

of Laplacian-based consensus matrices P (k) which are
symmetric. As explained at the beginning of this section,
the half-duplex nature of the wireless channel leads to
non-symmetric consensus matrices, therefore results of
[13] cannot be used. The difficulty of dealing with non-
symmetric consensus matrices has been well explained
in [17]. Another notable work in the context of consensus
algorithms driven by external non-vanishing inputs can
be found in [14], but those results are applicable only for
additive disturbance with identical entries.

It is important to remark that an exponential decay-
ing disturbance is not a necessary condition for conver-
gence to consensus, i.e., limk→∞ x(k) = α(k)1. Indeed,
even non vanishing disturbances can lead to consensus,
as shown in [14], for example. However, proof of con-
vergence subject to more general disturbances is much
more challenging and it is out of the scope of this work.

Implicitly, the theorem also provides an upper bound for
the rate of convergence which is given by max(K

√
1−ǫ,ρ).

In practice, the bound K
√

1 − ǫ is very loose since it is
based on a worst-case scenario, and the convergence rate
is in general much faster. Better convergence rate bounds
can be obtained by considering randomized consensus
matrices as in [7]. The algorithm proposed in this work is
suitable also for randomized communication protocols,
but the corresponding mathematical tools to prove con-
vergence need to be adapted. On the other hand, the
sufficient conditions stated in the theorem to guaran-
tee convergence are very mild, since no specific order of
P (k) is required. This will be particularly useful to prove
convergence of the proposed algorithm, since in WSN
it is very difficult to enforce a predefined synchronized
scheduling sequence of P (k), while it is easy to guaran-
tee the hypotheses of the theorem.

3 Model

This section provides a mathematical model for wireless
sensor network clocks. Every node i in a WSN has its
own local clock whose first order dynamics is given by:

τi(t) = αit + βi (2)

where τi is the local clock reading, αi is the local clock
drift which determines the clock speed, and βi is the
local clock offset. Since the absolute reference time t is
not available to the nodes, it is not possible to compute
the parameters αi and βi. However, it is still possible to
obtain indirect information about them by comparing
the local clock of one node i with respect to another
clock j. In fact, if Eqn. (2) is solved for t, i.e., t = τi−βi

αi

and it is substituted into the same equation for node j,

Fig. 1. Clocks dynamics as a function of absolute time t

(left), and relative to each other (right).

then it follows:

τj =
αj

αi

τi + (βj −
αj

αi

βi)

= αij τi + βij (3)

which is still linear as shown in the right panel of Fig. 1.
The goal is to synchronize all the nodes with respect to
a virtual reference clock, namely:

τ̄ (t) = ᾱt + β̄ (4)

Every local clock keeps an estimate of the virtual time
using a linear function of its own local clock:

τ̂i(t) = α̂iτi(t) + ôi (5)

Our goal is to find (α̂i, ôi) for every node in the WSN
such that:

lim
t→∞

τ̂i(t) − τ̄ (t) = 0, i = 1, . . . , N (6)

where N is the total number of nodes in the WSN. There-
fore, if the previous expression is satisfied, then all nodes
will have a common global reference time given by the
virtual reference clock. The previous expression can be
rewritten by first substituting Eqn.(2) into Eqn.(5) to
get:

τ̂i(t) = α̂iαit + α̂iβi + ôi (7)

Therefore Eqn. (6) is equivalent to

lim
t→∞

αiα̂i(t) = ᾱ, (8)

lim
t→∞

ôi(t) + βiα̂i(t)= β̄, i = 1, .., N (9)

Before moving to the next section which presents how
the ATS protocol updates (α̂i, ôi) to satisfy the previous
expression, it is important to make a few remarks. The
first regards the clock modeling of Eqn.(1). In reality
the parameters αi, βi are time varying due to ambient
conditions or aging, however the ATS protocol is able
to track these changes as long as the synchronization
period is shorter than the time constants relative to the
typical variations of these parameters.

4

The second point is that the virtual reference clock is
a fictitious clock and is not fixed a priori. In fact, the
values of its parameters (ᾱ, β̄) are not critical 1 , since
what it is really relevant is that all clocks converge to
one common virtual reference clock. Indeed, as it will
be shown in the next section, the parameters (ᾱ, β̄) to
which the local clock estimates converge depend on the
initial condition and the communication topology of the
WSN.

The last remark is that by using the MAC-layer time-
stamping [30] available in many sensor network devices,
it can be safely assumed that the reading of the local
clock τi(t1) at the transmitting node and the reading of
the local clock τj(t2) at the receiving node are instanta-
neous, i.e., t1 = t2 (see Section 5.3 in [27] for a detailed
description). If this is not the case, the proposed syn-
chronization protocol cannot be used as it is and needs
to be modified to cope with packet delivery delay (see,
for example, [28] and [26] for transmission delay com-
pensation).

4 The ATS protocol

The Average TimeSync protocol includes three main
parts: the relative drift estimation, the drift compensa-
tion, and the offset compensation. Moreover, it is impor-
tant to specify the communication schedule to guarantee
convergence.

4.1 Communication protocol: pseudo-periodic broad-
cast

Here, a simple deterministic communication protocol is
proposed which satisfies conditions of Theorem 1, how-
ever many others are possible as long as all nodes trans-
mit sufficiently often, such as the randomized broadcast
communication proposed in [7]. Here each node i is as-
sumed to periodically transmit a packet to all its neigh-
bors with a synchronization period equal to T , i.e., the
transmission instants tik are defined as τi(t

i
ℓ) = ℓT or

equivalently

tiℓ =
ℓT − βi

αi

= ℓ Ti + β̄i (10)

As mentioned above, packets are assumed to be instan-
taneously received by its neighbors. This protocol is re-
ferred to as pseudo-periodic broadcast since each node
broadcasts its message at every period T based on its
own clock, which in reality corresponds to a period Ti.

1 In practice, ᾱ should not be too different from the
clock speeds. Indeed, it is possible to show that in the
absence of external disturbance the ATS would lead to
ᾱ ∈ [minN

i=1{αi}, maxN
i=1{αi}], i.e., within the range of the

speeds of the network clocks.

However, since each αi is slightly different, over time
the order of transmissions as well the relative interar-
rival intervals change, thus the name pseudo-periodic.
Let us consider the set of all ordered transmissions of all
nodes T = ∪i ∪ℓ {tiℓ} = {t̄0, t̄1, . . .}, where t̄k are the or-
dered events, i.e t̄k < t̄k+1

2 . Let kℓ such that t̄kℓ
= tmℓ ,

where m = argminiαi = argmaxiTi, i.e., the slowest
clock, and without loss of generality it is assumed that
βm = 0. It should be clear that tmℓ = ℓT/αmin = ℓTmax

and N ≤ kℓ+1 − kℓ ≤ ⌈αmax/αmin⌉N , where αmin =

minN
i=1{αi}, αmax = maxN

i=1{αi} and ⌈·⌉ indicates the
smallest integer greater or equal than its argument. Also
∀ℓ, ∀j there exist integers h, s such that kℓ ≤ h ≤ kℓ+1

and t̄h = tjs, i.e., each node j transmits at least once in
the time window of period Tmax defined by two consec-
utive transmissions of the slowest clock.

This is indeed only a sufficient condition that satisfies
the hypotheses of Theorem 1. However, as mentioned in
Section 2, in practice the necessary conditions for asymp-
totic convergence are that the communication graph is
connected and that each node transmits sufficiently of-
ten. In fact, occasional packet drops or temporary fail-
ures of a node do not affect asymptotic convergence, al-
though they might degrade the speed of convergence.

4.2 Relative Drift Estimation

This part of the protocol is concerned with deriving an
algorithm that estimates the relative drift of each clock
i with respect its neighbor j. Every node i tries to esti-
mate the relative drifts αij =

αj

αi
with respect to all its

neighbor nodes j ∈ Ni. This is accomplished by writing
the current local time τj(t

j
ℓ) of node j into a broadcast

packet, then the node i that receives this packet imme-
diately records its own local time τi(t

j
ℓ). As discussed in

the previous section, we can assume that the readings of
the two local clocks are instantaneous since MAC-layer
time-stamping is used. Therefore, node i records in its
memory the pair (τold

ij , τold
j) =

(

τi(t
j
ℓ), τj(t

j
ℓ)

)

. When a
new packet from node j arrives to node i, the same pro-
cedure is applied to get the new pair

(

τi(t
j
ℓ+1), τj(t

j
ℓ+1)

)

,
as shown in the right panel of Fig.1. From these two
pairs, in principle it is possible to directly compute the
relative drift αij . However, due to unavoidable measure-
ment and quantization errors, the estimate of the values

2 The assumption of non-simultaneous events is not critical
for the proposed algorithm but is convenient for simplifying
the proofs of the following theorems.

5

αij is performed via a low-pass filter as follows:

(τnew
ij , τnew

j) =
(

τi(t
j
ℓ), τj(t

j
ℓ)

)

ηij(t
+) = ρη ηij(t)+(1−ρη)

τnew
j −τold

j

τnew
ij

−τold
ij

(τold
ij , τold

j) = (τnew
ij , τnew

j)



















, t = tjℓ (11)

ηij(t) = ηij(t
+), t ∈ (t+, tjℓ+1] (12)

where ρη ∈ (0, 1) is a tuning parameter, and t+ indicates
the update. If there is no measurement error and the
drift is constant, then the variable ηij converges to the
variable αij as stated in the following theorem:

Theorem 4 Let us consider the update Eqns (11)-(12)
where 0 < ρη < 1, the transmission events tiℓ are gen-
erated according to the pseudo-periodic broadcast of
Eqn. (10), and each τi evolves according to Eqn. (2).
Then

lim
t→∞

ηij(t) = αij (13)

exponentially fast for any initial condition ηij(0).

In practice, the parameter ρη is used to tune the trade-off
between a fast rate of convergence (ρη close to zero) and a
high noise immunity (ρη close to unity). In fact, filtering

is necessary because the quantity
τj(t2)−τj(t1)
τi(t2)−τi(t1)

in a real

scenario is not constant but it is slowly time-varying
and affected by quantization noise. It is important to
remark that it is not necessary to perform the update
at a fixed frequency, i.e., the packet inter-arrival t2 − t1
can vary, thus making this algorithm particularly useful
for asynchronous and lossy communication. The other
important advantage of this algorithm is that it requires
little memory. In fact, each node i needs to store only the
|Ni| relative drift estimates ηij and the most recent local
clock readings (τold

ij , τold
j). Since the size of the set Ni is

in general small even for large networks, this algorithm
is also rather scalable.

4.3 Drift Compensation

This part of the algorithm is the core of the Average
TimeSync protocol, as it forces all the nodes to converge
to a common virtual clock rate, ᾱ, as defined in Eqn. (4).
The main idea is to use a distributed consensus algo-
rithm based only on local information exchange. In the
consensus algorithms any node keeps its own estimate of
a global variable, and it updates its value by averaging
it with the estimates of its neighbors (see for example
surveys [19],[11]). The algorithm is very simple since ev-
ery node stores only its own virtual clock drift estimate
α̂i, defined in Eqn. (5). As soon as a node i receives a

packet from node j at time tjℓ , it updates its estimate α̂i

as follows:

α̂i(t
+) = ρvα̂i(t) + (1 − ρv)ηij(t) α̂j(t), t = tjℓ , i ∈ Nj

(14)

where α̂j is the virtual clock drift estimate of the neigh-
bor node j. The initial condition for the virtual clock
drifts of all nodes is set to α̂i(0) = 1. It is now shown that
the previous update rule will lead to limt→∞ α̂i(t)αi =
ᾱ, i.e., all clock estimate τ̂i(t) will eventually have the
same speed.

Theorem 5 Consider the drift update equation given
by Eqn. (14) with initial condition α̂i(0) = 1 and
0 < ρv < 1, where ηij(t) are updated according to

Eqns (11)-(12) and tjℓ are defined in Eqn. (10). Then

lim
t→∞

α̂i(t)αi = ᾱ, ∀i

exponentially fast, where ᾱ ∈ R.

4.4 Offset compensation

According to the previous analysis, after the drift com-
pensation algorithm is applied, all local virtual clock es-
timators will eventually have the same drift, i.e., they
will run at the same speed. At this point it is only neces-
sary to compensate for possible offset errors. Once again,
a consensus algorithm is employed to update the esti-
mated clock offset, previously defined in Eqn. (5), as fol-
lows:

ôi(t
+) = ôi(t) + (1 − ρo)(τ̂j(t) − τ̂i(t)), t = tjℓ, i ∈ Nj

(15)
where τ̂j and τ̂i are computed at the same time in-

stant t = tjℓ , and τ̂i(t
i
ℓ) = α̂i(t

i
ℓ)τi(t

i
ℓ) + ôi(t

i
ℓ). Between

communication instants, i.e., for t 6= tjℓ , both ôi(t) and
α̂i(t) are kept constant. Informally speaking, each node
computes the instantaneous estimated clock difference
τ̂j(t) − τ̂i(t) and tries to update its offset ôi in order to
reduce this difference. The next theorem shows the con-
vergence of this algorithm:

Theorem 6 Consider the offset update equation given
by Eqn. (15) with initial condition ôi(0) = 0 and

0 < ρo < 1, where τ̂i, tjℓ, ηij and α̂i are defined in Equa-
tions (5), (10), (11)-(12), and (14), respectively. Then

lim
t→∞

τ̂i(t) = τ̂j(t), ∀i, j ∈ N

exponentially fast.

It is important to remark that the offset compensation
does not need to wait for the drift compensation to syn-
chronize all clock speeds, but it is applied simultane-
ously, thus providing faster convergence and better per-
formance as shown below in Fig. 7 of Section 5.4.

6

5 Experimental Results

5.1 Experimental testbed

The ATS protocol has been implemented on a real WSN
of 35 Tmote Sky nodes produced by the MoteIv Inc [30].
Each Tmote Sky module has the size of a cards deck and
is provided with a 8Mhz 16bit microcontroller MSP430
by Texas Instrument, 10k RAM and 48k Flash in terms
of memory, a 250kbps 2.4GHz IEEE 802.15.4 Zigbee-
compliant Chipcon Wireless Transceiver CC2420, addi-
tional electronics for input-output interfacing, and few
sensors. These modules can be powered through a USB
port or with a pair of AA batteries, and they can be pro-
grammed via TinyOS [29], an operating system specifi-
cally designed for WSN to maintain low complexity and
low code footprint. The microcontroller MSP430 is pro-
vided with a digitally controlled oscillator (DCO) run-
ning at 8MHz which provides a potential clock resolu-
tion of TDCO = 1/8Mhz = 0.125µs, however it needs
to be calibrated using a slower external crystal oscilla-
tor (ECO) running at 32768Hz. Moreover, during idle
mode for low power consumption, the DCO is switched
off and operations are based on the ECO. Since many
important applications run mostly in idle mode, the
ECO is used for testing the ATS protocol, therefore
the maximal resolution will depend on the ECO reso-
lution which is one oscillation period, called tick, where
1 tick = 1/32768Hz = 30.5µs. In other words, it is not
possible to distinguish synchronization errors that are
smaller than 30.5µs since each local clock τi(t) is given
by an integer counter that is incremented by one unit
at every ECO cycle. An important feature of the radio
chip CC2420 is the so called MAC-layer time-stamping,
which allows each node to read the local clock at the
beginning of the transmission or reception of the first
bit, namely the Start Frame Delimiter (SFD), of a mes-
sage. This mechanism strongly reduces potential unpre-
dictable delays between the readings of the transmitting
and receiving node, as also explained in [27]. Although
a mismatch between transmission and reception times
still exists due to the operating system and the detection
of the SFD, it has been experimentally observed to be
negligible as compared to the ECO resolution, therefore
communication delay can be safely neglected, which is a
major assumption of the proposed ATS protocol.

In order to test the ATS protocol, a 7x5 grid was built
for a total of 35 nodes as shown in Figure 2. Since most
nodes were all in communication range of each other,
they were forced to communicate only with close neigh-
bors, i.e., messages received from distant nodes were ne-
glected. Such a topology has a diameter of 10 hops, i.e.,
the worst-case minimum distance in terms of commu-
nication steps between two nodes, as for example the
bottom-left node and the top-right node. Each node was
running the same ATS protocol, i.e., there was no base
station or predefined reference node. The protocol pa-

Fig. 2. Wireless sensor network communication topology of
35 Tmote Sky nodes including a close-up of the Tmote Sky
device.

rameters were set to ρo = ρv = 0.5 and ρη = 0.2. All
nodes were polled by an additional external node every
5 seconds, i.e., they were asked to report the value of
their estimated time τ̂i(t) at the same time instant t to
evaluate the instantaneous clock synchronization errors.
The nodes adopted the pseudo-periodic communication
scheme described in Section 4.1 for different synchro-
nization periods. An average packet loss around 5−10%
was observed probably due to packet collision. The re-
mainder of this section is dedicated to presenting the
results of the ATS protocol under different scenarios.

5.2 Dynamic topology

This experiment, shown in Fig. 3, was intended to study
the robustness properties of the ATS protocol subject to
node failure and node replacement, as well as the perfor-
mance in terms of convergence speed and steady state
synchronization error. The synchronization period was
set to 30s which is sufficiently large to exhibit the effects
of different clock speeds. The experiment was run for
about 2.5 hours and presents 4 different regions of oper-
ation indicated by the letters A,B,C,D which model po-
tential node failure or the addition of new nodes. In Re-
gion A all nodes are turned on simultaneously with ran-
dom initial conditions of their local clocks. After about
120 polling cycles, corresponding to 120 · 5s = 10min
and about 120/6 = 20 packets sent per node, the syn-
chronization error between any two nodes is included be-
tween ±10 ticks, i.e., the maximum error is smaller that
20ticks = 600µs, i.e., well below one millisecond. At the
beginning of Region B, about 40% of the nodes chosen
at random in the grid are switched off and then switched
on at different random times. Once a node is switched
on, it starts updating its estimated time τ̂i(t) using the
ATS protocol but does not transmit any message for
the first three synchronization periods to avoid to inject
large disturbances into the already synchronized net-
work, and then it starts transmitting and receiving mes-
sages equally. The plot in Fig. 3 clearly shows that the
nodes get synchronized as soon as they are turned on
without perturbing the overall network behavior. At the
beginning Region C, about 20% of the nodes turned off
their radio, i.e., they stopped updating their parameters

7

S
y
n
c
h

.
E

rr
o
r

[t
ic

k
s
]

Polling cycle (n)

Fig. 3. Synchronization error τ̂i − τ̂j as a function of time for
the 7x5 WSN grid. Polling period is 5s and synchronization
period is T = 30s. Region A: all nodes are on. Region B: 40%
of the nodes are turned off and then turned on at random
times. Region C: 20% of the nodes turned off their radio.
Region D: the nodes turned on again the radio.

ηij,α̂i, ôi, so their estimated time τ̂i started drifting away
from the rest of the synchronized grid due to different in-
ternal clock speeds. At the beginning of Region D, their
radios are turned on again and after a short transient
the nodes quickly synchronize again.

5.3 Comparison between ATS and FTSP

This experiment compared the performance of the pro-
posed ATS protocol with the FTSP by [16], for which
there is a freely available implementation for TinyOS in
[9]. The FTSP is considered the de-facto standard for
time synchronization in WSN since it has been shown
to be resilient to dynamic changes in the communica-
tion topology and to compensate different clock drifts,
therefore many newly proposed algorithms are compared
against it.

Fig. 4 shows the performance obtained under the same
conditions for a 3x3 WSN grid with synchronization pe-
riod T = 60s, which indicates a slightly better perfor-
mance of the ATS protocol and the absence of big spo-
radic errors as compared to the FTSP.

5.4 Effect of node distance and synchronization period

These sets of experiments were designed to explore the
performance of ATS protocol as a function of relative
distance of two nodes in terms of the number of commu-
nication hops, and as a function of the synchronization
period. In Fig. 5 it has been displayed the average syn-
chronization error at steady state for the 7x5 WSN grid

Time [min]

A
v
e
ra

g
e
 s

y
n
c
h
.

e
rr

o
r

[t
ic

k
s
]

Fig. 4. Performance comparison between the ATS proto-
col and the FTSP by [16]: maximum synchronization error
maxi,j |τ̂i − τ̂j | as a function of time between any two nodes
for a 3x3 WSN grid with synchronization period T = 60s.

relative to the node in position (1,1) with synchroniza-
tion period of T = 30s. The figure clearly shows that
the synchronization error gradually increases as a func-
tion of the hop distance and that the average error be-
tween single-hop distance nodes is smaller than 1 tick,
i.e., close to the limit of the clock resolution. Interest-
ingly, although the synchronization error increases with
hop-distance, the synchronization error between adja-
cent nodes is only weakly affected by network size, thus
making ATS protocol particularly suitable for TDMA
communication scheduling in large networks. This obser-
vation is consistent with recent results on performance
scaling for grids and planar networks [5][1].

A
v
e
ra

g
e
 S

y
n

c
h

.
E

rr
o

r
[t

ic
k
s
]

x

y

Fig. 5. Average synchronization error of each node from node
i = 1 as a function of grid location for the 7x5 WSN with
synchronization period T = 30s.

Fig. 6 shows the averagrecte steady state synchroniza-
tion error among all nodes measured in a 3x3 WSN as
a function of different synchronization periods ranging

8

from T = 7s to T = 14 min. Obviously, performance de-
grades for longer synchronization periods, however it ex-
hibits a remarkable linear dependence, thus being very
useful for predicting the synchronization error as a func-
tion of the synchronization period.

Synchronization Period [sec]

A
v
e
ra

g
e
 S

y
n

c
h

 E
rr

o
r

 [
ti

c
k
s

]

Fig. 6. Average synchronization error between any two nodes
in a 3x3 WSN grid as function of the synchronization period
from T = 7s to T = 14 min. The straight line represents the
best interpolating line.

Finally, Fig. 7 shows the synchronization error for a 3x3
WSN grid for a long synchronization period T = 4 min.
It is evident how after every synchronization cycle the
clock offsets are almost completely compensated, but
the different clock drifts tend to make the clocks diverge
between two synchronization cycle. However, the drift
compensation part of the ATS protocol slowly learns
these different clock speeds and eventually totally com-
pensate them after 6 synchronization cycles.

Time [min]

S
y
n

c
h

e
rr

o
r

[t
ic

k
s

]

Fig. 7. Synchronization error τ̂i − τ̂j as a function of time for
the 3x3 WSN grid. Polling period is 5s and synchronization
period is T = 4 min.

6 Conclusions and future work

This paper presented a new synchronization algorithm
for WSN, the Average TimeSync protocol, which is

based on the cascade of two consensus algorithms whose
main idea is to average local information to achieve a
global agreement on a specific quantity of interest. The
proposed algorithm is fully distributed, asynchronous,
includes drift compensation and is computationally
light. Moreover, it is robust to dynamic network topolo-
gies due, for example, to node failure or replacement.
Finally, a thorough set of experiments was presented
to show the good performance of the proposed proto-
col also in realistic scenarios. Future work include the
problem of adapting the ATS algorithm for TDMA ap-
plications with controlled scheduling of sleeping nodes
for very low-power consumption.

Acknowledgements

The authors would like to thank Alessio Basso and Gio-
vanni Gamba for implementing and testing the prelimi-
nary versions of ATS protocol on the Tmote Sky nodes,
and Sandro Zampieri for his useful discussions.

Appendix

Proof of Theorem 3. The first step is to show that x(k)
is bounded, i.e., ||x(k)||∞ ≤ M for some M > 0. In the
following, the infinity norm for vectors and the induced
infinite norm for matrices are used, since they are partic-
ularly suitable for stochastic matrices, therefore, unless
differently stated, the simplified notation || · || = || · ||∞
is adopted. In fact, if P is stochastic, then ||P || = 1.
Moreover:

||x(k + 1)||= ||(P (k) + ∆(k))x(k) + v(k)||
≤ ||P (k)x(k)|| + ||∆(k)x(k)|| + ||v(k)||
≤ ||P (k)|| ||x(k)||+||∆(k)|| ||x(k)||+||v(k)||
≤ (1 + aρk)||x(k)|| + aρk

≤ γk,0||x(0)|| +
k−1
∑

m=0

γk−1,maρm + aρk (16)

where γk,m = (1 + aρk)(1 + aρk−1) · · · (1 + aρm) for
k ≥ m. The last inequality follows by induction from
the solution of the linear time-varying system z(k+1) =
(1 + aρk)z(k) + aρk where we used z(0) = ||x(0)||, and
the fact that ||x(k)|| ≤ z(k). Now note that

1 ≤ γk,m ≤ γk,0 = elog(γk,0) = e
∑

k

m=0
log(1+aρm)

≤ e
∑

k

m=0
aρm

≤ e
∑

∞

m=0
aρm

= ea 1
1−ρ = γ̄

where it was used the positive monotonicity of the expo-
nential function and the property log(1+a) ≤ a, ∀a ≥ 0.
Using this fact into Eqn. (16) above, it follows:

||x(k + 1)|| ≤ γ̄||x(0)|| + ∑k−1
m=0 γ̄aρm + γ̄aρk

≤ γ̄||x(0)||+∑∞

m=0 γ̄aρm ≤ γ̄||x(0)||+γ̄a 1
1−ρ

= M

9

which implies that ||x(k)|| is bounded for all k.

Consider now the function V (x) = max(x) − min(x)
as defined in Lemma 2. This function will be used as
Lyapunov function to prove convergence of the state to
a consensus. This function is nonnegative and has the
property that V (x) = 0 if and only if x = α1 for some
α ∈ R. Moreover, if P is stochastic and P ≥ ǫ > 0, then
V (Px) ≤ (1 − ǫ)V (x) according to Lemma 2.

Next we prove that under the hypotheses of the theo-
rem limk→∞ V (x(k)) = 0 exponentially fast. Let w(k) =
∆(k)x(k) + v(k) and Q(k + h, h) = P (k + h) · · ·P (h +
1)P (h), then Eqn. (1) can be written as

x(k + 1) = P (k)x(k) + w(k). (17)

and more generally

x(k+h+1) = Q(k+h, k)x(k)+Q(k+h, k+1)w(k)+. . .

. . . +Q(k+h, h+k)w(k+h−1)+ w(k+h)

= Q(k + h, k)x(k) + w̃(k + h, k)

Since ||x(k)|| < M , then ||wk|| ≤ ||∆(k)||||x(k)|| +
||v(k)|| ≤ a(M + 1)ρk. Also note that Q(k + h, k) is still
a stochastic matrix being the product of stochastic ma-
trices, therefore ||Q(k + h, k)|| = 1, from which follows
that

||w̃(k+h, k)||≤||Q(h+k, k+1)||||w(k)||+. . .+||w(k+h)||

≤ a(M + 1)ρk(

h
∑

ℓ=0

ρℓ) ≤ a(M + 1)

1 − ρ
ρk

If there exists K such that limℓ→∞ x(Kℓ) = α1 expo-
nentially, then the previous inequalities implies that that
limk→∞(x(k + h + 1) − x(k)) = 0 exponentially fast for
all 0 ≤ h ≤ K. Therefore the study of the convergence
can be limited to the subsequence

x
(

(ℓ+1)K
)

= Q
(

(ℓ+1)K−1, ℓK
)

x(ℓK)+w̃
(

(ℓ+1)K−1, ℓK
)

To simplify the notation, define xℓ = x(ℓK), w̃ℓ =
w̃

(

(ℓ + 1)K − 1, ℓK
)

and Qℓ = Q
(

(ℓ + 1)K − 1, ℓK
)

.
Note that by hypothesis Qℓ ≥ ǫ > 0, and that ||w̃ℓ|| ≤
a(M+1)

1−ρ
ρℓK ≤ bρℓ by previous analysis. Now it is possi-

ble to study the evolution of the sequence V (xℓ):

V (xℓ+1) = max(xℓ+1) − min(xℓ+1)

= max(Qℓxℓ + w̃ℓ) − min(Qℓxℓ + w̃ℓ)

≤max(Qℓxℓ)+max(w̃ℓ)−min(Qℓxℓ)−min(w̃ℓ)

≤ (1 − ǫ)V (xℓ) + 2bρℓ

where we used the fact that V (Qℓxℓ) ≤ (1 − ǫ)V (xℓ),
and that max(x) ≤ ||x|| and min(x) ≥ −||x||. Let

us define zℓ+1 = (1 − ǫ)zℓ + 2bρℓ with initial condi-
tion z0 = V (x0), then by induction it follows that
V (xℓ) ≤ zℓ, ∀ℓ. Using standard linear system theory
it follows that limℓ→∞ zℓ = 0 exponentially fast since
ǫ ∈ (0, 1) and ρ ∈ [0, 1). From this follows that also
limℓ→∞ V (xℓ) = 0. From the considerations above,
it follows that limk→∞ V (x(k)) = 0 which implies

that x(k)
k→∞−→ A

def
= {c1 : c ∈ R} exponentially

fast. If we define α(k)
def
= argminα∈R

||x(k) − α1|| and

u(k)
def
= x(k) − α(k)1, then the previous condition can

be restated as limk→∞ u(k) = 0 exponentially fast.

Next we show that limk→∞ α(k) = α. According to the
argument above we can write x(k) = α(k)1+u(k) where
||u(k)|| ≤ cλk for some c > 0 and λ ∈ (0, 1). Therefore,
by substituting it into Eqn. (17), it follows that:

x(k+1) =P (k)(α(k)1+u(k))+w(k)

= α(k)1 + P (k)u(k) + w(k)

x(k+1) = α(k+1)1+u(k+1)

from which, by rearranging the different terms, follows
that

|α(k+1)−α(k)| = ||(α(k+1)−α(k))1||
= ||P (k)u(k)+w(k)−u(k+1)||
≤ ||u(k)|| + ||w(k)|| + ||u(k + 1)|| ≤ 2cλk + aMρk

Therefore |α(k + 1) − α(k)| satisfies the Cauchy’s con-
vergence test, which implies that limk→∞ α(k) = α
exponentially fast. Consequently, this implies that
limk→∞ x(k) = α(k)1 + u(k) = α1 exponentially fast.
This concludes the proof of the theorem. 2

Proof of Theorem 4. Note first that from Eqn. (2) it

follows that
τj(t2)−τj(t1)
τi(t2)−τi(t1) = αij for all t2 > t1. Therefore,

we have that

ηij(t) = ρℓ
ηη(0)+

ℓ−1
∑

h=0

ρh
η(1−ρη)αij = ρℓ

ηη(0)+αij(1−ρℓ
η)

where ℓ = ⌊(t − β̄j)/Tj⌋. Since 0 < ρη < 1, then
limt→∞ ηij(t) = limℓ→∞ ρℓ

ηη(0)+αij(1− ρℓ
η) = αij , and

the convergence is exponential. 2

Proof of Theorem 5. Consider the new variable xi(t) =
αiα̂i(t). By multiplying both sides of Eqn. (14) by αi,
and by adding and subtracting the term (1−ρv)α̂j(t)αj

on the right hand side, it follows that:

xi(t
+)=ρvxi(t)+(1−ρv)xj(t)+(1−ρv)

(

αiηij(t)

αj

−1

)

xj(t)

10

which can be written in vector form as

x(t+) = (P (t) + ∆(t))x(t)

where x = [x1 x2 · · · xN]T . The matrix ∆(t) converges
to zero exponentially since limt→∞ αiηij(t) − αj = 0
exponentially fast according to Theorem 4. The matrix
P (t) = P (tjℓ) = P̄ j is a stochastic matrix whose associ-
ated graph GP̄ j ∈ Gsl has self-loops and (i, j) ∈ EP̄ j , ∀i ∈
Nj , i.e., it includes all outgoing links of the transmitting
node j. According to the pseudo-periodic communica-
tion protocol defined above x(t) is constant except for
time instants t̄k defined by the ordered transmission in-
stants tjℓ, therefore it is possible to consider the discrete
time systems x(k +1) = (P (k)+∆(k))x(k), where with
a little abuse of notation k = t̄k. Let us define

Qℓ = P (kℓ+1−1) · · ·P (kℓ + 1)P (kℓ)

where kℓ = tmℓ , i.e., the transmission instants of the
slowest clock m. Since by construction tmℓ+1 − tmℓ =
Tmax ≥ Ti, ∀i, it means that for each j ∈ N there ex-
ists k such that kℓ ≤ k < kℓ+1 and P (k) = P̄ j , i.e.,
each node transmits at least once within two trans-
missions of the slowest node m. This implies that

GQℓ
⊆ ∪kℓ+1

k=kℓ
GP (k) ⊆ ∪j∈NGP̄ j = GWSN , i.e., GQℓ

are all

strongly connected. Therefore, the sequence {P (k)}∞k=0
satisfies the conditions of Theorem 1 and consequently
the linear system x(k + 1) = (P (k) + ∆(k))x(k)
satisfies the conditions of Theorem 3. Therefore,
limt→∞ x(t) = ᾱ1 exponentially fast, thus concluding
the proof. 2

Proof of Theorem 6. The proof follows along the same
lines of Theorem 5. Define xi(t) = ôi(t) + α̂i(t)βi. By
substituting xi and Eqn. (7) into Eqn. (15), it follows
that:

xi(t
+) = xi(t) + (1 − ρo)

(

αjα̂j(t)t + xj(t) − αiα̂i(t)t +

+xi(t)) − βi(α̂i(t) − α̂i(t
+))

= ρoxi(t)+(1 − ρo)xj(t) − βi

(

α̂i(t) − α̂i(t
+)

)

+

+(1 − ρo)
(

αjα̂j(t) − αiα̂i(t)
)

t

which can be written in vector form as

x(t+) = P (t)x(t) + v(t)

where P (t) = P (tjℓ) = P̄ j is a stochastic ma-
trix which includes all outgoing links of node j,
and v(t) is an exponentially decreasing vector since
|α̂i(t

+)−α̂i(t)| ≤ |α̂i(t
+)−ᾱ/αi|+|ᾱ/αi−α̂i(t)| → 0 and

|αjα̂j(t)−αiα̂i(t)|t ≤ |αjα̂j(t)− ᾱ|t+ |ᾱ−αiα̂i(t)|t → 0
exponentially fast as t, t+ → ∞ according to The-
orem 5. Therefore, using the same arguments of
Theorem 5 relative to the discrete time system

x(k+1) = P (k)x(k)+v(k) where k = t̄k and Theorem 3
it follows that limt→∞ x(t) = limk→∞ x(k) = β̄1, or
equivalently that limt→∞ ôi+βiα̂i(t) = β̄, exponentially
fast. The final claim of the theorem can be obtained by
observing that |τ̂i(t)−τ̂j(t)| ≤ |τ̂i(t)−τ̄ (t)|+|τ̄ (t)−τ̂j(t)|
and |τ̂i(t)−τ̄(t)| ≤ |(αiα̂i(t)−ᾱ)|t+|ôi+βiα̂i(t)−β̄| → 0
exponentially fast for t → ∞ by Theorem 5. 2

References

[1] B. Bamieh, M. R. Jovanovic, P. Mitra, and S. Pat-
terson. Coherence in large-scale networks: dimen-
sion dependent limitations of local feedback. IEEE
Trans. Automat. Control (to appear).

[2] A. Basso. Time synchronization in wireless sensor
networks (in Italian). Master’s thesis, University
of Padova, Department of Information Engineering,
April 2006. n. 364/05.

[3] M. Cao, A.S. Morse, and B.D.O. Anderson. Reach-
ing a consensus in a dynamically changing envi-
ronment: A graphical approach. SIAM Journal on
Control and Optimization, 47(2):575–600, 2008.

[4] R. Carli, A. Chiuso, S. Zampieri, and L. Schenato.
A PI consensus controller for networked clocks syn-
chronization. In IFAC World Congress on Auto-
matic Control (IFAC 08), 2008.

[5] R. Carli, F. Garin, and S. Zampieri. Quadratic in-
dices for the analysis of consensus algorithms. In
Proceedings of Information Theory andApplications
Workshop, pages 96–104, August 2009.

[6] J. Elson, L. Girod, and D. Estrin. Fine-grained net-
work time synchronization using reference broad-
casts. In Proceedings of Symposium on Operat-
ing systems design and implementation (OSDI’02),
pages 147–163, 2002.

[7] F. Fagnani and S. Zampieri. Randomized consensus
algorithms over large scale networks. Selected Areas
in Communications, IEEE Journal on, 26(4):634–
649, May 2008.

[8] Ya. R. Faizulkhakov. Time synchronization meth-
ods for wireless sensor networks: A survey. Pro-
gramming and Computing Software, 33(4):214–226,
2007.

[9] FTSP. TinyOS repository, 2004.
[10] S. Ganeriwal, R. Kumar, and M. Srivastava. Tim-

ingsync protocol for sensor networks. In Proceed-
ings of SenSys’03, 2003.

[11] F. Garin and L. Schenato. Networked Control Sys-
tems, chapter A Survey on distributed estimation
and control applications using linear consensus al-
gorithms (to appear). Springer Lecture Notes in
Control and Information Sciences. Springer.

[12] A. Giridhar and P. R. Kumar. Distributed clock
synchronization over wireless networks: Algorithms
and analysis. In IEEE Conference on Decision and
Control (CDC’06), San Diego, December 2006.

[13] S. Kar and J.M.F. Moura. Distributed consensus

11

algorithms in sensor networks with communication
channel noise and random link failures. In 41st
Asilomar Conference on Signals, Systems and Com-
puters, 2007.

[14] F. Knorn, R. Stanojevic, M. Corless, and
R. Shorten. A framework for decentralised feed-
backconnectivity control with application to sen-
sor networks. International Journal of Control,
82(11):20952114, 2009.

[15] Q. Li and D. Rus. Global clock synchronization in
sensor networks. IEEE Transactions on Computers,
55(2):214–226, 2006.

[16] M. Maròti, B. Kusy, G. Simon, and À. Ldeczi. The
flooding time synchronization protocol. In Proceed-
ings of international conference on Embedded net-
worked sensor systems (SenSys’04), pages 39–49,
2004.

[17] L. Moreau. Stability of continuous-time distributed
consensus algorithms. In Proceedings of IEEE Con-
ference on Decision and Control (CDC’04), vol-
ume 4, pages 3998– 4003, December 2004.

[18] L. Moreau. Stability of multiagent systems with
time-dependent communication links. IEEE Trans-
actions on Automatic Control, 50(2):169– 182, 2005.

[19] R. Olfati Saber, J.A. Fax, and R.M. Murray. Con-
sensus and cooperation in multi-agent networked
systems. Proceedings of IEEE, 95(1):215–233, Jan-
uary 2007.

[20] L. Schenato and F. Fiorentin. Average TimeSync:
a consensus-based protocol for time synchroniza-
tion in wireless sensor networks. In IFAC Workshop
on Estimation and Control of Networked Systems,
2009.

[21] L. Schenato and G. Gamba. A distributed con-
sensus protocol for clock synchronization in wire-
less sensor network. In IEEE Conference on Deci-
sion and Control (CDC 07), New Orleans, Decem-
ber 2007.

[22] E. Seneta. Non-negative Matrices and Markov
Chains. John Wiley & Sons, Inc., Springer, 2006.

[23] O. Simeone and U. Spagnolini. Distributed time
synchronization in wireless sensor networks with
coupled discrete-time oscillators. EURASIP Jour-
nal on Wireless Communications and Networking,
2007.

[24] O. Simeone, U. Spagnolini, Y. Bar-Ness, and S. H.
Strogatz. Distributed synchronization in wireless
networks. IEEE Signal Processing Mag., 25(5):81–
97, September 2008.

[25] F. Sivrikaya and B. Yener. Time synchronization in
sensor networks: A survey. IEEE Network, 18:45–
50, 2004.

[26] R. Solis, V. Borkar, and P. R. Kumar. A new dis-
tributed time synchronization protocol for multi-
hop wireless networks. In IEEE Conference on De-
cision and Control (CDC’06), pages 2734–2739, San
Diego, December 2006.

[27] P. Sommer and R. Wattenhofer. Gradient clock syn-

chronization in wireless sensor networks. In IPSN
’09: Proceedings of the 2009 International Confer-
ence on Information Processing in Sensor Networks,
pages 37–48, 2009.

[28] B. Sundararaman, U. Buyand, and A. D.
Kshemkalyani. Clock synchronization for wire-
less sensor networks: a survey. Ad Hoc Networks,
3(3):281 – 323, 2005.

[29] TinyOS. TinyOS website, 2002.
[30] TmoteSky. Tmote sky data sheet. Moteiv inc., 2004.
[31] G. Werner-Allen, G. Tewari, A. Patel, M. Welsh,

and R. Nagpal. Firefly-inspired sensor network syn-
chronicity with realistic radio effects. In Proceed-
ings of SenSys’05, 2005.

[32] J. C. Willems. Lyapunov functions for diago-
nally dominant systems. Automatica, 12(5):519–
523, 1976.

12

