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Abstract—In this work we consider the problem of pursuit  over the area of interest. This constraint makes designing
evasion games (PEGs) where a group of pursuers is required a cooperative pursuit algorithm harder because lack of
to detect, chase and capture a group of evaders with the complete observability only allows for suboptimal pursuit

aid of a sensor network in minimum time. Differently from . .
standards PEGs where the environment and the Iogation of policies. See Figure 1(left). Furthermore, a smart evaders

evaders is unknown and a probabilistic map is built based Makes the map-building process dynamic since their lo-
on the pursuer onboard sensors, here we consider a scenario cation changes over time. The map-learning phase is, by
where a sensor network, previously deployed in the region jtself, time-consuming and computationally intensive even
of concern, can detect the presence of moving vehicles and {4 simple two-dimensional rectilinear environments [5].

can relay this information to the pursuers. Here we propose . . -
a general framework for the design of a hierarchical control ~ MOr€oVver, inaccurate sensors complicate this process and

architecture that exploit the advantages of a sensor networks @ probabilistic approach is often required [21].
by combining both centralized and decentralized real-time
control algorithms. We also propose a coordination scheme for
the pursuers to minimize the time-to-capture of all evaders. In
particular, we focus on PEGs with sensor networks orbiting
In space for artificial space debris detection and removal.

Index Terms—Sensor networks, pursuit evasion games,
vehicle coordination, space vehicles, space debris

I. INTRODUCTION

Recent developments in integrated circuits, radio com
munication and sensor technology have provided us with, ;1  sensor visibility in PEGs without SN (left) and with SN (right).
a wealth of inexpensive, customizable, small, embeddegdots correspond to the SN nodes, each provided with a vehicle detection
sensor systems, computers and wireless radios. Thereforensor. Courtesy of [20]
deploying and maintaining a network of thousands of
nodes, each provided with its own sensors, small computer
and wireless radio, and capable to communicate witfb
neighboring nodes, is becoming feasible from a technologﬁ

The use of a sensor network can greatly improve the
verall performance of a PEG [20]. In fact, with sensor
etworks, complete visibility of the field and communi-

e optimal solution regardless of the level of intelligence

f the evader. Also, with a sensor network, the number
of pursuers needed is likely a function exclusively of the
Bumber of evaders and not to the size of the field.

“"However, a SN pose a series of novel problems that

they promise an unprecedented quantity and quality o
information that was available with current technology [7].
In this work, we are interested in adopting SNs for Pur-

in the pursuit of one or more evaders [9] [11]. Typical
examples are search and rescue operations, surveillance,
calization and tracking of moving parts in a warehouse, an
search and capture missions. In some cases, the evaders
actively avoiding detection as in capture missions, where
in other cases their motion is approximately random as iré
rescue operations. In general PEGs the environment a

the location of evaders is unknown. In this framework,

an additional map-learning phase is required to preced
the pursuit phase. In fact, pursuers have a relatively sm

detection range. They usually employ computer vision,
or ultrasonic sensors, providing only local observability .

a multi-hop wireless communications to dedicated hubs
r _supernodes where high level signal processing and
suing algorithms are implemented. As a consequence
ndom packet delays, missing observations, false alarm,
nsor noise, and imprecise local estimation of location of
aders is very common [20].
In this paper, we propose a general framework for
nalyzing and designing control algorithms for PEGs which
kes into account the limitations and exploits the ad-
antages of SNs. Although, the proposed framework and
ontrol architecture are sufficiently general to be applied to
*This work was partially performed as part of DyMND (Dynamic dlﬁerent PEGs scenarios, we developed and tested our al-
Meshes of Networked Devices) project of Lockheed Martin Space Sysd0rithms on a specific instance of PEGs and SNs for Earth’s
tems Company funded by DARPA NEST [contract n. F33615-02-C4033jspace monitoring and debris detection. In the past decades,

gensor measurements within the network need to be relayed



military, scientific and commercial space missions havevhereca, 5 and~ are constants specific to the sensor type
created a considerable amount of space debris which snd they are normalized such that has the standard
like wandering bullets endangering future space missionssaussian distribution. This signal-strength based sensor
Today’s radar-based surveillance systems can only detentodel is general for sensors available in sensor networks,
and track objects that are larger thabem in size, which  such as acoustic and magnetic sensors, and has been used
account for only few percents of total space debris weightfrequently [12], [13], [14]. For each if z; > n, wheren is

Even debris of just the size of few millimeters can wrecka threshold set for appropriate values of detection and false-
a mission [10]. Sensor networks could be efficaciouslypositive probabilities, the node transmits to its neigh-
deployed in space to detect and track centimeter and suboring nodes, which are at mog8fks away froms;, and
centimeter debris, and then dedicated space vehicles, actifigtens to incoming messages from #&¢ neighborhood.

as space vacuum cleaners, could chase and remove thédete that this approach is similar to the leader election
debris before they enter safe regions for space missiorscheme in [13] and we assume that > 2Rs. However,
(see Figure 2). This space scenario can be well formulatetthis approach may cause some missing observations if there
analyzed as a PEG with SN, where the debris are the&s more than one object in this disk of radigds. A

evaders and the space vehicles are the pursuers. better approach to fuse local data is required and we will
address this issue in our future work. For the nodé
Forbidden region Sensor Network I z; is the larger than all incoming messages, . . ., zi,_,,
[ o % and z;,, = z;, then the position of an object is estimated
a L] N k k A B
: IEReEE © o © I asz =Y., z, ‘.Sij/_ijl zi,. Thenz; is tra.nsmltted.to
Debris \(?:ﬁ) *- the supernodg(i) via the shortest pathp(i). If z; is
" P o w | not the largest compared to the incoming messages, the
| ® 0 . . X
° 6\‘o . @ nodei does nothing and goes back to the sensing mode.
‘e 8*9 ® %, Although each sensor cannot give an accurate estimate of
I o ® : . object’s position, as more sensors collaborate, the accuracy
‘s ', e® 8 | © of estimates improves [17]. The collaboration of sensors
1T oo © . makes the system more robust against node failures and
" ey » & L ™ we can increase the detection probability and decrease the
l = Cg . false alarm rate by collaboration.

1 A transmission along the edge;,s;) fails indepen-
dently with probabilitype and the message never reaches
a supernode. So we can consider transmission failure as

Position/Velocity a?(;]ther formlofda missling gbserfvation.ldfis the nudmber .

. . P i of hops required to relay data from a sensor node to its
Debris collectors vehicles _:b'#:* Estimates from SN supernode, the probability of sucessful transmission decays
exponentially ag increases. To overcome this problem, we
Fig. 2. PEGs scenario for Earth’s space monitoring, artificial debris;gef independent paths to relay data if the reporting sensor
detection and collection. . : o

node isk hops away from its supernode. The probability of
successful communication from the reporting nade its

. k
Il. SYSTEM MODELING supernodey(i) can be computed as— (1 — (1 — pre)*) ",

wherek = |sp(i)|
A. Sensor Networks The (additional) communication delay is modeled by the

In this section, we describe the sensor network anghegative binomial distribution. We assume each node has
sensor model used for Slmulatlor!s n Sectlon VIII. 1Még the same probab“ity)de of de|aying a message. Hz is
be the number of sensor nodes, including both supernodgge number of delays occurred on the message originating
and regular nodes, deployed over the surveillance regioffom the sensot, d; is distributed as
R C R?. We assume that each supernode can communicate 1sp(i)| +d—1
with its neighboring supernodes. Lete R be the location d—dy = [PV - 1— sp(i)] d 1
of the i-th sensor node and let = {s; : 1 < i < Ng}. p(di = d) d (1= Ppae) (pae)”. (1)

hgggti Raﬁeotfhietrzzgfr?]'ggg?sna;%ngi:; ?:orfngrwuar:icsaetgso[f the network is heavily loaded, the independence assump-
to each ci))ther i the Euclidean dist{antt s < R tions on transmission failure and communication delay may
& — Sjll = It ot hold. However, the model is realistic under the moder-

Let G = (S,F) be a communication graph such that o ; TN
(51,5;) € Eifand only if |s;—s, || < Ry. Let Nes < Nq be ate conditions and we have chosen it for its simplicity.

the number of supernodes and te S be the position B. Vehicle Dynamics
of the j-th supernode, foj = 1,..., Nss Let g be the In this work we assume pursuers and evaders are space-
assignment of each Sensor to its nearest supsernode sughifts orbiting at an almost constant altitude and velocity
that g(i) = j if [|s; — s3] = ming=y,..nssllsi = sill- FOr  around the Earth. These vehicles are allowed to move on
a nodei, if g(i) = j, then the shortest path from to s7  the surface of the imaginary sphere whose radius is given
in G is denoted bysp(i). _ by the mean altitude. If we consider a framRg attached

Let Rs € R be the sensing range. If there is an objecttg this imaginary sphere which orbits with the same mean
at z € R, each sensor within radiugs from = detects velocity, then vehicles appear as they would move on a
the presence of the object with the detection probabilityplane. Each vehicle is provided with four perpendicular
pa. The detection of an object by the sensas recorded monodirectional thrusters that generate forces along the
by the sensor’'s signal strength, = ﬁ + w;, longitudinal and lateral axes of the vehicle body, and four

Leaking perimeter



small differential thrusters that generate rotational torqualarms, and the constraints of vehicles dynamics, such
about the vertical axis. The actuation of the thrusters igs limited thrust magnitude, energy budget, computational

much faster than the dynamics of vehicle body, thereforeesources, digital quantized input, measurement noise and
it can be assumed that thrusters can be controlled almoskternal perturbations.

instantaneously. The magnitude of the thruster output is We propose an architecture that relies on four key ideas.
bounded and the total amount of energy expenditure avaiffhe first idea is to use a hierarchical modular structure,

able on each vehicles is limited. Damping in space isvhere each module is designed independently from the oth-
negligible and therefore vehicle dynamics is purely inertial.ers to improve scalability and interpretability. The second

Mathematically, the vehicle dynamics can be written addea is to use robust predictive control which tries to predict

follows: evaders motion in the future and coordinates pursuers
. b b accordingly to minimize capture time. This approach can

mi = uycos(d) — uy sin(6) (2 cope with random delays in the observations and packet

mij = ubsin(f)+ Ug cos(f) (3) loss, but it requires to take into account the uncertainties

-- b of the prediction which degrades as further in the future one

Lo = ug ) tries to predict, therefore it needs to be robust to prediction

wherem is mass of the vehicld,, is the moment of inertia €fTors. The third idea is to use centralized coordination
relative to the vertical axisy, y, 0 are thex — y positon ~Performed by one of the pursuers or a specific unit in
and orientation of the vehicle relative to the inertial frameOrder to improve global performance, since the goal is
R,, respectively. The inputa’, u”, u} need to satisfy the to capture the “furthest” evader. Although this approach
following constraints: require communication among pursuers and possibly high
computational resources, it can greatly reduce capture
uh| S Up, |ub| U, |ub| <Up (5) time of evaders. The last idea is to implement a purely
+o0 distributed collision avoidance path follower controller on
/ (Jub (#)]> + [ul (¢)]* + |uf(t)|*) dt < E (6)  each pursuer. Although the desired trajectory generated by
0 ) the centralized path planner are optimal and collision-free,
whereU,,U,, Uy, E are constants that quantify the input uncertainty and external disturbance can create critical sit-
magnitude and the energy bounds. uations where one pursuer can collide with another. These
In the next sections, rather than the previous modefeactive controller will modify pursuer motions based on
of vehicle dynamics, we will use the following abstract onboard sensors to avoid collision while still trying to
model of vehicle dynamics for determining pursuer-to-follow the desired trajectory.
evader assignment and coordinated path planning:

_'Input to

e o 31 o ur suer

T =u, = u, 7 P

7 Yy Y ( ) Pursuer 1 Pursuer 2 Pursuer 3 Pursuer N thrusters

where the inputs satisfy the following constraints: Path Follower Path Follower Path Follower Path Follower
Ux b Uy — Collision-free desired
|u;‘ S thc) = ﬂm’ u:r‘ S U; = ﬂm (8) trajectories
+o0 9 9 @ —| Assignment of pursuersto evaders
o o (o]
| (P + 0P de < B2 = mE (@) N ewm—
0 & Assignment
) . # evaders, position, velocity,
It should be clear that any trajectory generated according to % i E —I and estimation error bounds
the abstract dynamics (7) is feasible for the exact dynamics Tarog Teaking

(2). In fact, given the input paitu?,«?) for the abstract
dynamics, we can compute the input for the exact dynamics
(ub, ub) using the following transformation:

u = m(uy, sin(6) + ug cos(0)) (10)

X

ug = m(uy cos(f) — g sin(6)) (11)

MTT) Local estimation of evaders
positions from sensor network

Fig. 3. Control Unit Architecture

Sensor network

Based on these ideas we propose an hierarchical control
assuming that the orientation angleis known. Only the architecture composed of four layers: thaultiple target
energy constraint (6) can be violated by the abstract modefracking (MTT)module, thepursuer-to-evader assignment
However in practiceuf()|? < [ub(t)|* + |uf(t)|* since  module, thepath plannermodule, and thepath followers
generating a rotational torque requires much less energyiodules, as shown in Fig. 3. The first three modules reside
than generating a longitudinal or lateral thrust, and theon one or few specialized structures with high computa-
vehicle does not need to change its orientation very oftertional power which collect global information about pursers
as well evaders position. These structures could be some
Il. CONTROL SYSTEM ARCHITECTURE fixed base stations or some elected leaders from pursuers
The goal of the control system architecture is devisehemselves, which monitor the whole sensor network or a
coordination and control algorithms to minimize the timevery large fraction of it. The purpose of these structures
required to capture multiple evaders by multiple pursuerss to generate an optimal trajectories for each pursuer
with the aid of the information acquired through the sensoto capture all evaders in minimum time. Specifically,
network. These algorithms needs to take into account thithe MMT module collects the measurements from the
limitations arising from the sensor networks, such as packetensor network which correspond to local estimates of
loss, random delay of observations, data ambiguity, falsevaders’ position. However, some of these measurements



are dropped before they arrive, most of them arrive withby a human operator. We also need to consider the fol-
considerable delay and, most importantly, they are nolowing constraints on sensor networks. Due to the limited
associated to any specific evader. This module uses th&ipply of power, the multi-hop wireless ad-hoc commu-
information to estimate the number of evaders movingnication is used in sensor networks. In many cases, the
in the sensor network, their predicted current positioncommunication bandwidth is low and the communication
and velocity, and the uncertainty on the prediction inlinks are not reliable, causing transmission failures. In
statistical terms. This information is then passed along wittaddition, due to the low communication bandwidth and
the current position and velocity of each pursuer, to thea limited amount of memory, communication delays can
pursuer-to-evader assignment module, which estimates theecur frequently. It is well known that communication
expected time to capture from each pursuer to each evadés. costlier than computation in sensor networks in terms
Based on these estimates, this module assign one pursudr power usage [6]. Hence it is essential to fuse local
to one evader such that the estimated time to capturebservations before the transmission. Since the data as-
of the last evader is minimized. Once the assignment isociation problem is NP-hard [3], [18], we cannot expect
determined, the path planner module determine the besb solve it with only local information. But, at the same
trajectory for each pursuer to minimize capture time fortime, we cannot afford to have a centralized algorithm
the assigned evader, while avoiding possible collisionsince such solution cannot be scalable. In summary, we
among pursuers, i.e. these trajectories are collision-frereed a simple and efficient tracking algorithm that is robust
trajectories. Then each of these trajectories is transmittedgainst the low detection probability and high false alarm
to the corresponding pursuer. Each pursuer is providedates; capable of initiating and terminating tracks; uses
with its own path follower controller that tries to track less memory; combines local information to reduce the
the desired trajectory. This controller receives informationcommunication load; and is scalable. Also it must be robust
from onboard sensors and if on obstacle or another pursuagainst transmission failures and communication delays.
enter its sensing region, it modifies its own trajectory tryingBut at the same time we want an algorithm that can provide
to follow the desired trajectory as close as possible, whilex good solution and improve its solution toward the optimal
maintaining a safe distance to avoid collisions. solution given an enough computation time.

Such a control architecture shares many similarities with The algorithm developed in our companion paper [17]
those currently used for air traffic management (ATM)is a general multiple-target tracking algorithm for sen-
systems [15], where multiple airplanes needs to be routesor networks which can systematically track an unknown
to the destination airport in minimum time while avoiding number of targets in the presence of false alarms and
collisions. These systems present a multilayered approachissing observations and robust against sensor localization
similarly to that proposed here. The major difference iserror, transmission failures and communication delays. The
that in our scenario the evaders are equivalent to movinglgorithm is based on the efficient Markov chain Monte
airports whose motion is unknown. This adds substantiaCarlo (MCMC) data association algorithm which is capable
uncertainty and a frequent update of pursuers routes (traf tracking a varying number of targets [16]. It has been

jectories). demonstrated that the algorithm achieves remarkable per-
In the next sections we describe in detail the implemenformance compared to MHT under the extreme conditions,
tation of each module of the proposed architecture. such as a large number of targets in a dense environment,
low detection probabilities, and high false alarm rates [16].
IV. MULTIPLE TARGET TRACKING (MTT) In [17], the MCMC data association algorithm is extended

in a hierarchical manner so that the algorithm becomes

We z;;su%? a sc?nsorlgetwgrk IS ?.eployebd 0;’3: aboundedyapie and its robustness against sensor localization error,
region’c € 'K and provide observations about the movingy angmjssion failures and communications delays is demon-
evaders. We consider the most general setup in which thg ,:aq

number of evaders and the states of evaders are unknown.
In order to compute the control laws of the pursuers, V. PURSUERTO-EVADER ASSIGNMENT

it is of paramount importance to estimate precisely the | 5 scenario where multiple pursuers and evaders are
number of evaders and their states. The estimation problegyesent, several assignments are possible and some criteria
of multiple moving targets is known as multiple target need to be chosen to optimize performance. In this work
tracking. Multiple target tracking has been extensivelyye focus on minimizing the time-to-capture of all evaders.
studied in radar-based tracking and vision-based trackingjowever, other criteria might be possible, such as mini-
[1], [4]. Under the most general setup, a varying number ofyjzation of pursuers energy while guaranteeing capture of
indistinguishable targets is moving around in a region withy|| evaders or maximization of number of captured evaders
continuous motions and the positions of moving targetsyithin a certain amount of time. Since evaders motion is
are sampled at random intervals. The measurements abaiit known, exact time to capture is not known, therefore
the positions are noisy, with detection probability less thafye need to define a metric to estimate the time-to-capture.

one, and there is a noise background of spurious positiofie will use the following definition of time-to- capture:
reports, i.e., false alarms. Targets arise at random in space

and time. Each target persists independently for a randofefinition 1. Let (p.(to), ve(to)) € R? x R? the po-
length of time and ceases to exist. A track of a target i$ition and velocity of a2e\;]ader at time n tﬁlh and ¢
defined as a path in space-time traveled by the target. If»({1); vp(t1)) € R® x R* the position and velocity o

. o ursuer at timet = t; > tg. We defindime-to-capture
most cases, there is no clear association between targets minimum timel, necessary for the pursuer to reach

observations, requiring a solution to the data associatiothe evader with the same velocity, assuming that the evader
problem to associate observations to targets. will keep moving with constant velocity, i.e.,

In sensor networks, we seek for an autonomous tracking ,
algorithm which does not require a continuous monitoringg"c = min{T | pp(t1+T) = pe(t1+T), vp (1 +T) = ve(t1+T)}



wherep, (t1+T') = p(to)+(t1 +T—to)v(to), ve(t1+7) =  the dynamics along the- and y-axes are decoupled, we
v(to), and the pursuer moves according to its dynamics. simply consider the dynamics along one of the axis:

This definition allow us to quantify time-to-capture in ext1 = ex+vTy+0.5ulTs + 05w, T (15)
an_unambiguous way and, although evader can change .\ = o, 4+ ulT;+ wiTy (16)
trajectories over time, it is a more accurate estimate than, ' ., i
for example, some matric based on the distance between thédere e, = e (kTa), vk = éx(kTy), uj = ug(kTa), Ta

evader and the pursuer since time-to-capture incorporatd$ the discretization time interval, and; is an unknown
the dynamics of pursuers_ Moreover' it is well-defined forexternal disturbance that models the fact that the evader has

any arbitrary time delay, = t; — ¢, in the estimate of an unknown trajectory. Also we assume there is measure-
evader position and velocity relative to current time  Ment noise so that the estimated error position and velocity
Given this definition and the constraints on the dynamicgire given by:

of the pursuer, it is possible to calculate explicitly the time- & = e+ z (17)
to-captureT’, as well as the input to the actuators of the ’ ’

pursuers as described in the next section. Uk = vkt (18)
wherez;, andn; are the measurement noise for the error
A. Minimum Time-to-Capture Control position and velocity respectively.

As explained above, the implementation of feedback

iven by (12) can give poor performance, even in ideal

usior|198th?fabstdra?t mohdel of pursuer d)l/)namics gir\]/en by Ugcenario where no external disturbance is present nor mea-
and (8). If we define the position error between the pursueg, ement noise. It is true that the smaller the discretization

A . 3 . .
and the evader as(t) = p,(t) — pe(t), then the time-to- time 7, is, the smaller the error between the theoretical
capture problem is equivalent to the following optimizationand the true performance is. However, this is still unsatis-

The computation of time-to-capture will be estimated

problem: factory and, even for very small; < 7. relative to the
) capture time, the performance degradation is considerable.
Wil (6),ug(r) 1 Recently, [8] and [22] solved the problem of minimum
Ex(t) = ug(t), &,(t) = uy(t) time optimal control for the discretized double and triple
subject to lug ()| < U2, |ug(t)| < U intergrator, respectively. In this case the difference relative

ex(T) = ¢é,(T) =¢,(T) = ¢,(T) =0 totheideal case is negligible and it is possible to show that
T¢. aigital < Te + 21,. However, these control still perform
Since the pursuer dynamics is decoupled along the twgoorly if implemented in a scenario where even small
axes, the solution of this problem can be obtained directiygxternal disturbances and measurement noise are present.
from the well known problem of minimum time control of Here we propose a robust minimum time feedback control
a double integrator. The solution is given by a bang-banghat takes into account uncertainty about exact motion and

control that can be written in feedback form as follows: pOS?tiOH of evader. ) _
First, we consider bounded external disturbance

Uy It 20726, > —eq|eq| lwk| < W, and measurement noisgy,| < Z, |nix| < N.
e (t) = +U7 It 2U7¢, < —eales| 5y  The feedback control input will be chosen based on the
’ —Ugsign(ez) It 2U2¢, = —eqles] following min-max optimization problem
0 If é,=e,=0
X .
The minimum time can be also be written in terms of the “* ~ |ur,131\1£U (wkSWfklagxz,lnkSNTC’z(ekH’UkH)
position and velocity error as follows: o _ o (19?
This is, in general, a nonlinear optimization problem.
—éytr/262—daU%, ) However, thanks to the specific structure of the time-
. —— g If 2U2é; > —eules| to-capture functionT, ., it is possible to show that the
Tew(eara) =4 o o fmetrimoe _ previous problem is équivalent to:
—Y—=—— otherwise X _ L. o
* (13) U = ‘urgl‘lgu max (Tc,w(ek+17Uk+1)7Tc,x(ek-+1,”k+1))
Similar equations can be written for theaxis, therefore N A b ) )
the minimum time to capture is given by: eip1 = er+0Ta+05upTy £ (0.5WTy + NTy + Z)
A

+ ~ o
Ty 4+ (WT, N
T, = max(Toy, Toy) 14) Uk O+ uiTa £ (WTa + N)

In the interested of space, derivations are not included
Despite its simplicity and apparent efficacy minimum-timein this work and will be presented in a forthcoming
control is rarely used since it very sensitive to modelingtechnical paper. The solution of the previous equation
errors in the dynamics and in the implementation. In factcan be obtained analytically by solving a quartic poly-
even the apparently innocuous digital implementation ohomial equation, however, in realistic scenarios the input
the feedback given in (12) can exhibit poor performance:{ is quantized and takes values from finite $&f =
and input chattering even in absence of any kind of noise{U:,...,U,}. In this case, the solution of the previous
Therefore, although in principle minimum time control is problem could be obtained by simply evaluating the time-
attractive since it gives the best performance, it needs tto-capture for thosep input values and then choosing
be modified to be able to cope with practical issues suckthe minimizer. This is computationally efficient since the
as digital implementation of control feedback, quantizationcomputation of time-to-capture can be done in parallel for
of inputs, measurement and process noise. Let us firgach value of the input and it involves only the evaluation
consider a more realistic model of error dynamics. Sincedf sums, multiplications and square roots.



Figure 4 shows the performance of the robust minimum One simplegreedy assignmenalgorithm that tries to
time-to-capture control feedback for tracking of an evadesolve the optimization problem above, is to look for the
which does not move on a straight line with constantsmallest time-to-capture entry in the matri¥x assign the
velocity and position and velocity estimates of evader iscorresponding pursuer-evader pair, and remove the corre-
affected by noise. It is compared with the discrete-timesponding row and column from the matr@X which now
minimum time controller proposed in [22] and [8]. Our becomes of dimensiofWV — 1) x (N — 1), and repeat the
controller feedback design outperforms the discrete-timsame process until each pursuer is assigned to an evader.
minimum time controller since the latter one does notAlthough it is straightforward and easy to implement, this
take into account process and measurement noise. Noike a suboptimal algorithm, since there are cases when
how both controllers does not direct pursuers toward actudghe greedy assignment gives the worst solution. Consider
position of evader, but try to estimate future location andth time-t t tixC — 1 2 Th d
therefore minimize the time-to-capture. € time-lo-capture matrx;. = | 5, |. 1he greedy

assignment would assign pursueto evaderl and pursuer
e 2 to evader2, with time-to-capture of last evader equal to
o Noyovader Tmaex = 4. However, the assignment that minimizes the
robust min-time pursuer | time-to-capture of last evader {d,2) and (2,1), which
gives Tyae = 3.

The optimization problem given in (20) can be reformu-
lated as dinear bottleneck assignmeptoblem and can be
solved with polynomial-time algorithm based on network
flow theory. The actual implementation of these algorithms
goes beyond the scope of this paper and we address the
. interested reader to the survey [2] and references therein.

\ Figure 5 compares the greedy assignment with the

optimal linear bottleneck assignment for a scenario with

three pursuers and three evaders. The greedy assignment

assign the closest pursuer-evader pair and in fact the first

evader is "captured” already at tinte= 50 (top-left plot),

, while according to the linear bottleneck assignment the

0 " " ” > . . 2 same pursuer is assigned to the farthest evader. However,
X at timet = 75 all three evaders are captured by the

Fia 4. Traiectories of oursuers and evaders on ane. Feedb pursuers employing the optimal assignment, while only two

ccl)%tro'l is baijgg gnlensoigy %létisrﬁgtlii(?solizvﬁlns gf ?ruexgve?d%r%osi?ign *®vaders are captured by the pursuers employing the greedy

(thick solid ling. The robust minimum time-to-capture feedback proposed@ssignment (bottom-right plot).
in this paper dot-solid ling is compared with the discrete-time minimum
time-to-capture feedbacldgshed ling proposed in [22] .
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B. Assignment Algorithms

In the previous section, we presented a definition to’
compute the expected time-to-capture for a pursuer-evade!
pair and, as a byproduct, we also computed the robust L T . : B
minimum-time control feedback. Therefore, given positions < - -
and velocities of all pursuers and evaders, it is possible to .
compute the time-to-capture matrix = [c; ;] € RN»*Ne, Co

where N, and N, are the total number of pursuers and . =75 . . =100 *. t=125
evaders, respectively, and the entry of the matrixC' cor- ) .

responds to the expected time-to-capture between puisuer. ° .

and evadey. When coordinating multiple pursuers to chase . . . . . 5
multiple evaders, it is necessary to select an assignment, . . . . *

Our objective is to select an assignment that minimizes the,

expected time-to-capture afl evaders. Let us assume for

now that we have the same number of pursuers and evaders,

i.e. Np = Ne. e
An assignment can be represented as a matrix=

. N,x N, o ; Fig. 5. Movie of evaders tracking on the x-y plane. Evadeigles)
[‘Tw] € R , Where the emrym;] of the matrix X move along straight lines with constant velocity. Pursuers using greedy as-

is equal tol if pursueri is assigned to evadgr and equal  signment algorithmdiamonds and optimal linear bottleneck assignment
to 0 otherwise. The assignment problem can therefore bédquarey are superimposed.
written formally as follows:

ming, ;e{o,1} Max j—1,...~ (¢ - Tij) When the number of pursuers and evaders is different,
fr N o N o (20)  different options are available. For example, if pursuers are
subjectto > . x;;=1,> . x;; =1
L = less numerous than the evaders, one could try to capture
As formulated in the previous equation, the assignmenthe NN, closest evaders and neglect the othér — N,
problem appears as a combinatorial problem. evaders. If pursuers are more numerous than the evaders,



then extra pursuers can be assigned to some evaders s@quential algorithms and results will be presented in a
N, — N, pursuers could stay in stand-by in case additionafuture paper.
evaders appear in a later time. The optimal choice in these
cases depend on the specific application and it will be V!l DISTRIBUTED PATH FOLLOWER CONTROLLER
investigated in a future work. The minimum time-to-capture control generates desir-
able trajectory pathy;(t) for each pursuer. In pursuit
VI. COLLISION-FREE COORDINATED PATH PLANNING of the assigned evader, the pursuer may encounter other
. . ursuers or obstacles. We need to make sure that the
Once an assignment is chosen by the pursuer-to-evadgprsuer can reactively avoid collisions while following the
assignment module, the trajectories generated by the reegiraple trajectory path. We use the decentralized model
bust minimum time controller described in the previ- yregictive control technique developed in [19] to generate
ous section are not guarar]teed to be cqll|'3|0n free, i. ollision-avoiding path follower control laws. Let;(t)
||i(t) —2;(t)|| > € for all time ¢, wherei,j are tWo e the state of the-th pursuer andu(¢) be the control

different pursuers and is related to the minimum safe ¢ hyrsueri. Then the decentralized discrete-time optimal
distance. Although the distributed path follower controller .gnirol problem is to find the optimal contrl:?(¢)}7_,
7 =1

module described in the next section can overcome thi§hereT is the time horizon. such that

problem by replanning on-line the trajectory to avoid col- '

lision, it possible to use global information about locations . &

of pursuers and evaders available at the base stations O#; (t)}i—1 = argminy _ q;(w:(t), wi(t)) +gif (x:(T+1))
supernodes to coordinate pursudf-line trajectories that t=1 21)

are collision-free. Finding the minimum time-to-capture, bi he d . f ) is th
collision-free trajectories given a specified assignment is §UPIect to the dynamics of pursuer;(-) is the cost-to-go
and g;¢(-) is the terminal cost. For each time stépwe

hard problem, since it requires the solution/gf coupled S AT ’
optimization problems. One possible approach would b&olVve for{u;(t)},_, from the stater; (k) and applyu; (k).
to use dynamic programming tsimultaneouslydesign For the next step+ 1, we repeat th_ese steps from the state
these trajectories [15]. Unfortunately, the complexity ofZi(k +1). The terminal cost is defined as
this approach grows exponentially with the number of 1 T
pursuers, i.O(AY), whereA is an appropriate constant, ¢f(xi(T'+1)) = 5 (yi(t) — Czi(t))" Po (yi(t) — Ci(t))
thus making it impractical for a swarm of pursuers. . i, . .

One alternative approach is to solve this optimizationfO" & Symmetric positive-definite matri,. The cost-to-go
problem sequentially Given an assignment, it is possible 'S decomposed into two parts
to compute the expected time-to-capture and the expected  (z; (1), u; () = ¢ (2i(t), ui(t)) + ¢5 (@ (t), wi(t))
trajectory for each pursuer-evader pair. These trajectories ] )
are not necessarily collision free. However, it is possiblevhere g} (z;(t), u;(t)) is the cost of being away from the
to order this assignment based on the expected time-tglesired path and; (z;(t), u;(t)) is the cost of being close
capture. The sequential algorithm works as follows. First{o obstaclesg; is defined in the usual form
the pursuer with the largest expected time-to-capture will . . T
follow the trajectory generated by the minimum time-to- 4; (z:(t), ui(t)) = 3 [(yi(t) — Cx;(1))" Qyi(t) — Ci(t))
capture controller. Second, this trajectory is frozen and s (8)T Ruy (1)
the pursuer with the second largest expected time-to- ¢ P

capture is required to capture its assigned evader whilghere ) and R are symmetric positive-definite matrices.
avoiding the first pursuer. This problem can be solve uppose that there a¥ obstacles, including other pur-

via dynamic programming or via model predictive control 5,615 We use the potential field method to compgitas
similar to the one described in the next section, and has

)

complexityO(A), since only one pursuer is involved in this N K(j # 1)
optimization problem. Then also this trajectory is frozen,q; (z;(t),u;(t)) = Z ’T ,
and the pursuer with the third largest time-to-capture is o (@i(t) —25(t)" Qe (zi(t) —x4(t))

required to chase its assigned evader while avoiding th
previous two pursuers. Once again, this is an optimizatio

problem with complexityO(A), since only one pursuer is The optimization problem of Equation (21) is nonlinear,

involved in this optimization problem. Finally, the process - P -

: . ; : N ; therefore its solution is not guaranteed by any algorithm.
is continued sequentially till all p_ursue_rs_traj_ectorles_areHowever’ iterative gradient gescent algor)i/thm)s/ in?tialized
generated. Although the sequential optimization algorlthr‘qNith the initial desired trajectory; (¢) has been found to

is only suboptimal it is likely to give a good performance _ : : :
; ickly converge to a solution with very good performance.
since the pursuers that need to change the most th ore details can be found in [19].

trajectory to avoid the other pursuers are those whic
had the smallest expected time-to-capture, it is likely that VIIl. SIMULATIONS

the time-to-capture of last evader, after the collision-free ¢ gimyjations below, we consider the surveillance over
replanning algorithm, is not too different from the ideal 5 rectangular region on a plang, = [0, 100]2. The state
time-to-capture when collision free trajectories where not, oty isy — [,y ,9]T where(z,y) ié a po'sition inR
enforced. However, the complexity of this algorithm is along the usuai:’ a’nd,y axes and:’v,,gj) is a velocity vector.

linear in the number of pursuer, i.€(N,A), sinceé it 1o toliowing linear dynamic and measurement models are
requires the solution aV — 1 optimization problem where | o

only one pursuer is involved. xe11 = A(d)xe + G(O)wy
We are currently implementing the simultaneous and i = Cux¢+ vy,

here Q. is a symmetric positive-definite matrix arfd;
constant determining the shape of the potential function.

(22)



where § is a sampling intervalw; and v, are white 2]
Gaussian noises with zero mean and covariaGce=
: 2 2 _ Mia B3 RE ;
diag(.15%,.15%) and R = diag(7¢, 75 ), respectively, and 3]
106 0 20 N
01 0 ¢ 52 0 1
A@)=19 o0 1 o |CO)= g 219 0 o
0 0 0 1 0 s 0 0 5]

The transmission and sensing rangesigre- 20 andRs =
5, respectively, which correspond to a SN of 400 nodes. Fori6]
the sensor model, we ugse= 2, vy =1 and( = 2(1 +
YRS). We usedpl, = .05 and pd = .05. The false alarms
are uniformly distributed oveR and its rate is one false
alarm per time. For each sensor, the detection probability
is .95. g
Figure 6 shows snapshots of the PEGs scenario with[ ]
5 evaders and 5 pursuers. Note how the assignment ifé’l
dynamic and it is pursuers are reassigned as new evade
appear or disappear in order to minimize the time-to-
capture of all evaders. (10

(7]

[11]

[12]

[13]

[14]

[15]

Fig. 6. Snapshots of PEGs using SN x-y plane. Evadargg hollow
icong move within a sensor networksiall circled. Pursuers gmall
filled icong using linear bottleneck assignment algorithm and optimal
linear bottleneck assignmergquare} chase evaders. The pursuer-evader
assignment is indicated using the same icon.

[16]
[17]

IX. CONCLUSION AND FUTURE WORK [18]

In this paper we presented a framework to analyze and
design algorithms for Pursuit Evasion Games with Sensor
Networks. We presented a mathematical formulation of19]
sensor network and vehicle dynamics and a hierarchical
control architecture that exploit the benefits of using &2o;
sensor network. We also proposed a series of algorithms
to combine both coordinated maneuvering and distributed
control of pursuers at different stages in order to minimizg21]
time-to-capture of all evaders while guaranteeing safety and
collision free maneuvers of pursuers. 22]

Future work would include a more extensive comparisor#
between probabilistic PEGs with PEGs using SNs in order
to evaluate possible trade-offs between the two. Also, the
algorithms presented here can be extended more rigorously
when there are more pursuers than evaders and coordinated
maneuvering of pursuers allow the capture of "fast and
smart” evaders similarly as observed in mobs of lions
hunting an agile pray.
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