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Abstract— One of the main issues with wireless sensor net-
works (WSNs) is communication efficiency to reduce power
consumption. This is often achieved through data routing with
aggregation. However, aggregation does not consider possi-
ble measurements correlation. This a priori information can
be used for data fusion, in order to remove correlation of
transmitted data, thus reducing amount of information to be
transmitted. In this paper we explore different information pro-
cessing strategy for state estimation of dynamic linear systems
in the context of rooted wireless sensor networks. We propose
three data fusion methods: standard measurement aggregation,
measurement fusion, and fusion of partial state estimates.These
strategies are specifically designed to include possible delayed or
dropped packets. Finally, they are compared in term of power
consumption efficiency, estimation accuracy, computational and
memory complexity, showing tradeoffs between these metrics.

I. I NTRODUCTION

Recent advances in low-power analog and digital elec-
tronics have enabled mass production of small sensor nodes
with sensing, computation, and communication capabilities.
This has spurred a substantial amount of research on wireless
sensor networks (WSNs) over the past few years. For ease
of deployment, sensor devices should be inexpensive, small,
and have a long lifetime, which requires the development
of very efficient software and hardware solutions. For this
reason, protocols for sensor networks should be carefully
designed so as to make the most efficient use of the limited
resources in terms of energy, computation, and storage.

In this paper we focus on an important aspect of sensor
networks, namely in-network data aggregation and fusion.
These techniques allow to trade off communication and
computational complexity for estimation performance. The
basic principle is that local computation often consumes
significantly less energy than communication. In typical
sensor network scenarios, data is collected by sensor nodes
throughout some area, and needs to be made available at
some central sink node(s), where it is processed, analyzed,
and then used for some decision making process. In many
cases, data generated by different sensors can be jointly
processed while being forwarded towards the sink, e.g., by
fusing together sensor readings related to the same event or
physical quantity, or by locally processing raw data before
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this is transmitted. In-network aggregation deals with this
distributed processing of data within the network. Data
aggregation techniques are tightly coupled with how data
is gathered at the sensor nodes as well as how packets are
routed through the network, and have a significant impact
on energy consumption and overall network efficiency (e.g.,
by reducing the number of transmissions or the length of the
packets to be transmitted). Also, we emphasize that data size
reduction through in-network processing shall preserve as
much as possible statistical information about the monitored
event.

II. PREVIOUS WORK

In-network signal processing and, more specifically, dis-
tributed estimation and sensor fusion have been widely stud-
ied since the late seventies in many different areas including
control, signal processing, economics and communications.
Therefore, the literature on the subject is rather vast, and
here we shall only mention the most important results and
currents trends. In particular, as mentioned above, here
we focus on hierarchical dynamic estimation on multi-hop
communication trees, as shown in Figure 1. This scenario
is different from another popular area of investigation where
estimation need to performed at multiple locations such as at
each sensor location rather than in one centralized location
[1][2][3]. In particular, in that framework it is shown how fast
local communication among sensors in between sampling
times can be used to retrieve the sufficient statistics for
optimal state estimation [4][5]. However, such approach is
expensive in terms of exchanged messages while in this work
we are interested in strategies that reduce communication as
much as possible. More relevant to this work, is the study
of how to compute the sufficient statistics to reconstruct the
optimal centralized estimate, i.e. the best estimate obtained if
all measurements were available at a central location, from
distributed processing. In particular, [6][7][8][9][10]show
how it is possible to reconstruct the centralized estimate from
local estimates computed by each sensor in a scenario where
measurement noises among sensors are uncorrelated. How-
ever, their approach assumes that the sensors can transmit
their local estimate directly to the central node with no delay
or packet loss. Finally, there is also considerable work related
to sensor fusion in the presence of random delay [11][12] in
the measurement, which does not require the buffering of
past measurements.

The contribution of this paper is to propose and analyze
different estimation strategies for rooted wireless sensor
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Fig. 1. Pictorial representation of Wireless Sensor Network for environment
monitoring. The small dots indicate the location of the sensing nodes,
the shaded circles indicate the sensing regions and the segments the
communication links. White arrows represent the tree-based routing paths
from the sensor nodes to the root sensor node and to the base station.

networks where communication messages are subject to
delay and packet loss. In particular we want to compare
them in terms of estimation accuracy, computational and
memory complexity required by each sensor node and by
the base station, and energy consumption. Although optimal
distributed estimation strategies have been proposed [8][10],
they cannot be easily extended to a scenario which includes
packet loss and delay, and very little work has been done
with this respect. Also, we show that the optimal strategy
in term of power consumption strongly depends on the
communication topology, since for shallow trees it is more
convenient to send raw measurements, while for deeper trees
it is better to locally fuse information.

III. PROBLEM FORMULATION

We consider a discrete time linear stochastic systems
observed byN sensors:

xt+1 = Axt + wt (1)

yi
t = Cixt + vi

t, i = 1, . . . , N (2)

wherex ∈ R
n, yi ∈ R

mi , wt and vi
t are gaussian noises

with zero mean and such thatE[wtw
T
s ] = Qδ(t − s),

E[vi
tw

T
s ] = 0, ∀i, andE[vi

t(v
j
s)

T ] = Rijδ(t− s), i.e. we also
allow for correlated measurement noise. More compactly, if
we define the compound measurement noise vectorvt =
(v1

t , . . . , vN
t ) ∈ R

m, m =
∑

i mi, we haveE[vtv
T
s ] =

Rδ(t − s), where the the(i, j)-th block of the matrix
R ∈ R

m×m is [R]ij = Rij ∈ R
mi×mj . We also assume

that R > 0, the pair (A, Q1/2) is reachable and(A, C)
is detectable, whereCT = [CT

1 CT
2 . . . CT

N ], which are
necessary conditions for the existence of a stable estimator.

The sensors are not physically co-located and can com-
municate only with their neighbors, thus forming a com-
munication graph, as shown in Figure 1. From this graph a
special node is elected as data collector, and from this node
a rooted tree consistent with the communication graph is

then constructed. Therefore, each sensor in the network also
acts as a router for the messages from its children sensors
to its parent sensor, till all data are collected at the root.
The root then transmits the gathered information to a base
station where the state estimation is required. Without loss of
generality, we assume that the root sensor is sensory1. We
also indicate withC(i) the children of thei-th sensor node.
Any transmission from a children node to a parent node is
subject packet loss, and there is a unitary time step delay ifit
is successful, therefore data from any node can arrive to the
root node with a time delay which is no smaller then its depth
in the communication tree. We indicate withdi the depth of
the i-th sensor node from the root, and withdm = maxi di

the depth of the tree. We assume that there is no delay nor
packet loss between the root node and the base station. We
finally assume that the communication tree topology changes
only rarely so that a constant tree can be safely assumed and
it is known to the base station. Finally, we assume that each
sensor node has some computational and memory resources
to implement some local signal processing, and that they
are all synchronized, i.e. they share a common notion of
time. This modeling is a good representation of many routing
protocols for WSNs for environmental monitoring.

IV. M EASUREMENT AGGREGATION

In this section, we present the most natural approach
to perform the state estimation. This startegy consists in
simply aggregating raw measurements along the tree and
then computing the state estimate at the base station. More
precisely, every sensor nodei at each sampling timet takes
a measurementyt, and then sends a packet to its parent
consisting of the packet header, the measurementyt, the
time t it was taken, and its identification numberi. If nodei
has some children, it simply aggregates the messages it has
received from them into the packet to be sent to the parent as
pictorially illustrated in Figure 2. Using this communication
scheme, the sensor nodes closer to the root need to send
large packets since they have to transmit not only their
measurement but also all the measurements collected by
the sensor nodes below them. On the other hand, using
this strategy there is no need for any in-network signal
processing.

Measurements from all sensor nodes arrive at the base sta-
tion with random delay or might even be lost along the way.
Let us indicate withτ i

k the total delay of the measurement
yi

k when received at the base station, therefore, according to
our modeling the packet either has been correctly delivered
and its delay corresponds to the depth ofi-th sensor, i.e.
τ i
k = di, or it has been lost along the way, i.e.τ i

k = ∞. Since
the maximum delay of any measurement correctly delivered
at the base station is given bydm, we can simply store all
recently received measurements in a buffer ofN × (dm +1)
elements, where the(i, h)-th entry (i ∈ {1, .., N}, h ∈
{0, 1, .., dm}) is given by ỹi

t,t−h = γi
t,t−hyi

t−h, and the
auxiliary variableγi

t,t−h is defined as

γi
t,t−h =

{
1 if τ i

t−h ≤ h
0 otherwise;
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Fig. 2. Data packet structure transmitted by each sensor node for the
measurement aggregation strategy.

In other words, this simply indicates that each rowi of this
buffer corresponds to the measurements received fromi-th
sensors, and that each columnh corresponds to the measure-
ments taken at timet − h, wheret is the current time, i.e.
the base station stores only the received measurements which
have a delay smaller or equal todm. If the measurement
corresponding to the(i, h)-th slot has not been received, then
a zero is stored, as shown in Figure 3.

ESTIMATOR

Fig. 3. Memory data structure required at the base station for the
measurement aggregation strategy.

It has been shown in [13] that the minimum
variance state estimator computable at the base
station based on the communication model above,
i.e. x̂BS

t|t = E[xt|ỹt,0, . . . , ỹt,t, γt,0, . . . , γt,t], where
ỹt,h = (ỹ1

t,h, . . . , ỹN
t,h) and γt,h = (γ1

t,h, . . . , γN
t,h),

is given by a time-varying Kalman filter with
buffered measurements. More precisely, let us
define x̂t

k|h = E[xk|ỹt,0, . . . , ỹt,h, γt,0, . . . , γt,h],
and the corresponding error covarianceP t

k|h =

E[(xk − x̂t
k|h)(xk − x̂t

k|h)T |ỹt,0, . . . , ỹt,h, γt,0, . . . , γt,h]

then x̂BS
t|t = x̂t

t|t, where x̂t
t|t is iteratively computed as

follows:

x̂
t
t−dm−1|t−dm−1 = x̂

t−1

t−dm−1|t−dm−1
, P

t
t−dm|t−dm−1 = P

t−1

t−dm|t−dm−1

(3)

x̂
t
k+1|k = Ax̂

t
k|k, k = t−dm, . . . , t−1, t (4)

P
t
k+1|k = AP

t
k|kA

T + Q (5)

x̂
t
k|k = x̂

t
k|k−1 + Kt,k(ỹt,k − Ct,kx̂

t
k|k−1) (6)

P
t
k|k =P

t
k|k−1−P

t
k|k−1C

T
t,k(Ct,kP

t
k|k−1C

T
t,k+Rt,k)†Ct,kP

t
k|k−1(7)

Kt|k = P
t
k|k−1C

T
t,k(Ct,kP

t
k|k−1C

T
t,k+Rt,k)† (8)

where ()† indicates the pseudoinverse operator,CT
t,k =

[γ1
t,kCT

1 γ2
t,kCT

2 . . . γN
t,kCT

N ], and the matrixRt,k ∈ R
m×m

is such that the(i, j)-th element is[Rt,k]ij = γi
t,kγj

t,kRij . In
other wordsCt,k andRt,k can be obtained from the matrices
C and R by simply replacing the rows and columns of
the lost measurements with zeros. Alternatively, one could
use the same equations above by constructing the vector
ỹt,k using only the measurements that have arrived, and
constructing the matricesCt,k and Rt,k by removing from
C and R the rows and columns of the lost measurements,
respectively. In this latter formulation, if no measurement
from sampling timek has arrived yet at timet, we set
Ct,k = 0, Rt,k = 0, Kt,k = 0.

Informally speaking, the optimal estimator provided above
is obtained by iterating at every time stept a standard
Kalman Filter fordm+1 times using only thedm-most recent
measurements that have arrived. Equation (3) indicates the
variables that needs to be stored to properly initialize the
Kalman filter at each time stept. This strategy requires the
storage of a matrix of dimensionn, and ofdm +2 vectors of
dimensionm, i.e. it has memory complexityO(n2 + dmm).
It also requires the inversion of possiblydm + 1 matrices
of dimensionm at any timet, therefore it has complexity
of approximatelyO(dmm3). Although this complexity can
grow large for WSNs with hundreds of sensor nodes, this
might not be a problem since, in general, the base station has
large computational and memory resources. We will come
back to the complexity issues in the conclusions.

Note that this strategy does not require a tree-based
communication topology, therefore it is suitable also for
communication protocols that send the same packet along
multiple routes to reduce packet loss at the price of larger
communication load. The only key assumptions here are that
the base station is able to sort measurements according to
their sampling time and their sensor node origin, and that
there is a maximum delay for any packet that successfully
arrives.

V. M EASUREMENT FUSION

In order to remove data redundancy, data fusion techniques
are to be used, instead of simple measurement aggregation.
The problem is now to find a relatively simple fusion
function, that can reduce the communication volume without
dropping information on the observed process. In particular,
in this section we exploit a method based on the Kalman filter
equations written in theirinformation form. The information
form of the Kalman filter, also called inverse covariance filter,
is well known in the literature [14] and it is obtained by
applying the Matrix Inversion Lemma to Equations (6)-(8)
which can be written as:

x̂t
k|k = P t

k,k

(
(P t

k,k−1)
−1x̂t

k|k−1 + CT
t,kR†

t,kỹt,k

)

P t
k,k =

(
(P t

k,k−1)
−1 + CT

t,kR†
t,kCt,k

)−1

This new representation of the Kalman filter is useful if the
measurement noises are uncorrelated, i.e. ifRij = 0, i 6= j
or equivalentlyR = diag(R11, R22, . . . , RNN). Under this



additional assumption the previous equations can be rewritten
as

x̂t
k|k = P t

k,k

(

(P t
k,k−1)

−1x̂t
k|k−1+

N∑

i=1

γi
t,kCT

i R−1
ii yi

k

)

(9)

P t
k,k =

(

(P t
k,k−1)

−1 +
N∑

i=1

γi
t,kCT

i R−1
ii Ci

)−1

(10)

The terms in the summation of Equation (9) are known as
the information vectors and can be computed locally by each
node as follows:

zi
k = CT

i R−1
ii yi

k

Note thatzi
k ∈ R

n has the same dimension of the state space.
Since Equation (9) requires only the sum of all information
vectorszi

k, then the sensor nodes do not need to forward
them to the parent node similarly to the raw measurement
in the previous section, but they can sum the cumulative
information vectorξi

k they have received from their children
and pass it on. The only care it needs to be taken is to sum
only information vectors corresponding to the same sampling
time. More formally each node compute the cumulative
information vectors as follows:

ξi
t = zi

t

ξi
k =

∑

j∈C(i) νj
t ξj

k, k = t − dm, . . . , t − 1
(11)

whereνj
t is a binary local variable that it is equal to zero if

the packet from thej-th sensor node at timet was lost, and
it is equal to one otherwise. Note that ifνj

t = 0, then all the
ξj
k vectors coming from thej-branch are lost. In other words,
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Fig. 4. Data packet structure transmitted by each sensor node for the
measurement fusion strategy.

if a packet from a children to a parent is dropped, then the
cumulative information vectors from that node are simply not
added. Therefore, each sensor node transmit the cumulative
information vectors together with the sensor node identities
which contributed to it, and the corresponding sampling time,
as shown in Figure 4. Using this measurement fusion scheme
the cumulative information vectors sent by the root sensor

node to the base station can be used to compute the sufficient
statistics required by Equation (9). In fact we have:

ζt,t = ξ1
t =

∑N
i=1γ

i
t,tC

T
i R−1

ii yi
t

ζt,k =ζt−1,k+ξ1
k =

∑N
i=1γ

i
t,kCT

i R−1
ii yi

k

(12)

where k = t− dm, . . . , t− 1. The identities of the sen-
sor nodes which contributed toζt,k are used to compute
∑N

i=1 γi
t,kCT

i R−1
ii Ci necessary for Equation (10). Figure 5

shows the data memory structure required at the base station.

ESTIMATOR

Fig. 5. Memory data structure required at the base station for the
measurement fusion strategy.

The state estimate obtained at the base stationx̂BS
t|t using

this strategy is exactly the same as the one obtained with the
scheme in the previous section, but requires less computation.
In fact the memory required at the base station isO(dmn +
n2) necessary to store the matrixP t

t−dm|t−dm
and thedm

vectorsζt,k, while the computational complexity isO(dmn3)
necessary to invert2dm matrices of dimensionn.

VI. FUSION OF PARTIAL ESTIMATES

In this Section we consider a different strategy for reduc-
ing the communication load. The computation of the state
estimatex̂k|k will be distributed across the network and
only certain “partial” state estimates, which will be formally
defined later on, will be transmitted through the network.

First of all we consider an augmented state space
which allows to handle very easily the communications
delays. Let dm the maximum number of delays (i.e.
the depth of the communication tree). Define byηk :=
[xT

k , xT
k−1, .., x

T
k−dm

]T the augmented state. Assume also that
the communication between thei − th node and the fusion
center entailsdi time step delays. To the purpose of estimator
design1, one can think that the fusion center receives the
measurementsyi

k of the i-th node withdi delays. If we
denote withȳi

k the data available to the fusion center from
nodei at timek, clearly ȳi

k = yi
k−di

holds true. Therefore,
an estimator which accounts for the communications delays
can be designed based on the augmented model:

ηk+1 = Āηk + w̄k

ȳi
k = C̄iηk + v̄i

k = Cixk−di + vi
k−di i = 1, .., n

(13)
where

Ā :=








A 0 . . . 0
I 0 . . . 0
...

. . .
. . .

...
0 . . . I 0








, wk :=








wk

0
...
0








1We shall see that, in fact, measurements are not sent throughthe network.



and
C̄i := [0, .., 0

︸ ︷︷ ︸

di−1

, Ci, 0, .., 0
︸ ︷︷ ︸

dm−di−1

].

In order to fix notation let us denote witĥηk|k the estimator
of the augmented stateηk using data up to timek and
consider the (steady state) “centralized” Kalman filter:

η̂k|k = F η̂k|k +
∑n

i=1 Liȳ
i
k

ȳi
k = C̄iηk + v̄i

k i = 1, .., n
(14)

where L := [L1, .., Ln] = ĀP C̄T
(
C̄P C̄T + R

)−1
, P is

the (augmented) state prediction error covariance which is
the solution of the standard Algebraic Riccati Equation [14],
andF = Ā − LC̄.

Inspired by [10], the computations required in order to
obtain the state estimatêηk|k can be distributed across the
network as follows:

η̂i
k|k = F η̂i

k|k + Liȳ
i
k

ȳi
k = C̄iηk + v̄i

k i = 1, .., n
η̂k|k =

∑n
i=1 η̂i

k|k

(15)

where thei-th node is responsible for computinĝηi
k|k, which

we shall call a “partial” estimate of the stateηk. Note that
η̂i

k|k uses onlȳyi
k = yi

k−di
. Indeed one can think that, at time

k−di, nodei computeŝηk|k which, sent through the network,
reaches the fusion center at timek. Of course, when estimates
are sent to the fusion center through some other node, the
parent node can fuse its “partial” estimate with those coming
from its children just summing the partial estimates. This
idea is described pictorially in Figure 6.
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Fig. 6. Data packet structure transmitted by each sensor node for the partial
state estimate fusion strategy.

Note that the amount of information to be sent through the
network depends on the augmented state dimension, which is
ndm, therefore it can be very large for deep trees. However,
it turns out that very standard model reduction techniques
can be used to the purpose of designing low dimensional fil-
ters/estimators. IdeallyL2 weighted model reduction would
allow to find the optimal (in the sense of minimum variance)
approximation of the optimal filter (see e.g. [15]). Unfortu-
natelyL2 model reduction turns out to be rather difficult in

general and several alternatives are possible, ranging from the
classical balanced model reduction to optimal Hankel norm
model reduction as suggested for instance in [15]. In our
experience, a reduced model of ordern (i.e. of the same order
as the original state) yields very good performances close to
the optimal, full order filter. Using a reduced order filter the
computational and memory complexity at the base station
is O(1) and O(n), respectively, while computational and
memory complexity at each sensor node isO(n2) andO(n2),
respectively. Therefore, this strategy distributes much of the
computational and memory burden from the base station to
the sensor nodes.

It is rather simple to see that this algorithm provides indeed
the optimal estimator, similarly to other fusion techniques
presented earlier, in the absence of packet losses. Unfor-
tunately, the situation is radically different in the presence
of packet losses. When packets are lost, the fusion center
does not receive some of the partial estimatorsη̂i

k|k. In this
scenario, it is not clear how these should be replaced in the
computation of the estimator

η̂k|k =

n∑

i=1

η̂i
k|k.

At a first glance letting thei−th partial estimator to evolve
in open loop, i.e. settingηi

k|k = Aηi
k−1|k−1 when thei-

th partial estimate is lost, could be a sensible thing to do.
Unfortunately it can be proved that this is not the “right”
thing to do. We have indeed verified in a number of simple
examples, that this strategy does not work and yields very
bad estimates even in the presence of very few packet losses.
For the purpose of comparison we have also implemented
the decentralized fusion strategy suggested in [8], adapted to
our setup. It turns out that also this latter algorithm, while
providing the optimal estimator in the absence of packet
losses, fails when packets are lost. Therefore extending these
schemes also in the presence of packet losses remains an
open research question which we are planning to address in
our future work.

As a last remark let us observe that differently from the
strategy presented in this section, the strategies presented
earlier (i.e. measurements aggregation and measurements
fusion) do work also in the presence of packet losses and are,
to the best of our knowledge, the approaches which perform
better in this situation.

VII. POWER CONSUMPTION CONSIDERATIONS

Another important parameter to be evaluated is the energy
consumption of the estimation strategies presented above.In
particular, energy consumption is directly proportional to the
number of bits transmitted. Here we compute the average
number of bits transmitted by each sensor node at any time
instant. This number depends on the specific topology of the
WSNs tree considered. To derive some useful guidelines, we
consider completeℓ-ary trees, i.e. trees where each node has
ℓ children, of depthdm, where the root node has depth zero.
We define with the variablesbh, ba, bt, br the number of bytes
necessary to encode the packet header, the sensor node ID



address, the sampling time, and a real number, respectively.
We also assume that each sensor measurement has dimension
m, while the dimension of the state isn. It is useful to define
the following quantities:

M1 =

dm∑

i=0

ki, M2 =

dm∑

i=0

ki(i+1), M3 =

dm∑

i=0

ki(dm−i+1)

Note thatM1 corresponds also to the total number of sensor
nodes in the WSN, i.e.M1 = N . The total number of bits
transmitted at each time step by the whole network for each
of the three strategies presented are given by

Nma = M1bh + (mbr + bt + ba)M2

Nmf = M1bh + baM2 + (nbr + bt)M3

Nsf = M1(bh + nbr)

whereNma, Nna, Nsf stand for measurement aggregation,
measurement fusion, and partial state estimate fusion, re-
spectively. It is clear that from the previous equations that
Nsf < Nmf , i.e. the partial state estimate fusion strategy re-
quires less energy then the measurement fusion. Differently,
if n > m then for shallow trees it is more convenient to
use the measurement aggregation strategy, while for deeper
trees the state fusion and then the measurement aggregation
strategies are to be preferred, as graphically illustratedin
Figure 7, where we considered the following values:k =
3, bh = 4, ba = 2, bt = 2, bd = 6. In fact, in this example,
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Fig. 7. Average number of bytes transmitted per node per timestep as
a function of the tree depthd. On thex-axis inside the round parentheses
there are also indicated the corresponding total number of sensor nodes in
the network.

while the partial state estimate strategy becomes convenient
already for a tree composed of only a dozen sensor nodes,
the measurement fusion strategy becomes more convenient
than the measurement aggregation strategy only when the
tree has more than a hundred nodes. These thresholds are a
strong function of the ration/m, i.e. the larger the ratio the
more convenient is to send the raw measurements.

VIII. C ONCLUSIONS

In this paper we presented three strategies for state esti-
mation in rooted wireless sensor networks subject to packet

loss and delay. We showed how they all exhibit different
tradeoffs between estimation accuracy, computational and
memory requirement at the base station and at the sensor
nodes, and power consumption. These tradeoffs are also
strongly dependent on the tree topology, i.e. if it is shallow of
deep, and on the ratio between the measurement dimension
and the state dimension. Therefore it is not possible to elect
a best strategy in absolute terms, but it needs to be selected
based on the specific application in mind.

Probably one of the most important findings of this paper
was to show that traditional distributed estimation strategies
[8][10] cannot be easily extended to cope with packet losses.
Indeed packet loss, which is an unavoidable feature of WSNs,
opens a rather unexplored avenue of research for distributed
estimation and signal processing in WSNs.

Finally, even for the measurement aggregation and the
measurement fusion strategies, which provide good per-
formance also under lossy communication, there is space
for improvement in particular in terms of computational
complexity at the base station.
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