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Abstract— One of the main issues with wireless sensor net- this is transmitted. In-network aggregation deals witts thi
works (WSNs) is communication efficiency to reduce power distributed processing of data within the network. Data
consumption. This is often achieved through data routing wh  55regation techniques are tightly coupled with how data
aggregation. However, aggregation does not consider possi .
ble measurements correlation. This a priori information can 'S gathered at the sensor nodes as well as h(_)yv pac.kets are
be used for data fusion, in order to remove correlation of routed through the network, and have a significant impact
transmitted data, thus reducing amount of information to be  on energy consumption and overall network efficiency (e.g.,
transmitted. In this paper we explore different information pro-  py reducing the number of transmissions or the length of the

cessing strategy for state estimation of dynamic linear syems 3 ckets to be transmitted). Also, we emphasize that daga siz
in the context of rooted wireless sensor networks. We propes '

three data fusion methods: standard measurement aggregain, reduction thro.ugh |n-ne_tW0r_k processing shall preserve as
measurement fusion, and fusion of partial state estimate§hese Much as possible statistical information about the moedor
strategies are specifically designed to include possibleldged or  event.

dropped packets. Finally, they are compared in term of power

consumption efficiency, estimation accuracy, computatical and

memory complexity, showing tradeoffs between these metric 1. PREVIOUS WORK

In-network signal processing and, more specifically, dis-
. INTRODUCTION tributed estimation and sensor fusion have been widely stud

Recent advances in low-power analog and digital ele¢ed since the late seventies in many different areas inetudi
tronics have enabled mass production of small sensor nodetrol, signal processing, economics and communications
with sensing, computation, and communication capamlitieTherefore’ the literature on the subject is rather vast, and
This has spurred a substantial amount of research on vsreldtere we shall only mention the most important results and
sensor networks (WSNs) over the past few years. For eag@rrents trends. In particular, as mentioned above, here
of deployment, sensor devices should be inexpensive, smale focus on hierarchical dynamic estimation on multi-hop
and have a long lifetime, which requires the deve|0pme,qommunication trees, as shown in Figure 1. This scenario
of very efficient software and hardware solutions. For thits different from another popular area of investigation rene
reason, protocols for sensor networks should be carefultimation need to performed at multiple locations suchtas a
designed so as to make the most efficient use of the limit&dfich sensor location rather than in one centralized latatio
resources in terms of energy, computation, and storage. [1][2][3]. In particular, in that framework it is shown howa$t

In this paper we focus on an important aspect of sensé¢al communication among sensors in between sampling
networks, namely in-network data aggregation and fusiofimes can be used to retrieve the sufficient statistics for
These techniques allow to trade off communication an@Ptimal state estimation [4][5]. However, such approach is
computational complexity for estimation performance. Th&Xpensive in terms of exchanged messages while in this work
basic principle is that local computation often consume¥€ are interested in strategies that reduce communicasgion a
significantly less energy than communication. In typicaluch as possible. More relevant to this work, is the study
sensor network scenarios, data is collected by sensor nodéd10w to compute the sufficient statistics to reconstruet th
throughout some area, and needs to be made availableCgiimal centralized estimate, i.e. the best estimate o&tkif
some central sink node(s), where it is processed, anaIyzé’d', measurements were available at a central location, from
and then used for some decision making process. In mafigtributed processing. In particular, [6][7][8][9][1Gfhow
cases, data generated by different sensors can be joinfiQW itis possible to reconstruct the centralized estimatenf
processed while being forwarded towards the sink, e.g., Bgcal estimates computed by each sensor in a scenario where
fusing together sensor readings related to the same event@gasurement noises among sensors are uncorrelated. How-

physical quantity, or by locally processing raw data befor8Ver, their approach_assumes that the sensors can transmit
their local estimate directly to the central node with ncagel
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then constructed. Therefore, each sensor in the netwook als
acts as a router for the messages from its children sensors
to its parent sensor, till all data are collected at the root.
The root then transmits the gathered information to a base
station where the state estimation is required. Withoug &ds
generality, we assume that the root sensor is sepsowe
also indicate withC(¢) the children of thei-th sensor node.
Any transmission from a children node to a parent node is
subject packet loss, and there is a unitary time step delay if
is successful, therefore data from any node can arrive to the
root node with a time delay which is no smaller then its depth
in the communication tree. We indicate with the depth of
the i-th sensor node from the root, and wiil), = max; d;
the depth of the tree. We assume that there is no delay nor
packet loss between the root node and the base station. We
Fig. 1. Pictorial representation of Wireless Sensor Nekvor environment finally assume that the communication tree topology changes
monitoring. The small dots indicate the location of the spsnodes,
the shaded circles indicate the sensing regions and the esg¢gnthe Only rarely so that a constant tree can be Safely assumed and
communication links. White arrows represent the treetaseting paths it is known to the base station. Finally, we assume that each
from the sensor nodes to the root sensor node and to the Iz st sensor node has some computational and memory resources
to implement some local signal processing, and that they
are all synchronized, i.e. they share a common notion of
networks where communication messages are subject titme. This modeling is a good representation of many routing
delay and packet loss. In particular we want to companerotocols for WSNs for environmental monitoring.
them in terms of estimation accuracy, computational and
memory complexity required by each sensor node and by IV. MEASUREMENT AGGREGATION

the base station, and energy consumption. Although optlmalIn this section, we present the most natural approach

distributed estimation strategies have been proposedidBll perform the state estimation. This startegy consists in

they cannot be easily extended to a scenario which includ ﬁnply aggregating raw measurements along the tree and

pQCket.|OSS and delay, and very little work hgs been dor}ﬁen computing the state estimate at the base station. More
with this respect. Also, we show that the optimal strateg recisely, every sensor nodet each sampling time takes

in term of power consumption strongly depends on th measu'remenyt, and then sends a packet to its parent
communication topology, since for shallow trees it is mor%onsisting of the packet header, the measurementhe
convenient to send raw measurements, while for deeper reese 7 it was taken, and its identification numbiedf node:

it is better to locally fuse information. has some children, it simply aggregates the messages it has
received from them into the packet to be sent to the parent as

Ill. PROBLEM FORMULATION pictorially illustrated in Figure 2. Using this communiizat
We consider a discrete time linear stochastic systenggheme, the sensor nodes closer to the root need to send
observed byV sensors: large packets since they have to transmit not only their
measurement but also all the measurements collected by
Tepr = Arg 4wy (1)  the sensor nodes below them. On the other hand, using
yi = Cixg+vl, i=1,...,N (2) this strategy there is no need for any in-network signal
processing.

wherex € R, y; € R™, w; and v; z;re gaussian noIses = vieasurements from all sensor nodes arrive at the base sta-
with Zero mean and suchTthﬂ[wtws] = Q5(t = 5),  tion with random delay or might even be lost along the way.
Elvjw, ] = 0,¥i, andE[vj(v])"] = Ry;o(t - 5), i.e. we also Let us indicate withr} the total delay of the measurement
allow fqr correlated measurement noise. Mo_re compactly, %q; when received at the base station, therefore, according to
wel defm?vthe cor:nwpound measurement noise VG;@% our modeling the packet either has been correctly delivered
(vg,...,vp") € R™m = 57;m;, we haveE[v,u;] = 554 jts delay corresponds to the depthidh sensor, i.e.
Ri(t — s), where the the(i,j)-th block of the matrix i = d;, or it has been lost along the way, i.= oc. Since

mxXm R . m; Xmj . .
IE] € R 'Sh[R]zg = fw 52 R’ ].hwgl also ajsgme the maximum delay of any measurement correctly delivered
that B > 0, the pair (4,Q'/*) is reachable and4,C) at the base station is given ki, we can simply store all

i T __ T T T i
is detectable, w_h_eré] = [C1 G .- Ci], which are  recently received measurements in a buffenok (d,,, + 1)
necessary conditions for the existence of a stable estimat . onts where thei, h)-th entry ¢ € {1,..N}h ¢

The sensors are not physically co-located and can co 0.1...d e i ~i i i
1., is given b = _y'_,, and the

municate only with their neighbors, thus forming a Comr:guxiliary cgr)iable?yi isygé’ftin}éd as%’t hYt=h
munication graph, as shown in Figure 1. From this graph a tt—h
special node is elected as data collector, and from this node i { 1 ifr_,<h

a rooted tree consistent with the communication graph is Tea-h =\ 0 otherwise:



where ()T indicates the pseudoinverse operat6f, =
(L CF A2, CF .. 4N.CEl, and the matrix®, j, € R™*™

is such that théi, j)-th element i§R; 1];; = 'yti_’kyg;kRij. In
other word<C; ;, and R, ,, can be obtained from the matrices

C and R by simply replacing the rows and columns of
the lost measurements with zeros. Alternatively, one could
use the same equations above by constructing the vector
¥tk USing only the measurements that have arrived, and
constructing the matrice§; ,, and R; , by removing from

|header| yiﬂ | 7 | tfk |‘/1171| J |f{<-1|y;§—1| h |t271|

Delay and Delay and
packet los packet loss

|header|y‘,z|j|t£| |header|yfj|h|tf;|
7 X C andﬁ the rows and columns of_ the .Iost measurements,
: respectively. In this latter formulation, if no measuremen
N;Ze' N°;§h from sampling timek has arrived yet at time, we set
Cik =0,Ryp, =0,Kyp = 0.
Fig. 2. Data packet structure transmitted by each sensoe fodthe Informally spe{:\klng., the optimal es_tlmator provided above
measurement aggregation strategy. is obtained by iterating at every time stépa standard

Kalman Filter ford,,, +1 times using only the,,,-most recent

measurements that have arrived. Equation (3) indicates the
In other words, this simply indicates that each rowf this  yariables that needs to be stored to properly initialize the
buffer corresponds to the measurements received frtfm  Kalman filter at each time step This strategy requires the
sensors, and that each colurcorresponds to the measure-storage of a matrix of dimension, and ofd,,, +2 vectors of
ments taken at time — h, wheret is the current time, i.e. dimensionm, i.e. it has memory complexit(n? + d,,m).
the base station stores only the received measurements whjg 5150 requires the inversion of possiblly, + 1 matrices
have a delay smaller or equal th,. If the measurement of dimensionm at any timet, therefore it has complexity
corresponding to th&, h)-th slot has not been received, thengt approximatelyO(d,,,m?). Although this complexity can

a zero is stored, as shown in Figure 3. grow large for WSNs with hundreds of sensor nodes, this
might not be a problem since, in general, the base station has

ESTIMATOR large computational _anq memory resources. We will come

P back to the complexity issues in the conclusions.

i [ ) O Wiyl O | Note that this strategy does not require a tree-based

Yip | 202 Tolelol.2] [ %t communication topology, therefore it is suitable also for

s G Tl 11 Bl ET0 I g communication protocols that send the same packet along

S S T multiple routes to reduce packet loss at the price of larger

M| 0 [ O |yth| O communication load. The only key assumptions here are that
—dp+1— the base station is able to sort measurements according to

their sampling time and their sensor node origin, and that

Fig. 3. Memory data structure required at the base stationtfe there is a maximum delay for any packet that successfully
measurement aggregation strategy. arrives.

It has been shown in [13] that the minimum

variance state estimator computable at the base V. MEASUREMENT FUSION

station based on the communication model above . .

: A ~ ~ ' In order to remove data redundancy, data fusion techniques
l.e. (Eﬁts = E[l’t|yt70, s Yt ts V05 - - ,'Vt,t]a where Y a

~ 1 N 1 N are to be used, instead of simple measurement aggregation.
Gon = (pnoe o Pip) 8N qen = Oigoooodin) e problem is now to find a relatively simple fusion

is given by a time-varying Kalman filter with : o .
buffered measurements. More precisely, let ufunction, that can reduce the communication volume without
define %h = Elzk|Ft.0,- - Jt.n,Ve.05---»en),  Aropping information on the observed process. In particula
and the corresponding error covarianc®? — inthis section we exploit a method based on the Kalman filter

k|h . . . . . . .

E[(z; — j};\h)(xk _ j72|h)T|gt,07'-'aﬂt,ha7t,05"'77t7h] ]?quatl?:]hs varltIten mf_:?enmflorrr1at||:)ndf_c>rm. The mfo_rmatlc:rqt
then 277 = &}, whereij, is iteratively computed as rorm otihe raiman Titer, aiso cafiec INverse covariancet)
follows: is well known in the literature [14] and it is obtained by

. . , L applying the Matrix Inversion Lemma to Equations (6)-(8)
Ttdp|tdin—t = Tty i t-dp—10 Dbodin|t-dim-1 = Ptﬁim\tﬁimzzls) which can be written as:

t _ t t —1at T pt ~
Thuape = Ak, k=t—dm, ... t-1,t (4) The = Por((Ppo1) " Ty + CoaRy 1 0k)
-1 T —1
Piape = APQRAT +Q (5) Piw = ((Popo) ™+ Ct,kRI,kOt-,k)
i”fc\k = i}i\k,1 + Kk (Jee — Ct,ki"fc\kq) (6)

; . , - . . . , This new representation of the Kalman filter is useful if the
Py = Prjpa— PrpaCr b CebripaCrp +Rek) Cenbrisa(7) - measurement noises are uncorrelated, i.&;if = 0,7 # j
Kk = PipaCllCoilhipaCrr+Re ) (8) or equivalentlyR = diag(Ri1, Raz, - .., Ryy). Under this



additional assumption the previous equations can be tewrit node to the base station can be used to compute the sufficient

as statistics required by Equation (9). In fact we have:
N Go =& = Zj'\il%i tC'TRilyé
14 i ~Tp—1 i ’ [ ) 12
Ik|k = P k((Pk —1) I?ﬂk—l +Z’Yt,kci R;; yk) 9) G =C1p+E = Zfiﬂ;kaR;—ly}c (12)
=1
. wherek = t—d,,,...,t —1. The identities of the sen-
Pl = (pkk . +Z%kCT ) (10) sor nodes which contributed t¢ . are used to compute

Zf\;l%i,kaR;lCi necessary for Equation (10). Figure 5

. . . shows the data memory structure required at the base station
The terms in the summation of Equation (9) are known as y g

the information vectors and can be computed locally by each
node as follows:

i CTR ¢l ESTIMATOR
. . . H P lidmt o Lt
Note thatz;, € R has the same dimension of the state spac : o Ct,t-dom Ce2|Cr |Gt | —
Since Equation (9) requires only the sum of all informatior -1 ol --

vectorsz;, then the sensor nodes do not need to forwar €t—alm i + 1

them to the parent node similarly to the raw measureme..
in the previous section, but they can sum the CumUIatlvlg 5. Memory data structure required at the base stationtte
information vector, they have received from their children measurement fusion strategy.
and pass it on. The only care it needs to be taken is to sum
only information vectors corresponding to the same sargplin The state estimate obtained at the base staitjgh using
time. More formally each node compute the cumulativehis strategy is exactly the same as the one obtained with the
information vectors as follows: scheme in the previous section, but requires less compntati

In fact the memory required at the base statio®{g,,,n +
(11) n?) necessary to store the matrix’_ dn|t—d,, and thed,,
vectors(; ,, while the computational complexity &(d,,n?)
necessary to inveitd,, matrices of dimensiom.

6 =4
3 :Zjec(i)%]fi, k=t—dm,...,t —1

whereu-tj is a binary local variable that it is equal to zero if
the packet from thg-th sensor node at timewas lost, and VI. FUSION OF PARTIAL ESTIMATES
it is equal to one otherwise. Note thatif = 0, then all the

. In this Section we consider a different strategy for reduc-
&, vectors coming from thg-branch are lost. In other words, 24

ing the communication load. The computation of the state
estimate 2, will be distributed across the network and
only certain “partial” state estimates, which will be forifya
defined later on, will be transmitted through the network.
|header|Z;i | 7 |tk |Zk L+ 2l 1| J | h |tl. 1] First of all we consider an augmented state space
which allows to handle very easily the communications
delays. Let d,, the maximum number of delays (i.e.

S :Ncoq;_i_lwv, the depth of the communication tree). Define hy :=
R [z} 2], ..a]_, |7 the augmented state. Assume also that
Delay and the communication between thie- th node and the fusion
Delay and elay an oo .
packet loss packet loss center entailgl’ time step delays. To the purpose of estimator
desigrt, one can think that the fusion center receives the
|header | ] | 0 | t | |header th | mea\surement@,C of the i-th node withd' delays. If we
denote withy; the data available to the fusion center from
node: at tlmek clearly ;, = y;_, holds true. Therefore,
; Nodeii1 ; Node h ) an estimator which accounts for the communications delays
% =GR~y 2 = Culy i can be designed based on the augmented model:
Fig. 4. Data packet structure transmitted by each sensoe fadthe ﬁkt} - 4% + ui’: p .
measurement fusion strategy. U = Cie+0,=Cixggi +vp_g =11
(13)
if a packet from a children to a parent is dropped, then th&here
cumulative information vectors from that node are simply no A4 0 ...0 W
added. Therefore, each sensor node transmit the cumulative | £ 0 ... 0 |0
information vectors together with the sensor node idedtiti T I Wk = :
which contributed to it, and the corresponding samplingetim 0 I 0 0

as shown in Figure 4. Using this measurement fusion scheme
the cumulative information vectors sent by the root sensorwe shall see that, in fact, measurements are not sent thtbagtetwork.



and general and several alternatives are possible, rangingtfie

C;:=10,.,0,C;, 0,..,0 ]. classical balanced model reduction to optimal Hankel norm
A T model reduction as suggested for instance in [15]. In our

] ) ] ] experience, a reduced model of oragi.e. of the same order
In order to fix notation let us denote wity . the estimator 44 the original state) yields very good performances close t
of the augmented statg, using data up to timet and e gptimal, full order filter. Using a reduced order filteeth

consider the (steady state) “centralized” Kalman filter: computational and memory complexity at the base station
e = Fige + S0, Ligk (14) is O(1) and O(n?, respectively, while c_orr;putanonal2 and
g = Cipp+0. i=1,.,n memory complexity at each sensor nod_é)(gz ) andO(n?),
- . respectively. Therefore, this strategy distributes muicthe
where L := [L1,..,L,) = APCT (CPCT + R) , P is computational and memory burden from the base station to

the (augmented) state prediction error covariance which fke sensor nodes.

the solution of the standard Algebraic Riccati Equatior],[14 It is rather simple to see that this algorithm provides intlee

andF = A - LC. the optimal estimator, similarly to other fusion technigue
Inspired by [10], the computations required in order tgresented earlier, in the absence of packet losses. Unfor-

obtain the state estimat,;, can be distributed across thetunately, the situation is radically different in the pnese

network as follows: of packet losses. When packets are lost, the fusion center

My = Pl + Ligh does not receive some of the partial estimaigjrs. In this
A o scenario, it is not clear how these should be replaced in the
Y = Cink‘f'% 1= 1,..,TL (15) . .
. B n s computation of the estimator
Ml = i1 Mgk
n
where thei-th node is responsible for computing, , which Mk = D Nhji-
we shall call a “partial” estimate of the statg. Note that i=1

Zz‘kdusnejdgjg(y_)%n ;lﬁl@eg?d I\Tvi?f: Zgﬁtiﬁ?otg;lktrwza;’e?\:vgﬁe At a first glance letting the—th partial estimator to evolve
— g,y k|k ’ v i i ? — 2 -
reaches the fusion centelr at tirheOf course, when estimates Itﬂ ggret?all(;z%ﬁléeté ?Se tﬂ;gké“ojd ﬁg’“; Skgﬁsivk\:&e?hi:]; Zto do.
are sent to the fusion center through some other node, g ortunately it can be proved that this is not the “right’
parent node can fuse its “partial” estimate with those c@mMinging to do. We have indeed verified in a number of simple
from its children just summing the partial estimates. Thigyamples, that this strategy does not work and yields very
idea is described pictorially in Figure 6. bad estimates even in the presence of very few packet losses.
For the purpose of comparison we have also implemented
I the decentralized fusion strategy suggested in [8], adapte
: : our setup. It turns out that also this latter algorithm, whil
| header | iy + s + il | providing the optimal estimator in the absence of packet
: losses, fails when packets are lost. Therefore extendeggth
Node i schemes also in the presence of packet losses remains an
Mg = s + Lt open research question which we are planning to address in

e g our future work.
Delay and ey an As a last remark let us observe that differently from the
packet loss packet los . . . ;
strategy presented in this section, the strategies prebent
earlier (i.e. measurements aggregation and measurements
bk Rk fusion) do work also in the presence of packet losses and are,
to the best of our knowledge, the approaches which perform

Node i ] ¥ Node h ; better in this situation.

Meajors = P + Livi kapen = il + Livk

) ] ) VIl. POWER CONSUMPTION CONSIDERATIONS
Fig. 6. Data packet structure transmitted by each sensa@ foodhe partial

state estimate fusion strategy. Another important parameter to be evaluated is the energy
consumption of the estimation strategies presented alove.
Note that the amount of information to be sent through thparticular, energy consumption is directly proportiorethe
network depends on the augmented state dimension, whichnigmber of bits transmitted. Here we compute the average
nd,,, therefore it can be very large for deep trees. Howevenumber of bits transmitted by each sensor node at any time
it turns out that very standard model reduction techniquesstant. This number depends on the specific topology of the
can be used to the purpose of designing low dimensional flWSNs tree considered. To derive some useful guidelines, we
ters/estimators. ldeally» weighted model reduction would consider completé-ary trees, i.e. trees where each node has
allow to find the optimal (in the sense of minimum variancey children, of depthi,,,, where the root node has depth zero.
approximation of the optimal filter (see e.g. [15]). Unfertu We define with the variablés,, b, b;, b, the number of bytes
nately L, model reduction turns out to be rather difficult innecessary to encode the packet header, the sensor node ID



address, the sampling time, and a real number, respectivdlyss and delay. We showed how they all exhibit different
We also assume that each sensor measurement has dimensideoffs between estimation accuracy, computational and
m, while the dimension of the statesis It is useful to define  memory requirement at the base station and at the sensor
the following quantities: nodes, and power consumption. These tradeoffs are also
. d,, d,, strongly dependent on the tree topology, i.e. if it is shaltd
M, = Z k', My = Z Ei(i+1), M3 = Z k(d,,—i+1) deep, and on the ratio between the measurement dimension
=0 =0 =0 and the state dimension. Therefore it is not possible ta elec
Note thatM; corresponds also to the total number of sensdt Pest strategy in absolute terms, but it needs to be selected
nodes in the WSN, i.eM; = N. The total number of bits Pased on the specific application in mind.

transmitted at each time step by the whole network for each Propably one of the most important findings of this paper
of the three strategies presented are given by was to show that traditional distributed estimation styes

[8][10] cannot be easily extended to cope with packet lasses

Nima = Mibp + (mby + by + ba) Mo Indeed packet loss, which is an unavoidable feature of WSNs,
Nypy = Miby + by Ms + (nb, + by) M3 opens a rather unexplored avenue of research for distdbute
Ny = M (b, +nb,) estimation and signal processing in WSNs.

Finally, even for the measurement aggregation and the
where Ny,q, Nya, Nsp Stand for measurement aggregationmeasurement fusion strategies, which provide good per-
measurement fusion, and partial state estimate fusion, iymance also under lossy communication, there is space
spectively. It is clear that from the previous equations thgor improvement in particular in terms of computational
Nsy < Nmyg, i.e. the partial state estimate fusion strategy recomplexity at the base station.
quires less energy then the measurement fusion. Diffgtentl
if n > m then for shallow trees it is more convenient to
use the measurement aggregation strategy, while for deeper _ _ _ ,
trees the state fusion and then the measurement aggregatich \éa?z;k?[E?STféng%ﬁ’s ésxmgﬂ?cagéﬁﬁgecgl'”ngrfgdse;tg
strategies are to be preferred, as graphically illustrated 650-655, 1982. T

Figure 7, where we considered the following valugs=  [2] J. Lsits_iglis gﬂg M. Athans,b‘l‘ConVErgence adn asymptatjreement
_ _ _ _ : : in distributed decision problemsJEEE Transactions on Automatic

3,bp, = 4,by = 2,by = 2,by = 6. In fact, in this example, Control, vol. 29, no. 1, pp. 42-50, 1984.

[3] D. Castanon and D. Teneketsis, “Further results on thgmps
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