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Abstract— In this paper we analyze randomized coordination ~ selection allows agents to communicate with all other agent
control strategies for the rendezvous problem of multiple gver time even if at any time step they can communicate
agents subject to input and measurement disturbances. The only with a small number, thereforen average the agents

performance of these control strategies is measured in terms L . : g
of three important metrics: average relative agents' distance, communication graph is fully connected. This paper builds

average input energy consumption, and number of packets UPON a previous paper [12] where it was shown that the
per unit time that each agent can receive from the other total cost can be written as the sum of two terms which

agents. By adopting an LQ-like optimal control approach, we depend only on the initial agents’ positions, under an LQ
show how to numerically compute optimal feedback gains for optimal control formulation of the penalty cost. In partiy

randomized communication topologies. In particular we show t d d th lative dist d the oth
that there is a trade off between these three metrics and that ta ~ ON€ €rM CdE€PENAs on the relalive distances an e other

optimal feedback is a sum of two terms: one that depends only that depends on the center of mass of agents with respect
the agents own positions and the other that depends only on to absolute coordinate system considered. Interestingly,
relative distances between agents. We also show that randomly was shown that in order to minimize energy expenditure
switching communication links allows for greater performance  ne agents do not necessarily converge towards their linitia
as compare fo fixed communication topologies. center of mass as one would expect. This is the case only
if every agent communicates with all other agents at any
o ) ) ~ time step. In general, the optimal gains that minimize the
The need for coordination of multiple mobile vehiclestotal cost cause the agents to move towards a point that is
appears in many applications such as search-and-rescue mistween the instantaneous center of mass and the a-priori
sions and pursuit evasion games [1][2][3][4]. Coordinatio expected position center of mass of all agents. In this paper
among vehicles requires exchange of information betwegfstead, we also include input disturbance and measurement
them. However, the amount of information that can beoise and we reformulate the problem as an LQ stochastic
exchanged is limited by many factors such as channel bangptimal problem. Differently from [12], here we show that
width, radio antenna power, interference, and it is theeefo the optimal gains and the performance do not depend on the
desirable to devise coordination strategies that requiee tinjtial agents’ positions, however the optimal input isllsti
transmission of a limited number of messages among thge sum of a feedback on each agent's position and on the

agents [5][6][7]. However, limiting information exchangerejative distances with the other agents.
among agents negatively impacts the performance of the

vehicles as a group in terms of other metrics such as energy Il. PROBLEM FORMULATION

consumption and time required to accomplish a task. The ConsiderN identical agents whose dynamics is described
goal of this paper is to analyze the trade offs betweeBy a scalar linear discrete time integrator:

these aspects within the framework of rendezvous control,

i.e. convergence of all agents to a common location not  Zi(t+1) =zi(t) +wi(t) +w;, i=1,....N

necessarily specified. wherez; € R represents agent position; € R the control
Recent work has shown that the performance of reng, v angu, e R input disturbance. We assume thatare

dezvous control is strongly dependent on the specific comly 4 random variable with a zero-mean gaussian distioput

munication topology among the agents [8]. In particular, -, =~ N(0,02). We assume that each agent has a GPS-

there has been a particular effort in estimating perfomaancﬁke slensor tr;atwprovides its own position:

for specific fixed topology classes that exploit symmetries

[9]. Most of previous work has been based on fixed com- Yi =X +v;

munication topologies [10] or distance-dependent determi h R ¢ th t noise. Al

istic topologies [11]. In this paper we assume that eacf"€'€ vi tﬁ . reprfe_sgn de measgrslmen.thnmse. SO we

agent has a GPS-like sensor which provides its positidteSUme that; are 1.1.a. random Vag'a € with a zero-mean

with respect to some absolute coordinate frame. Also w@aussian distribution, i.e; ~ A'(0,07), and independent of

consider a time-varying random communication topology:: . .

where every agent exchange messages with a small set of/0r€ compactly we can descrive the agents dynamics in

other agents that is selected at random among all agents. TH¢tor form as follows:

I. INTRODUCTION

rationale behind this communication scheme is that random 2t+1) = z(t)+ult) +w?) (1)
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of their relative distance, i.e. we assume they have infinitEhe rendezvous control problem can be summarized as
power antennas. This last assumption is rather unrealstic follows:

will allow us to derive close form solutions for the agents _ .

performance. We will come back to this assumption in the MR () i T

Conclusions section. The objective of rendezvous congrol i **: a(t+1) = (I+ K(t)z(t) + K(t)o(t) + w(t)

to devise a coordination scheme that forces the agents to Kij(t) = 0if Eij(2(?),t) =0 ®)
converge to a common location, or, equivalently, that fxarceT
the relative distances among all agents to be null. A naturg
way to enforce this objective is to penalize relative distmn
among agents using a quadratic cegfz) : RV — Rt
defined as follows:

e second constraint makes the problem highly non-convex
d time-varying in general. Note also that under the previ-
ous formulation the communication graph is directed, te. i
is possible that nodg can transmit its position to nodebut

not viceversa. Solving the previous problem in full genigral

is hopeless. Most of recent work on rendezvous control has
concentrated on optimizing the rate of convergence with
fixed communication topologie®(z,t) = K where most

of the off diagonal entries are null [10][9]. In particuldine
goal was to analytically determine the rate of convergence
based on some a priory constrains on the structurdsof
%:m to optimally design classes of communication topomgie

() =2TQx, Q>0, Qr=0sz=al (3)

wherel = (1,1,...,1)T € RY anda € R. The requirement
that the vectofl is the unique eigenvector @f relative to the
zero-eigenvalue, is equivalent of saying th&iQz = 0 «—
(x; —x;) = 0V(4,4) thus implying that the cost(x) is null

if and only if the agents are in the same location. Note th
this definition does not forces the agents to stay in a fixe

location, as the cost would be null everrit) = o(t)1. This optimization problems. Differently, in [11] the authorsnco

defmmon Is rather Important as it allows independent giesi sidered a the feedback matrix dependent on agents location
of trajectory following control and rendezvous control. WeK(x,t) — K(z); in particular they assumed that the agents

alsc:jwant to per;)ahze_the total %gems Input eﬁﬁ%'n a&ﬁ@v can communicate only with agents which are within a fixed
Csﬁer‘zz_vousmg y using a quadratic costz) : R™ — R™,  .nminication range, i.eB(t) = E(x(t)). This strategy
’ reduces communication burden but cannot guarantee con-
cu(u) = 7||ul|? vergence of all agents to a common location. In [8] it was
shown that the agents communication topology needs to form
wherer € R*. The goal is to obtain a (possibly time-a fully connected graph within an arbitrary large but finite

ith limited communication requirements. These sets of
oblems are rather difficult and often lead to combinatoria

varying) feedback control time interval in order for the agents to converge to a common
location with probability one. In other words this meansttha
u(t) = K(t)y(t) (4) there must exist a time interval € N, the union of all

adjacency matrice@E(t)}ijtt must form a fully connected
where K € RY*N  which minimize the expected total costgraph for alli € N, wheret;,; —t; < T. Inspired by this

given by: result, we propose to consider a stochastic communication
topology, i.e. a time-varying control feedbadk(¢) where
1 most of the off-diagonal entries are zeros, if€;;(t) = 0
Jr =E |2"(T)Qz(T)+) (wT(t)Q:c(t)+7“|\u(t)||2) for most of the indexes, j, but on average they are not,
t= i.e. E[K;;(t)] # 0. This is equivalent of saying that the

. . . . ) communication topology forms on average a fully connected
If we substitute Equation (4) into Equation (1), we get theyann Our strategy does not satisfy the condition statég in
closed loop dynamics given by: as there is always a small probability that the communicatio
topology graph is not connected for any arbitrary but finite
time interval T. Instead we will say that the system is

h is the identi . rendezvous-stable in mean square sense if the following
wherel is the identity matrix. condition is satisfied:

Despite its simple formulation, the previous problem is
rather challenging since the communication graph among E[|z;(t) — x;(1)|?] < M, Vt,Vi,j
agents imposes some constraints on the choice of the matyix n . . . -
K(t). In particular if at timet the agentj cannot transmit or someM € RT. The following lemma links this definition

its position to agent, then theij-th entry of the matrixik  ©f rendezvgus-stabl(ljlty to the perfonl”nance cost 5
must be null, i.e.K;;(t) = 0, sincey,(t) is not available _Leémmal A rendezvous control strategy given by

to agenti. This can happen for different reasons such ad'¢ Seduence {K(f)};=, is rendezvous-stabilizing if
unreliable communications links, interference, packdli-co 7J7 < Jmae, VT In particular, the pl’e\{IOIUS.C.OH'dItIOH IS
sion, limited communication range or simply because 0n|§at|sf|ed if the following limit exists and it is finite:
a maximum number of packets can be transmitted per unit . 1 ) T 9
time. Therefore, it is useful to define the adjacency matrix Yoo = TETOO fJT = tLTOO]E["? (O)Qu(t) + rlfu(®)[7]
E € {0,1}V*¥ as follows: 9)
Proof: If LJ7 < Jyae is bounded for alll’ > 0, then
B { 1 if agenti receives packet from agerjt %) each term in the series of Equation (5) must be bounded,
g 0 otherwise and in particular the ternE[2zT(t)Qz(t)] < M for all

a(t+1) = I+ K)z(t) + Ko(t) +w(t)  (6)



t > 0. Now, we want to show thakE[zT (t)Qx(t)] < M  of error distances from all the other agents. Note that this
implies E[|z; (t) — z;(t)|?] < M, for all i, j. Without loss of control feedback is independent of the reference framénen t
generality, we just need to prove it for= 1 andj = 2. second scenario we use the same assumptions of the previous
From the properties of the matrig) in Equation (3) it scenario, but now we assume that no communication is

follows that 27 Qz = ||Lz|[> where L € R™¥D*N and allowed among the agents, i.& = I which gives rise to
ker(L) = <1 >. Let us define the matrik € RV-1*N sych  the following optimization problem:
1 -1 0 ... 0
~ _ ~ . -1
thati = | * ° Lo 01 Since kefl) = <1, M ey 71 D g (xT(t)QiU(t)+7“||u(t)||2)
1 0 o0 .. -1 st z(t+1) = 1+ K(t)z(t) 12)
then there exists a invertible matrix € RV-1>*™-1) sych K(t) = diagk1 (1), - ., kn (1))

that L = SL. Therefore, we haver’Qz = ‘E\,Ll’HQ = Using symmetry arguments it follows that optimal feedback
ISLa|? = [Amaa(S)PIIL2|® = [Amaa(S)P Xo50(21 = gains{K (#)*}7-,! for T — +oc is this scenario are constant
;)% > |Amaz(S)* (@1 — 22)%, where [Ay,q..(S)] > 0 is  and with the following structuré’* = k*I, k* € R, therefore
the largest eigenvalule of theT matrix. Thi% implies that the control feedback can be written as:
]E[(.fl — I2)2} S 72]1‘2[.’1; Ql‘] < ™ (52 — MQ, " N "
which proves the inkfgflég)rl[ of the Iemma.lkéyafjgu‘on (9) follows u=K'z(t) =kv=u = k=
from the fact that each term in the series of Equation (
must converge for the limitimp_, | %JT = J, to exist,
therefore the limit of time average of series is equivalent t
the limit of its terms.

In our framework we quantify information exchange ag,
number of messages received by each agent at any ting

i?efﬁewgégzcgﬂzesﬂg?r?% t? tr;‘haer;g][‘(;rz:rgu?ﬁ(;g!:gg\?jli?:g' rendezvous control strategy where at any time step each agen
J 4 (t), ! receives the current location of otherc {0,1,...,N —1}

analyze performance of rendezvous control as a function Qlstinct agents chosen at random. The control scheme is
the number 9f messages exchanged among agents. To iar feedback with constant gains of its own position and
some more insight about structure of rendezvous contr e relative distance with the other agents:

feedback we study two interesting limiting cases. In thé firs
scenario let us assume that each agent receives messages d

from all other agents, i.eE(t) = 117. Also, we assume wp = —ky; —h > ei;(t)(yi — ;) (13)
there is no input disturbance nor measurement noise, i.e. j=1

v; = wy = 0. Finally, the penalization term, is defined as

N
the sum of the distances between each agents, i.e. wherek,h € R, ¢;; € {0,1}, e;; = 0, and 35, e, j = v.
The non-zerce;;(t)’s correspond to the incoming commu-

NN nication links of agent with the other agents at time step

eTQu =3 Y (ri ;"= Q=2(NI-11") (10) 4 The control feedback is the sum of two terms: the first
i=1j=1 depends only on the origin system and requires no com-
Therefore the optimization problem of Equation (8) becamesgnunication, while the second requires communication but is

) T p ) independent of the origin system. Therefore, by approgisiat

M ey 71 D g (f () Qu(t)+r[u(®)]| ) (11) choosingk andh, it is possible to place more weight on one

st. x(t+1)= 1+ K(t))x(t) term or the other. More compactly, this control scheme can
be written as:

%hich means that the optimal input for each agent is a linear
feedback on its own position with respect to the reference
frame.

Based on these two scenarios and the discussion regarding
e randomized communication topology with limited num-
&r of communication messages per uniti time, we propose a

which is the classid.) optimal control problem. It is well

known that the ?ptimarl]l feedba((:gk gair{s[l((t)*}fgl1 for ut) = (hE®)— (k+vh))y(t)
T — +oo, i.e. infinite horizon LQ control, are static, i.e. . B
K*(t) = K*, and K* can be obtained from the solution of = (AE() = (k+vh)D) (2() +0() - (14)
the following algebraic Ricatti equation: where E(t) ~ U(E), i.e. the matrixE is uniformly sampled
P = P+Q-P(P+r)"'P, P>0 from set of matrice€ defined as follows:
K* = —P(P+r)7! E={Ec{0,1}V*V|E1=01,E, =0},
?ﬁtgvrv ?r?;?t;e simple matrix manipulations it is possible tOlt is important to remark that despite it is not possible to

o T prove that the randomized control strategy is the optimal
K* = h*(NI-11") . . . .
among all possible strategies having constraints on the max
whereh* € R. The feedback control given by Equation (4)imum number of messages exchanged among agents, in the

can be written as: two extreme scenarios for = 0 or v = N — 1 with
N no disturbances, the previous control strategy does gee th
w=h*(NT-11")a(t) = u; = b _(z; — ;). optimal solution.
=1 Before continuing let us define the matriddsandII; as
follows:

This means that the optimal control of each agent when A 1., Al o
full communication is available is proportional to the sum I=1-117, I =511 (15)



which have the following properties:

O=0">0, O, =07>0, I=02 T, =112
O+1I, =1, IO, =1, =0
(16)
According to the previous definition the matiix as defined
in Equation (10) can be written as

Q = 2NTI

It is also possible to show that the matri(¢) uniformly
randomly chosen from the séf, satisfies the following
properties:

E[E()] = v, — 510
E[ET(HE®)] = v+ 40
EETOEW] = v(1-v i) T (17)
]

E[ET(HIL, E(t) V200, 4 YWl

Without loss of generality we rescale the cdgtas follows:

Jr=E

(L) + Y (mT(t)Hx(t)+r|u(t)|2)]

where the parameterc [0, +00) tunes the tradeoff between

small agents relative distances $mall) and small input
control effort ¢ large).
We can now compute explicitly the cost functidia(k, h)

where we use®[w] T, w;] = o2, E[w] Tlw;] = (N—1)0?,
and similarly for v;, and the coefficientd,,...,bs) are
functions of the number of agent§ and the number of

received messages

by = Nv2w (141) (N—1)2

(N-1)*
by = xoy
b = Xt
by = 7”%?{1)

We interested now in computing the averaged expected
cost for the infinite horizon scenario for fixed gaiksh
which can be computed as described in the following lemma:

Lemma 2: Consider the sequencés; }%_, and {s; }%_,
defined by Equations (19)-(21) for fixed gaif¥s, k). If the
limits:

1

. 1
lim sy = s

— 400

lim s = Seo,
T—+o00

exist and are finite, then they are non-negative and we have:

Joo = limp_, o %JT = ag(h, k)soo+ar(k)st +ag(h, k)
Soo = a1(h, k)Soo + az(h)st + as(h, k)
st =aq(k)sL + as(k)

Proof: For fixed (h, k) then the sequences;}?_
and {s;-}?_,. are monotonically non-decreasing with non-
negative initial conditions, therefore if the limits exigten
they must be non-negative. From the definition of cost-to-

using the standard dynamic programming approach based@@ function V,(z) we have thatly = Jr, therefore from

the cost-to-go functio;(z) recursively defined as follows:

VT ({L‘T) E[l’%ﬂl’T | QZT]

‘/t(xt)

where we used; = z(t) to simplify notation. We claim that
the cost-to-go function can be written as:

Vi(zy) = stE[xtTth | z:] + stLE[xtTHJ_xt |z:] +d: (18)

wheres;, s;- andd; are appropiate positive scalars. The clai
is clearly true fort = T, wheresr = 1, s = 0 anddr =
0. We can prove our claim for all other time stepsy
induction. Let us suppose that the claim is true for 1,
then we want to show that the claim is true also for titne

> >

Elaf Ty + 7| |uel |* + Vigr (we41) | 2]

Equations (18) and (22) we have:
TJr= % (SO]E[;UOTHQJO] + s(J;IE[xgjl'Ion])nL
4 X1 (as(h k)si+az(R)st+as(h, k) )

If we take the limit forT — oo the first two terms in
the previous expression disappear regardless of thelinitia
positions of the agents,, while the average of the series
converges to the limit of the terms inside its parenthesis,
hich proves the lemma. |

IIl. OPTIMAL CONTROL DESIGN. THE GPS+IKE
SCENARIO

From the previous section we can now formulate the opti-

After some tedious but straightforward calculations igna| control under the proposed randomized control strategy
possible to show that the claim is verified where the scalg{s the following optimization problem:

s¢, 53 anddy can be obtained iteratively far=T.,...,0 as
follows:

st 1, ss=0, dpr=0 (19)
st = ai(h,k)siy1 + a2(h)8tl+1 +az(h, k) (20)
st = as(k)siyy + as(k) (21)

dy dis1 +ag(h, k)sea +az(k)siy +as(h, k) (22)

where the coefficientga,, ..
functions of the gaing, h:
al(h, k) = b1h2+ QbQ(k_l)h + (k‘—l)2
ag(h) = b3h2, a4(k) = (1 - k‘)2, a5(k) = 7‘/412
(13(h, k‘) =14r (b4h2 + 2bokh + k‘2)
o(h k) = (N—l)(agﬂ—g (b1h2+2b2kh+k2))
(k) =
(

.,ag) are positive guadratic

IS

7(k) = 02 + o2k?
hk) = ro? (k:2

Q

asg

(V1) (bah® + 26k + 2))

ming p,  Joo(k,h,v, N) = %(aﬁ(mk)s—l—m(k)sj-—l—
+a8(h7 k))

s = ay(h, k)s+az(h)st+asz(h, k), s>0
st =ay(k)st +as(k), st>0

s.t.

(23)

where we used with a little abuse of notatisn= s., and
st = sL. The J(k, h,v, N) represent the expected cost
per agent for fixed gainsk, h. This optimization problem is
highly non-linear and cannot be solved analytically. How-
ever, numerical solution can be obtained by adding lagrange
multipliers to remove constants and then applying gradient
descent as proposed in [12].

Although the previous optimization problem cannot be
solved in closed form, some interesting analytical restats
be deduced and are summarized in the following theorem.

Theorem 1. Let us consider the total cost
Joo(k,h,v,N) as defined in Eqgn. (23), the optimal



gains(k;, hy) = argmin, ;, Jw (k, h, v, N) and the minimum  where C (h,v, N) = J(0,h,v, N) is the expected cost

costJX (v, N) = argmin, ;, Jo(k, h,v, N'). Define also: per agent in the GPS-free scenario. Although, it is possible
' to numerically compute the minimum cost and the optimal

J5 = min Jo (k) = o2 (1 +rk?) + 02k2(1 + 2kr) gain for the previous problem, there are few analyticalltesu
T ke(0,2) k(2 — k) that be obtained and summarized in the following theorem:

) S _ Theorem2: Let us consider the total cost
and the corresponding minimizef,, = argmin.c . Jm(x),  C.(h,v,N) as defined in Eqn. (24), the optimal

then we have: gain hy =argmin,Cx(h,v, N) and the minimum cost
@ JLw,N)>J (v+1,N) C% (v, N) = argmin,C (h, v, N). Define also:
(b) ki =0,h} =" forv=N-1 2 (1 Dr2) 4+ 02k2(149
© JR(N-1LN) = X Culrp) = PO Houn (1)
d)  JE(N) < Ju(kh, 0.0, N) < J& kv (2= (v+1)k)
(€) limy.oo (v, N)=J5, Vv o Cn(v) = min (2 ) Cn(s,v) and the corresponding
In the interest of space, the proof is omitted and it will b vl

. ; ; ) Cninimizer x* = argmin hen we have:
included in a forthcoming technical report. Let us analyze ek, =219 '@G(Ovﬁ)cm(ﬁ’y)' then we have:

the different claims of the theorem. Claim (a) states that (@) C3 (v, N) > C5 (v+1,N)

the performance in terms of expected minimum cost per (b) limy_. Ci(v,N)=C . (v), Vv

agent improves if more messages are exchanged betweefic) C;,(v) > Cy (v+1)

agents at any time step, as one would expect. The secondc)  lim, .o C;,(v) = J;,

claim (b) implies that when every agent receives the positioClaim (a) states that performance increases as more message
from all other agents at any time step, then the optimaire exchanged among agents, as we would expect. The
rendezvous strategy is to apply no feedback on the origecond claim (b) it is rather important as it indicates tfut,
position, i.e.k} = 0, and to move towards the instantaneoudarge number of agentd/, the performance is independent
center of mass, as suggested in the introduction. Moreaver ¢f the number agents, and depends only on the number of
the full communication graph scenario claim (c) states th&xchanged messages This is quite remarkable because
the minimum achievable average cost per agent convergesitamplies that by randomly switching the communication

a constant valug/}, that can be computed explicitly as thetopology the performance scales nicely with the number of
number of agent increases. Claim (d) instead says that in thgents. This is in sharp contrast with fixed communication
absence of communication, i.e; = 0, and feedback gain topologies, such as the cyclic topology, where performance
relative to the origink; = «,, then the average cost perdegrades rapidly with the number of agents [9].

agent is always bounded bjf, regardless of the number of It is interesting to consider the case where the objective
agents. Finally, claim (e) combines the previous two claimis only to minimize relative distances of agents where no
showing that the performance difference between the fuflenalization in placed on the input, i.e.= 0, and there
communication graph scenario and the no communicatidh N0 measurement noise, i€, = 0. In this case we get
scenario disappears as the number of agents increases. thig C;, = 2w+ and K = % It is clear how the

is quite a surprising result as it states that it is basicallgost decreases as the number of messages increases, and the
useless to communicate as the same performance canfbedback gain decreases a number of messages exchanged.
obtained by doing a simple feedback on the agent's own

position relative to the origin system. However, a cargfull V. NUMERICAL EXAMPLES

inspection of the problem formulation indicates that irlitga In this section we illustrate the optimal controller design
there is an important prior information that all agents sharand performance computed as described in the previous
which is the measurement of their positions with respect teections. We consider a systems with measurement noise and
a common coordinate system. We call this scenario "GP$aput disturbance covarianeg’ = o2 = 1.

like”. There are many applications where agents can only As proved in Theorem 1, Figure 1 shows that the per-
rely on relative position estimation given by on-board sess formance gain given by full communication connectivitg i.

like cameras or range finders. This scenario is analyzed in= N —1 relative to the scenario where no exchange of

the next session. information is available, i.ex = 0, decreases as the number
of agents increases, but it becomes "flat”/dsncreases.
IV. OPTIMAL CONTROL DESIGN. THE GPSFREE Figure 2 show the average cost for the GPS-like and the
SCENARIO GPS-free scenarios fav = 20 vehicles. When full com-

In this section, we consider the scenario where agents hajinication is available the performance of under GPS-like
and GPS-free scenarios coincide. However, as the number of

no direct information about their own position relative to ved d in the GPS-f 0 th
some fixed frame, as it would be in the case in the presenfgc€Ved messagesdecreases, in the -free scenario the
rformance degrades considerably.

of GPS-like sensors onboard of agents. They can only hat&
relative distance information. This scenario correspotwds VI. CONCLUSIONS
settingk = 0 in the Eqn. (13), which leads an optimization
problem similar to the one given in Eqn. (23), where we jus&v
have to to substitute- = 0 andk = 0:

miny, O(h, v, N) = % (a6(h, O)S—‘r&g(h, O))
s.t.  s=ai(h,0)s+as(h,0), s>0

In this paper we studied the trade off with respect to
erage agents’s relative distance, energy consumptidn an
number of information exchanged for a simple model of
rendezvous of mobile vehicles. We approached the problem

(24) considering a randomized communication scheme where the
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domized communication schemes are easy to implement and
have high performance. To be fair, however, it is important
to remark that purely randomized schemes might not be
possible in practice. In fact, communication among agents
can be established only if they are sufficiently close to
each other. For example, in [8] authors considered disk-
communication, i.e. agents could communicate only if withi
a certain distance. A more realist model would be to consider
a probabilistic communication model where the probability
of successfully exchange a packet depends on the distance.
This work is a preliminary attempt to understand the perfor-
mance of randomized communication topologies, and many
open guestions remain.

Finally, there many similarities that the rendezvous prob-
lem has with the consensus agreement problem [13], there-
fore randomized communication topologies might be proven

very effective also in that framework.

Fig. 1. Average performance cost per vehicles versus the normalized
number of messages received by each agefits for different number of

agentsN. 1]
r=1, N=20
34 ; — [2]
—4— GPS-free
GPS
z 3.2 . .
8 K]
o 3 1
[} \
% \
> 28 ! 1 [4]
8_ \
— *
§ 2.6F N 1
o ‘. [5]
? 241 . 1
g S
A
< L .- ]
22 | [6]
0 01 02 03 04 05 06 07 08 09 1
Normalized number of messages v/(N-1) [7]
Fig. 2. Average performance cost per vehicles versus the normalized (8]
number of messages received by each agefits for GPS-like and GPS-
free scenarios.
(9]

number of messages exchanged by each vehicle per Uil
time was fixed and we formulated the control problem
as a stochastic linear quadratic optimization problem. Wé1l
showed how increasing information exchange can improve
performance, as one would expect. However, we also showpd]
that if all agents have access to their own position such as
in a GPS-like scenario, then the performance degradation is
rather limited when a large number of agents is considerep3]
Differently, when agents can only measure relative distanc
with other agents, i.e. in a GPS-free scenario, the degoadat

of performance is substantial.

Another important observation is that randomized com-
munication schemes result in a fast information distrifouti
among all agents and thus increasing performance. In other
words, it seems that fixed or symmetric communication
schemes might hamper performance, unless they are properly
designed based on vehicles topology [9]. Differently, ran-
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