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Abstract— In this paper we analyze randomized coordination
control strategies for the rendezvous problem of multiple
agents subject to input and measurement disturbances. The
performance of these control strategies is measured in terms
of three important metrics: average relative agents’ distance,
average input energy consumption, and number of packets
per unit time that each agent can receive from the other
agents. By adopting an LQ-like optimal control approach, we
show how to numerically compute optimal feedback gains for
randomized communication topologies. In particular we show
that there is a trade off between these three metrics and that the
optimal feedback is a sum of two terms: one that depends only
the agents own positions and the other that depends only on
relative distances between agents. We also show that randomly
switching communication links allows for greater performance
as compare to fixed communication topologies.

I. I NTRODUCTION

The need for coordination of multiple mobile vehicles
appears in many applications such as search-and-rescue mis-
sions and pursuit evasion games [1][2][3][4]. Coordination
among vehicles requires exchange of information between
them. However, the amount of information that can be
exchanged is limited by many factors such as channel band-
width, radio antenna power, interference, and it is therefore
desirable to devise coordination strategies that require the
transmission of a limited number of messages among the
agents [5][6][7]. However, limiting information exchange
among agents negatively impacts the performance of the
vehicles as a group in terms of other metrics such as energy
consumption and time required to accomplish a task. The
goal of this paper is to analyze the trade offs between
these aspects within the framework of rendezvous control,
i.e. convergence of all agents to a common location not
necessarily specified.

Recent work has shown that the performance of ren-
dezvous control is strongly dependent on the specific com-
munication topology among the agents [8]. In particular,
there has been a particular effort in estimating performance
for specific fixed topology classes that exploit symmetries
[9]. Most of previous work has been based on fixed com-
munication topologies [10] or distance-dependent determin-
istic topologies [11]. In this paper we assume that each
agent has a GPS-like sensor which provides its position
with respect to some absolute coordinate frame. Also we
consider a time-varying random communication topology,
where every agent exchange messages with a small set of
other agents that is selected at random among all agents. The
rationale behind this communication scheme is that random
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selection allows agents to communicate with all other agents
over time even if at any time step they can communicate
only with a small number, thereforeon average the agents
communication graph is fully connected. This paper builds
upon a previous paper [12] where it was shown that the
total cost can be written as the sum of two terms which
depend only on the initial agents’ positions, under an LQ
optimal control formulation of the penalty cost. In particular,
one term depends on the relative distances and the other
that depends on the center of mass of agents with respect
to absolute coordinate system considered. Interestingly,it
was shown that in order to minimize energy expenditure
the agents do not necessarily converge towards their initial
center of mass as one would expect. This is the case only
if every agent communicates with all other agents at any
time step. In general, the optimal gains that minimize the
total cost cause the agents to move towards a point that is
between the instantaneous center of mass and the a-priori
expected position center of mass of all agents. In this paper,
instead, we also include input disturbance and measurement
noise and we reformulate the problem as an LQ stochastic
optimal problem. Differently from [12], here we show that
the optimal gains and the performance do not depend on the
initial agents’ positions, however the optimal input is still
the sum of a feedback on each agent’s position and on the
relative distances with the other agents.

II. PROBLEM FORMULATION

ConsiderN identical agents whose dynamics is described
by a scalar linear discrete time integrator:

xi(t + 1) = xi(t) + ui(t) + wi, i = 1, . . . , N

wherexi ∈ R represents agent position,ui ∈ R the control
input, andwi ∈ R input disturbance. We assume thatwi are
i.i.d. random variable with a zero-mean gaussian distribution,
i.e. wi ∼ N (0, σ2

w). We assume that each agent has a GPS-
like sensor that provides its own position:

yi = xi + vi

where vi ∈ R represent the measurement noise. Also we
assume thatvi are i.i.d. random variable with a zero-mean
gaussian distribution, i.e.vi ∼ N (0, σ2

v), and independent of
wi.

More compactly we can descrive the agents dynamics in
vector form as follows:

x(t + 1) = x(t) + u(t) + w(t) (1)

y(t) = x(t) + v(t) (2)

where x = (x1, x2, . . . , xN )T , u = (u1, u2, . . . , uN )T ,
w = (w1, w2, . . . , wN )T , y = (y1, y2, . . . , yN )T , and v =
(v1, v2, . . . , vN )T . We also assume that the agents can trans-
mit their current position to some other agents, independently



of their relative distance, i.e. we assume they have infinite
power antennas. This last assumption is rather unrealistic, but
will allow us to derive close form solutions for the agents
performance. We will come back to this assumption in the
Conclusions section. The objective of rendezvous control is
to devise a coordination scheme that forces the agents to
converge to a common location, or, equivalently, that forces
the relative distances among all agents to be null. A natural
way to enforce this objective is to penalize relative distances
among agents using a quadratic costcx(x) : R

N → R
+

defined as follows:

cx(x) = xT Qx, Q ≥ 0, Qx = 0 ⇔ x = α1 (3)

where1 = (1, 1, . . . , 1)T ∈ R
N andα ∈ R. The requirement

that the vector1 is the unique eigenvector ofQ relative to the
zero-eigenvalue, is equivalent of saying thatxT Qx = 0 ⇐⇒
(xi −xj) = 0∀(i, j) thus implying that the costc(x) is null
if and only if the agents are in the same location. Note that
this definition does not forces the agents to stay in a fixed
location, as the cost would be null even ifx(t) = α(t)1. This
definition is rather important as it allows independent design
of trajectory following control and rendezvous control. We
also want to penalize the total agents input effort in achieving
rendezvousing by using a quadratic costcu(x) : R

N → R
+,

where:

cu(u) = r||u||2

where r ∈ R
+. The goal is to obtain a (possibly time-

varying) feedback control

u(t) = K(t)y(t) (4)

whereK ∈ R
N×N , which minimize the expected total cost

given by:

JT = E

[
xT (T )Qx(T )+

T−1∑

t=0

(
xT (t)Qx(t)+r||u(t)||2

)]

(5)
If we substitute Equation (4) into Equation (1), we get the
closed loop dynamics given by:

x(t + 1) = (I + K(t))x(t) + K(t)v(t) + w(t) (6)

whereI is the identity matrix.
Despite its simple formulation, the previous problem is

rather challenging since the communication graph among
agents imposes some constraints on the choice of the matrix
K(t). In particular if at timet the agentj cannot transmit
its position to agenti, then theij-th entry of the matrixK
must be null, i.e.Kij(t) = 0, sinceyj(t) is not available
to agenti. This can happen for different reasons such as
unreliable communications links, interference, packet colli-
sion, limited communication range or simply because only
a maximum number of packets can be transmitted per unit
time. Therefore, it is useful to define the adjacency matrix
E ∈ {0, 1}N×N as follows:

Eij =

{
1 if agent i receives packet from agentj
0 otherwise (7)

The rendezvous control problem can be summarized as
follows:

min{K(t)}T−1

t=1

JT

s.t. x(t + 1) = (I + K(t))x(t) + K(t)v(t) + w(t)
Kij(t) = 0 if Eij(x(t), t) = 0

(8)
The second constraint makes the problem highly non-convex
and time-varying in general. Note also that under the previ-
ous formulation the communication graph is directed, i.e. it
is possible that nodej can transmit its position to nodei but
not viceversa. Solving the previous problem in full generality
is hopeless. Most of recent work on rendezvous control has
concentrated on optimizing the rate of convergence with
fixed communication topologiesK(x, t) = K where most
of the off diagonal entries are null [10][9]. In particular,the
goal was to analytically determine the rate of convergence
based on some a priory constrains on the structure ofK
and to optimally design classes of communication topologies
with limited communication requirements. These sets of
problems are rather difficult and often lead to combinatorial
optimization problems. Differently, in [11] the authors con-
sidered a the feedback matrix dependent on agents location
K(x, t) = K(x); in particular they assumed that the agents
can communicate only with agents which are within a fixed
communication range, i.e.E(t) = E(x(t)). This strategy
reduces communication burden but cannot guarantee con-
vergence of all agents to a common location. In [8] it was
shown that the agents communication topology needs to form
a fully connected graph within an arbitrary large but finite
time interval in order for the agents to converge to a common
location with probability one. In other words this means that
there must exist a time intervalT ∈ N, the union of all
adjacency matrices{E(t)}

ti+1

t=ti
must form a fully connected

graph for all i ∈ N, whereti+1 − ti ≤ T . Inspired by this
result, we propose to consider a stochastic communication
topology, i.e. a time-varying control feedbackK(t) where
most of the off-diagonal entries are zeros, i.e.Kij(t) = 0
for most of the indexesi, j, but on average they are not,
i.e. E[Kij(t)] 6= 0. This is equivalent of saying that the
communication topology forms on average a fully connected
graph. Our strategy does not satisfy the condition stated in[8]
as there is always a small probability that the communication
topology graph is not connected for any arbitrary but finite
time interval T . Instead we will say that the system is
rendezvous-stable in mean square sense if the following
condition is satisfied:

E[|xi(t) − xj(t)|
2] ≤ M, ∀t,∀i, j

for someM ∈ R
+. The following lemma links this definition

of rendezvous-stability to the performance costJT .
Lemma 1: A rendezvous control strategy given by

the sequence {K(t)}∞t=0 is rendezvous-stabilizing if
1
T

JT ≤ Jmax,∀T . In particular, the previous condition is
satisfied if the following limit exists and it is finite:

J∞ = lim
T→+∞

1

T
JT = lim

t→+∞
E[xT (t)Qx(t) + r||u(t)||2]

(9)
Proof: If 1

T
JT ≤ Jmax is bounded for allT ≥ 0, then

each term in the series of Equation (5) must be bounded,
and in particular the termE[xT (t)Qx(t)] < M for all



t ≥ 0. Now, we want to show thatE[xT (t)Qx(t)] < M
impliesE[|xi(t)−xj(t)|

2] ≤ M2 for all i, j. Without loss of
generality, we just need to prove it fori = 1 and j = 2.
From the properties of the matrixQ in Equation (3) it
follows that xT Qx = ||Lx||2 where L ∈ R

(N−1)×N and
ker(L) =<1>. Let us define the matrix̃L ∈ R

(N−1)×N such

that eL =

264 1 −1 0 . . . 0

1 0 −1 . . . 0

. . . . . . .

1 0 0 . . . −1

375. Since ker(L̃) =<1>,

then there exists a invertible matrixS ∈ R
(N−1)×(N−1) such

that L = SL̃. Therefore, we havexT Qx = ||Lx||2 =
||SL̃x||2 ≥ |λmax(S)|2||L̃x||2 = |λmax(S)|2

∑N

j=2(x1 −
xj)

2 ≥ |λmax(S)|2(x1 − x2)
2, where |λmax(S)| > 0 is

the largest eigenvalue of the matrixS. This implies that
E[(x1 − x2)

2] ≤ 1
|λmax(S)|2 E[xT Qx] < M

|λmax(S)|2 = M2,
which proves the first part of the lemma. Equation (9) follows
from the fact that each term in the series of Equation (5)
must converge for the limitlimT→+∞

1
T

JT = J∞ to exist,
therefore the limit of time average of series is equivalent to
the limit of its terms.

In our framework we quantify information exchange as
number of messages received by each agent at any time
step, which corresponds to the non-zero off-diagonal entries
of the adjacency matrixE(t), therefore our objective is to
analyze performance of rendezvous control as a function of
the number of messages exchanged among agents. To get
some more insight about structure of rendezvous control
feedback we study two interesting limiting cases. In the first
scenario let us assume that each agent receives messages
from all other agents, i.e.E(t) = 11

T . Also, we assume
there is no input disturbance nor measurement noise, i.e.
vt = wt = 0. Finally, the penalization termcx is defined as
the sum of the distances between each agents, i.e.

xT Qx =

N∑

i=1

N∑

j=1

(xi − xj)
2 ⇒ Q = 2(NI − 11T ) (10)

Therefore the optimization problem of Equation (8) becomes:

min{K(t)}T−1

t=1

∑T−1
t=0

(
xT (t)Qx(t)+r||u(t)||2

)

s.t. x(t + 1) = (I + K(t))x(t)
(11)

which is the classicLQ optimal control problem. It is well
known that the optimal feedback gains{K(t)∗}T−1

t=1 for
T → +∞, i.e. infinite horizon LQ control, are static, i.e.
K∗(t) = K∗, andK∗ can be obtained from the solution of
the following algebraic Ricatti equation:

P = P + Q − P (P + rI)−1P, P ≥ 0
K∗ = −P (P + rI)−1

After some simple matrix manipulations it is possible to
show that:

K∗ = h∗(NI − 11T )

whereh∗ ∈ R. The feedback control given by Equation (4)
can be written as:

u = h∗(NI − 11T )x(t) =⇒ ui = h∗
N∑

j=1

(xi − xj).

This means that the optimal control of each agent when
full communication is available is proportional to the sum

of error distances from all the other agents. Note that this
control feedback is independent of the reference frame. In the
second scenario we use the same assumptions of the previous
scenario, but now we assume that no communication is
allowed among the agents, i.e.E = I which gives rise to
the following optimization problem:

min{K(t)}T−1

t=1

∑T−1
t=0

(
xT (t)Qx(t)+r||u(t)||2

)

s.t. x(t + 1) = (I + K(t))x(t)
K(t) = diag(k1(t), . . . , kN (t))

(12)

Using symmetry arguments it follows that optimal feedback
gains{K(t)∗}T−1

t=1 for T → +∞ is this scenario are constant
and with the following structureK∗ = k∗

I, k∗ ∈ R, therefore
the control feedback can be written as:

u = K∗x(t) = k∗x =⇒ ui = k∗xi

which means that the optimal input for each agent is a linear
feedback on its own position with respect to the reference
frame.

Based on these two scenarios and the discussion regarding
the randomized communication topology with limited num-
ber of communication messages per uniti time, we propose a
rendezvous control strategy where at any time step each agent
receives the current location of otherν ∈ {0, 1, . . . , N − 1}
distinct agents chosen at random. The control scheme is
linear feedback with constant gains of its own position and
the relative distance with the other agents:

ui = −kyi − h

ν∑

j=1

eij(t)(yi − yj) (13)

wherek, h ∈ R, eij ∈ {0, 1}, eii = 0, and
∑N

j=1 ei,j = ν.
The non-zeroeij(t)’s correspond to the incoming commu-
nication links of agenti with the other agents at time step
t. The control feedback is the sum of two terms: the first
depends only on the origin system and requires no com-
munication, while the second requires communication but is
independent of the origin system. Therefore, by appropriately
choosingk andh, it is possible to place more weight on one
term or the other. More compactly, this control scheme can
be written as:

u(t) =
(
hE(t) − (k + νh)I

)
y(t)

=
(
hE(t) − (k + νh)I

)(
x(t) + v(t)

)
(14)

whereE(t) ∼ U(E), i.e. the matrixE is uniformly sampled
from set of matricesE defined as follows:

E = {E ∈ {0, 1}N×N |E1 = ν1, Ei,i = 0}.

It is important to remark that despite it is not possible to
prove that the randomized control strategy is the optimal
among all possible strategies having constraints on the max-
imum number of messages exchanged among agents, in the
two extreme scenarios forν = 0 or ν = N − 1 with
no disturbances, the previous control strategy does give the
optimal solution.

Before continuing let us define the matricesΠ andΠ⊥ as
follows:

Π
∆
= I −

1

N
11

T , Π⊥
∆
=

1

N
11

T (15)



which have the following properties:

Π = ΠT ≥ 0, Π⊥ = ΠT
⊥ ≥ 0, Π = Π2, Π⊥ = Π2

⊥
Π + Π⊥ = I, ΠΠ⊥ = Π⊥ Π = 0

(16)
According to the previous definition the matrixQ as defined
in Equation (10) can be written as

Q = 2NΠ

It is also possible to show that the matrixE(t) uniformly
randomly chosen from the setE, satisfies the following
properties:

E[E(t)] = νΠ⊥ − ν
N−1Π

E[ET (t)E(t)] = ν2Π⊥ + ν(N−ν)
N−1 Π

E[ET (t)ΠE(t)] = ν
(
1 − ν N−2

(N−1)2

)
Π

E[ET (t)Π⊥E(t)] = ν2Π⊥ + ν(N−ν−1)
N−1 Π

(17)

Without loss of generality we rescale the costJT as follows:

JT = E

[
xT (T )Πx(T )+

T−1∑

t=0

(
xT (t)Πx(t)+r||u(t)||2

)]

where the parameterr ∈ [0,+∞) tunes the tradeoff between
small agents relative distances (r small) and small input
control effort (r large).

We can now compute explicitly the cost functionJT (k, h)
using the standard dynamic programming approach based on
the cost-to-go functionVt(x) recursively defined as follows:

VT (xT )
∆
= E[xT

T ΠxT |xT ]

Vt(xt)
∆
= E[xT

t Πxt + r||ut||
2 + Vt+1(xt+1) |xt]

where we usedxt = x(t) to simplify notation. We claim that
the cost-to-go function can be written as:

Vt(xt) = stE[xT
t Πxt |xt] + s⊥t E[xT

t Π⊥xt |xt] + dt (18)

wherest, s
⊥
t anddt are appropiate positive scalars. The claim

is clearly true fort = T , wheresT = 1, s⊥T = 0 anddT =
0. We can prove our claim for all other time stepst by
induction. Let us suppose that the claim is true fort + 1,
then we want to show that the claim is true also for timet.

After some tedious but straightforward calculations is
possible to show that the claim is verified where the scalar
st, s

⊥
t anddk can be obtained iteratively fort = T, . . . , 0 as

follows:

sT = 1, s⊥T = 0, dT = 0 (19)

st = a1(h, k)st+1 + a2(h)s⊥t+1 + a3(h, k) (20)

s⊥t = a4(k)s⊥t+1 + a5(k) (21)

dt = dt+1+a6(h, k)st+1+a7(k)s⊥t+1+a8(h, k) (22)

where the coefficients(a1, . . . , a8) are positive quadratic
functions of the gainsk, h:

a1(h, k) = b1h
2+ 2b2(k−1)h + (k−1)2

a2(h) = b3h
2, a4(k) = (1 − k)2, a5(k) = rk2

a3(h, k) = 1 + r
(
b4h

2 + 2b2kh + k2
)

a6(h, k) = (N−1)
(
σ2

w+σ2
v

(
b1h

2+2b2kh+k2
))

a7(k) = σ2
w + σ2

vk2

a8(h, k) = rσ2
v

(
k2 + (N−1)

(
b4h

2 + 2b2kh + k2
))

where we usedE[wT
t Π⊥wt] = σ2

w, E[wT
t Πwt] = (N−1)σ2

w

and similarly for vt, and the coefficient(b1, . . . , b4) are
functions of the number of agentsN and the number of
received messagesν:

b1 = Nν2+ν(ν+1)(N−1)2

(N−1)2

b2 = νN
N−1

b3 = ν(N−ν−1)
N−1

b4 = νN(ν+1)
N−1

We interested now in computing the averaged expected
cost for the infinite horizon scenario for fixed gainsk, h
which can be computed as described in the following lemma:

Lemma 2: Consider the sequences{st}
0
t=T and{s⊥t }

0
t=T

defined by Equations (19)-(21) for fixed gains(h, k). If the
limits:

lim
T→+∞

s0 = s∞, lim
T→+∞

s⊥0 = s⊥∞

exist and are finite, then they are non-negative and we have:

J∞ = limT→∞
1
T

JT = a6(h, k)s∞+a7(k)s⊥∞+a8(h, k)
s∞ = a1(h, k)s∞ + a2(h)s⊥∞ + a3(h, k)
s⊥∞ = a4(k)s⊥∞ + a5(k)

Proof: For fixed (h, k) then the sequences{st}
0
t=T

and {s⊥t }
0
t=T are monotonically non-decreasing with non-

negative initial conditions, therefore if the limits existthen
they must be non-negative. From the definition of cost-to-
go function Vt(x) we have thatV0 = JT , therefore from
Equations (18) and (22) we have:

1
T

JT = 1
T

(
s0E[xT

0 Πx0] + s⊥0 E[xT
0 Π⊥x0]

)
+

+ 1
T

∑T−1
t=0

(
a6(h, k)st+a7(k)s⊥t +a8(h, k)

)

If we take the limit for T → ∞ the first two terms in
the previous expression disappear regardless of the initial
positions of the agentsx0, while the average of the series
converges to the limit of the terms inside its parenthesis,
which proves the lemma.

III. O PTIMAL CONTROL DESIGN: THE GPS-LIKE

SCENARIO

From the previous section we can now formulate the opti-
mal control under the proposed randomized control strategy
as the following optimization problem:

mink,h J∞(k, h, ν,N) = 1
N

(
a6(h, k)s+a7(k)s⊥+

+a8(h, k)
)

s.t. s = a1(h, k)s+a2(h)s⊥+a3(h, k), s>0
s⊥ = a4(k)s⊥ + a5(k), s⊥> 0

(23)
where we used with a little abuse of notations = s∞ and
s⊥ = s⊥∞. The J∞(k, h, ν,N) represent the expected cost
per agent for fixed gainsk, h. This optimization problem is
highly non-linear and cannot be solved analytically. How-
ever, numerical solution can be obtained by adding lagrange
multipliers to remove constants and then applying gradient
descent as proposed in [12].

Although the previous optimization problem cannot be
solved in closed form, some interesting analytical resultscan
be deduced and are summarized in the following theorem.

Theorem 1: Let us consider the total cost
J∞(k, h, ν,N) as defined in Eqn. (23), the optimal



gains(k∗
ν , h∗

ν) = argmink,hJ∞(k, h, ν,N) and the minimum
costJ∗

∞(ν,N) = argmink,hJ∞(k, h, ν,N). Define also:

J∗
m = min

κ∈(0,2)
Jm(κ) =

σ2
w(1 + rκ2) + σ2

vκ2(1 + 2κr)

κ(2 − κ)

and the corresponding minimizerκ∗
m = argminκ∈(0,2)Jm(κ),

then we have:

(a) J∗
∞(ν,N) ≥ J∗

∞(ν + 1, N)

(b) k∗
ν = 0, h∗

ν =
κ∗

m

N
for ν = N−1

(c) J∗
∞(N−1, N) = N−1

N
J∗

m

(d) J∗
∞(ν,N) ≤ J∞(κ∗

m, 0, ν,N) ≤ J∗
m

(e) limN→∞ J∗
∞(ν,N) = J∗

m, ∀ν

In the interest of space, the proof is omitted and it will be
included in a forthcoming technical report. Let us analyze
the different claims of the theorem. Claim (a) states that
the performance in terms of expected minimum cost per
agent improves if more messages are exchanged between
agents at any time step, as one would expect. The second
claim (b) implies that when every agent receives the position
from all other agents at any time step, then the optimal
rendezvous strategy is to apply no feedback on the origin
position, i.e.k∗

ν = 0, and to move towards the instantaneous
center of mass, as suggested in the introduction. Moreover in
the full communication graph scenario claim (c) states that
the minimum achievable average cost per agent converges to
a constant valueJ∗

m that can be computed explicitly as the
number of agent increases. Claim (d) instead says that in the
absence of communication, i.e.h∗

ν = 0, and feedback gain
relative to the origink∗

ν = κ∗
m, then the average cost per

agent is always bounded byJ∗
m regardless of the number of

agents. Finally, claim (e) combines the previous two claims
showing that the performance difference between the full
communication graph scenario and the no communication
scenario disappears as the number of agents increases. This
is quite a surprising result as it states that it is basically
useless to communicate as the same performance can be
obtained by doing a simple feedback on the agent’s own
position relative to the origin system. However, a carefully
inspection of the problem formulation indicates that in reality
there is an important prior information that all agents share,
which is the measurement of their positions with respect to
a common coordinate system. We call this scenario ”GPS-
like”. There are many applications where agents can only
rely on relative position estimation given by on-board sensors
like cameras or range finders. This scenario is analyzed in
the next session.

IV. OPTIMAL CONTROL DESIGN: THE GPS-FREE
SCENARIO

In this section, we consider the scenario where agents have
no direct information about their own position relative to
some fixed frame, as it would be in the case in the presence
of GPS-like sensors onboard of agents. They can only have
relative distance information. This scenario correspondsto
settingk = 0 in the Eqn. (13), which leads an optimization
problem similar to the one given in Eqn. (23), where we just
have to to substitutes⊥ = 0 andk = 0:

minh C(h, ν,N) = 1
N

(
a6(h, 0)s+a8(h, 0)

)

s.t. s = a1(h, 0)s+a3(h, 0), s>0
(24)

where C∞(h, ν,N) = J∞(0, h, ν,N) is the expected cost
per agent in the GPS-free scenario. Although, it is possible
to numerically compute the minimum cost and the optimal
gain for the previous problem, there are few analytical results
that be obtained and summarized in the following theorem:

Theorem 2: Let us consider the total cost
C∞(h, ν,N) as defined in Eqn. (24), the optimal
gain h∗

ν = argminhC∞(h, ν,N) and the minimum cost
C∗

∞(ν,N) = argminhC∞(h, ν,N). Define also:

Cm(κ, ν) =
σ2

w

(
1+rν(ν+1)κ2

)
+σ2

vκ2(1+2rνκ)

κν
(
2 − (ν+1)κ

)

C∗
m(ν) = min

κ∈(0, 2
ν−1 )

Cm(κ, ν) and the corresponding

minimizer κ∗
m = argmin

κ∈(0, 2
ν−1 )

Cm(κ, ν). then we have:

(a) C∗
∞(ν,N) ≥ C∗

∞(ν+1, N)
(b) limN→∞ C∗

∞(ν,N) = C∗
m(ν), ∀ν

(c) C∗
m(ν) ≥ C∗

m(ν+1)
(c) limν→∞ C∗

m(ν) = J∗
m

Claim (a) states that performance increases as more messages
are exchanged among agents, as we would expect. The
second claim (b) it is rather important as it indicates that,for
large number of agentsN , the performance is independent
of the number agents, and depends only on the number of
exchanged messagesν. This is quite remarkable because
it implies that by randomly switching the communication
topology the performance scales nicely with the number of
agents. This is in sharp contrast with fixed communication
topologies, such as the cyclic topology, where performance
degrades rapidly with the number of agents [9].

It is interesting to consider the case where the objective
is only to minimize relative distances of agents where no
penalization in placed on the input, i.e.r = 0, and there
is no measurement noise, i.e.σv = 0. In this case we get
that C∗

m =
σ2

w
(ν+1)
ν

and κ∗
m = 1

ν+1 . It is clear how the
cost decreases as the number of messages increases, and the
feedback gain decreases a number of messages exchanged.

V. NUMERICAL EXAMPLES

In this section we illustrate the optimal controller design
and performance computed as described in the previous
sections. We consider a systems with measurement noise and
input disturbance covarianceσ2

v = σ2
w = 1.

As proved in Theorem 1, Figure 1 shows that the per-
formance gain given by full communication connectivity, i.e
ν = N −1 relative to the scenario where no exchange of
information is available, i.e.ν = 0, decreases as the number
of agents increases, but it becomes ”flat” asN increases.

Figure 2 show the average cost for the GPS-like and the
GPS-free scenarios forN = 20 vehicles. When full com-
munication is available the performance of under GPS-like
and GPS-free scenarios coincide. However, as the number of
received messagesν decreases, in the GPS-free scenario the
performance degrades considerably.

VI. CONCLUSIONS

In this paper we studied the trade off with respect to
average agents’s relative distance, energy consumption and
number of information exchanged for a simple model of
rendezvous of mobile vehicles. We approached the problem
considering a randomized communication scheme where the
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number of messages exchanged by each vehicle per unit
time was fixed and we formulated the control problem
as a stochastic linear quadratic optimization problem. We
showed how increasing information exchange can improve
performance, as one would expect. However, we also showed
that if all agents have access to their own position such as
in a GPS-like scenario, then the performance degradation is
rather limited when a large number of agents is considered.
Differently, when agents can only measure relative distances
with other agents, i.e. in a GPS-free scenario, the degradation
of performance is substantial.

Another important observation is that randomized com-
munication schemes result in a fast information distribution
among all agents and thus increasing performance. In other
words, it seems that fixed or symmetric communication
schemes might hamper performance, unless they are properly
designed based on vehicles topology [9]. Differently, ran-

domized communication schemes are easy to implement and
have high performance. To be fair, however, it is important
to remark that purely randomized schemes might not be
possible in practice. In fact, communication among agents
can be established only if they are sufficiently close to
each other. For example, in [8] authors considered disk-
communication, i.e. agents could communicate only if within
a certain distance. A more realist model would be to consider
a probabilistic communication model where the probability
of successfully exchange a packet depends on the distance.
This work is a preliminary attempt to understand the perfor-
mance of randomized communication topologies, and many
open questions remain.

Finally, there many similarities that the rendezvous prob-
lem has with the consensus agreement problem [13], there-
fore randomized communication topologies might be proven
very effective also in that framework.
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