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Abstract— This paper is concerned with control applications
over lossy data networks. Sensor data is transmitted to an
estimation-control unit over a network, and control commards
are issued to subsystems over the same network. Sensor and
control packets may be randomly lost according to a Bernoull
process. In this context, the discrete-time Linear Quadrdt
Gaussian (LQG) optimal control problem is considered.

It is known that in the scenario described above, and for
protocols for which there is no acknowledgement of succesdf
delivery of control packets (e.g. UDP-like protocols), theLQG
optimal controller is in general nonlinear. However, the sm-
plicity of a linear sub-optimal solution is attractive for sensor
networks. Accordingly, this paper characterizes the bestihear
controller and compares its performance to the case when the
is acknowledgement of delivery of packets.

I. INTRODUCTION ) ) o
Fig. 1. Overview of the system.We study the statistical convergence

Today, an increasing number of applications demands meeperties of the expected state covariance of the distirate LQG control

mote control of plants over unreliable networks. The recefifStem when both the observation and the control sigrasinitied over
an unreliable communication channel, can be lost at eack Step with

development of sensor web technology [1] enables the dev&rl;babmty 1— 7 and1 —  respectively.
opment of wireless sensor networks that can be immediately
used for estimation and control of dynamical systems. In
these systems issues of communication delay, data loss, agdmeret al. [2], we will refer therefore to TCP-like protocols
time-synchronization play critical roles. Communicatiand if packet acknowledgements are available and to UDP-like
control become very tightly coupled and these two issugsotocols otherwise.
cannot be addressed independently. The goal of this paperis The main results of a previous paper of ours [3] are
provide some partial answers to the question of how contmimmarized in Figure 2. We have shown the existence of a
loop performance is affected by communication constraingsitical domain of values for the parameters of the Berroull
and what are the basic system-theoretic implications afgusiarrival processesy and 7, outside which a transition to
unreliable networks for control. This requires a geneadion instability occurs and the optimal controller fails to stile
of classical control techniques that explicitly takes iatmount the system. In particular, we have shown that under TCP-like
the stochastic nature of the communication channel. protocols the critical arrival probabilities for the camitand

In this paper, we consider a generalized formulation abservation channel are independent of each other. This is
Linear Quadratic Gaussian (LQG) optimal control problem bgnother consequence of the fact that the separation piencip
modeling the arrival of both observations and control p&keholds for these protocols. A more involved situation regard
as random processes whose parameters are related toUb@-like protocols. In this case the critical arrival prbbiies
characteristics of the communication channel. Accordinglfor the control and observation channels are coupled. The
two independent Bernoulli processes are considered, wdtability domain and performance of the optimal controller
parametersy and 7, that govern packet losses between thdegrade considerably as compared with TCP-like protols a
sensors and the estimation-control unit, and between ttex lashown in Figure 2.
and the actuation points (see Figure 1). We have also shown that for the TCP-like case the classic

In our analysis, the we distinguish between two classes sdparation principle holds, and consequently the coetrathd
protocols. The distinction resides simply in the availiapibf estimator can be designed independently. Moreover, thie opt
packet acknowledgements. Adopting the framework proposexdl controller is a linear function of the state. In sharptcast,



for the UDP-like case, the optimal controller is in generalontrol design has been investigated in the context of Cross
non-linear. In this case, a natural sub-optimal solutiotiois Layer Design by Liu et al [8]. Other work includes Nilsson
use the optimal static linear gain. This is especially ativa et al. [9][10] who present the LQG optimal regulator with
for sensor networks where simplicity of implementation anbounded delays between sensors and controller, and between
complexity issues are a primary concern. Accordingly, is ththe controller and the actuator. In this work, bounds for
paper we focus on the performance of this UDP controller atik critical probability values are not provided. Additiky,
compare it with the optimal one in the TCP case. there is no analytic solution for the optimal controller.eTh
First, we formulate the problem of finding the optimal lineacase where dropped measurements are replaced by zeros is
controller as a non-convex optimization problem. Then, weonsidered by Hadjicostis and Touri [11], but only in thelaca
write, using Lagrange multipliers, a solution to a necessatcase. Other approaches include using the last receivedesamp
condition for the optimum, and provide some numerical coffier control [10], or designing a dropout compensator [12],
vergence results for the scalar case. Although at presage stwhich combines estimation and control in a single process.
we lack a rigorous proof, there is numerical evidence that odowever, the former approach does not consider optimal
solution is also sufficient for optimality, which is equieat to control and the latter is limited to scalar systems. étual.
state that there is a unique minimum. Even in the scalar cafe3] studied the design of an optimal controller with a sengl
however, an analytic solution appears to be difficult to fingontrol channel and deterministic dropout rates. Sesteal.
as it requires optimization ové?"*?", wheren is the state [14] considered Bernoulli packet losses only between thatpl
space. Further work will be devoted to obtain at least aitalynd the controller and posed the controller design ag/an
bounds. Finally, we show that the performance of the obthineptimization problem. Other authors [15] [16] [17] [18] rmedd
solution is comparable to the one of the optimal controlfer inetworked control systems with missing packets as Markovia
the TCP case, thus validating our strategy of looking for jamp linear systems (MJLSs), however this approach gives

sub-optimal linear UDP controller. suboptimal controllers since the estimators are statjonar
Finally, Elia [19][20] proposed to model the plant and the

y* controller as deterministic time invariant discrete-tigystems

1 connected to zero-mean stochastic structured uncertdingy

variance of the stochastic perturbation is a function of the
Bernoulli parameters, and the controller design is posed an
an optimization problem to maximize mean-square stability
of the closed loop system. This approach allows analysis of
Multiple Input Multiple Output (MIMO) systems with many
different controller and receiver compensation schem&§ [1
UDP-stable however, it does not include process and observation noise
and the controller is restricted to be time-invariant, keeggb-
optimal. The remainder of this paper is organized as follows
Y Section 2 provides the problem formulation. In Section 3 we
unstable summarize our previous results that are needed to unddrstan
0 the new contribution. In Section 4 we consider the optimiza-

0 \ 1 tion problem leading to the optimal linear UDP controller

and discusses a solution to a weaker, necessary solution for

Fig. 2. Region of stability for UDP-like and TCP-like optitzontrol relative  optimality. Section 5 shows the results and compares them to
to measurement packet arrival probabilfy and the control packet arrival {na optimal TCP controller (which is always linear). Fiyall

TCP-stable

probabilty . Section 6 draws conclusions and outlines the agenda forefutu
work.
We now wish to mention some closely related research.
Study of stability of dynamical systems where components Il. PROBLEM FORMULATION

are connected asynchronously via communication channel€onsider the following linear stochastic system with inter
has received considerable attention in the past few yeats aittent observation and control packets:
our contribution can be put in the context of the previous

literature. In [4] and [5], the authors proposed to place an Tht1r = Az + Bug +wk @)
estimator, i.e. a Kalman filter, at the sensor side of the ug = vpug 2
link without assuming any statistical model for the dataslos ur = Cxp + vk, (3)

process. In [6], Smithet al. considered a suboptimal but o ) . .
computationally efficient estimator that can be applied whdvhereu; is the control input to the actuatar; is the desired

. X . ._control Input computed by the controllefzo, wi,v;) are
the arrival process is modeled as a Markov chain, which aussian, uncorrelated, white, with me@, 0, 0) and covari-

more general than a Bernoulli process. Drew et al [7] analyaﬂce(po, Q, R) respectively, and~, v;) are i.i.d. Bernoulli
the problem of designing a controller over a wireless LANandom variables withP(y;, =1) =4 and P(vy = 1) = .



The stochastic variable, models the loss of packets between Finite Horizon LQG. The main results are summarized
the controller and the actuator: if the packet is correctlyelow:

delivered thenuj = ug, otherwise if it is lost then the : - . :
actuator does nothing, i.e¢ = 0. This compensation scheme *® The separation Principle holds under TCP-like communi-
is summarized by Eduanon (2). The stochastic variahle cation, since the optimal estimator is independent of the

models the packet loss between the sensor and the controller control inputuy.
if the packet is delivered thep, = Cxy, + vy, otherwise if o The optimal estimator gaink, is time-varying and

it is lost then the controller reads pure noise, yg.= vy. stochastic since it depends on the past observation arrival
This observation model is summarized by Equation (3). A P P

k
different observation formalism was proposed in [21], veher ~ SSAUENCEY;};. _ _ _
the missing observation was modeled as an observation for The Optimal LQG controller is a linear function of
which the measurement noise had infinite covariance. It is estimated statéy;, i.€. uy = LTy
possible to show that both models are equivalent, but the, The final cost cannot be computed explicitly, since it

one considered in this paper has the advantage to give rise depends on the realization of and ~;, but can be
to simpler analysis. This arises from the fact that when no : '
analytically bounded.

packet is delivered, then the optimal estimator does not use < ; ) .
the observationy;, at all, therefore its value is irrelevant. Let Infinite Horizon LQG. Consider the system (1)-(3) with

us define the following information sets: the following additional hypothesidVy = W), = W and
U = U. Moreover, let(4, B) and (A,Qz) be controllable,

) and let(A,C) and(A, Wz) be observable. There exist critical
arrival probabilitiesr, and v, , such that, forv > v, and

where y* = (yr,ye-1,--.91), ¥° = (o e-1,...,m), and T > Ve o _ _ o
vk = (U, Vk—1, ..., 11 (a) The infinite horizon optimal controller gain is constant

Consider also the following cost function: klim Li = Lo = —(B'SaB + U)*lB’SOOA 7

{y*,v*,v*1}, TCP-like
{y*,v*}, UDP-like

N

|
—N

-
> 1

~—

In(N Tt 20, ) =

:E[CC;VWNCCNﬂ‘ZiV;(l)(CC;Ckak"FVI@'U«;CUI@UI@)‘UN717 0.Py (b) The infinite horizon optimal estimator gaif(; is

) stochastic and time-varying since it depends on the past
observation arrival sequent{e/j}é?zl.

(c) The expected minimum cost can be bounded by two
deterministic sequences:

whereu™ ! = (uy_1,un—_2,...,u1). Note that we are weight-
ing the input only if it is successfully received at the plant
In fact, if it is not received, the plant applies zero inputian

therefore there is no energy expenditure. Logmin = 1 g o1 gmao 8
. N—1 YN S YN S YN (8)
We now look for a control input sequenaé as a func- N N N
tion of the admissible information séf;, i.e. uy = gi(Zx). where J3" | Jmae converge to the following values:
that minimizes the functional defined in Equation (5), i.e. A
N JET 2 imy oo & N ~
Ji(Zo, P)) 2= min_ Jy(u¥ !z, Py), (6) = trace((A'Sec A + W — Soo)(Poo—
=g (Zk) 13 Po O'(C PO+ R) ™ CPa)) +trace(Seo Q)
whereZ, = {F,Gr} is one of the sets defined in Equa- J7 2 iy I
tion (4). The setF corresponds to the information provided = (1 —7)trace ((A’SOOA +W— soo)ﬁoo) +
under an acknowledgement-based communication protocols +trace(Se @),

(TCP-like) in which successful or unsuccessful packetedeji

at the receiver is acknowledged to the sender within the same
sampling time period. The sétcorresponds to the information
available at the controller under communication protoéols Seo = A'SQ A+ W — 0 A'Sou B(B'Soo B+U) ' B' S, A
which the sender receives no feedback about the deliveheoft -, iy =,
transmitted packet to the receiver (UDP-like). The UDRlik ~ Foo = APocA'+Q =5 AP C'(CPC'+R) " CP A

and the matricesS., P.., P are the positive definite
solutions of the following equations:

schemes are sinjple_r to implem_ent than the TCP-IiI§e schemes P =(1-9AP_A +Q
from a communication standpoint. However the price to pqe/ N - _ )
is a less rich set of information. he critical probabilityr, can be numerically computed via
the solution of a quasi-convex LMIs optimization problem,
I1l. PREVIOUS WORK as shown in [22]. Also the following analytical bounds are
Before introducing new results, it is necessary to revieWOV'ded: s <
recently published results [3], [22], [23], [24], for bothet Pmin N Ve Ye = Pmazs
TCP-like and the UDP-like case. Prmin =1 — m
R i
A. TCP-like case: estimator and controller design Pmaz = 1 — 1L IXEA \A;.IL(A)\%

The LQG control problem for the TCP-like case has beemhere A\¥(A) are the unstable eigenvalues 4f Moreover,
solved in full generality in [22]. Ve = pmin When B is square and invertible [25] , and



Ve

= Pmaz When B is rank one [20]. Duallyy. = p.:n When where Py is the covariance of the vectay,. Its evolution is

C is square and invertible, ang. = p.,,... WhenC is rank given by:

one.

Peyr = E[Gy, v, (K, L2z G3, o, (K, L)] + Eldid;]
B. UDP-like case: estimator and controller design = E,,[Gyyn (K, L)ka;F L (K, L)+ D(K)
As stated above, the LQG optimal control problem for = G(K,L,P,) + D(K) (12)

the UDP-like case presents analytical complications. Bl | here:
of acknowledgement of the arrival of a control packet ha¥here:

dramatic effects on the controller design. Complete déadwa D(K) = e 0 ’ ] (13)
for this case are presented in [23]. Here is a summary of them: | 0 YERK
« The innovation step in the design of the estimator now G, L. P) = F0Gu PG +7(1-7)Go PG+
explicitly depends on the inputy, ; + (1-9)pGa PGa" +(1-7)(1-7)Go PG {14)
« the separation principle is not valid anymore in this Gy = [ A —BL }
Setting' L KC A-vBL—-KC
» the LQG optimal control feedbacky, = g;(Gr) with Gy — A 0 }
horizon N > 2 that minimizes the functional (5) under | YK€ A-vBL-7KC
UDP-like communication is, in general, aonlinear Go = [ A —DBL ]
function of information setjy. * = | 0 A-vBL
« Inthe particular case where the full state can be observed Go = [ A 0
whenever the observation packet arrives, ¢’ds invert- o= 0 A—-vBL ]

ible andR = 0, the LQG controller is linear in the state, \n next define the- following cost:
although the separation principle does not hold.

Our experience in the design of control systems over wiseles k= E[sgWap + vug U]

sensor networks has taught us that it may be extremely _ Trace<[ 0 } Pk)

difficult to design and implement a TCP-like protocol on such 0 wLTUL

infrastructure. Therefore, there arises the need to design = TracgN(L)P;), (15)

easily computable controller that, although suboptimal c

guarantee “acceptable” performance in UDP-like scenarid¥éhere:
The rest of paper will deal with finding such regulator in the N(L) = { 0 PLTUL
class of linear static controllers.

w 0 ] (16)

Clearly, if P, converges to a finite valué’,,, then does

IV. A LINEAR STATIC CONTROLLER FORUDP-LIKE the cost, i.e.c; converges tae... . Therefore, our objective
NETWORKED SYSTEMS to minimize this cost function with respect t&, L. The
We want to find optimal static gains, X for the LQG Optimization problem can be written as follows:
controller and estimator respectively. The estimator &gna Ming Tr(PN(L))
are. st. P=G(K,L,P)+D(K), P>0 (47)
o1 = AZg + vBuk + K (yr — Ux) This is a non convex optimization problem, and in the next
up = —La (9) section we will find necessary conditions for the existence o
" . an optimum.
g = Ciy, (10) NP

After some simple algebra the close loop dynamics can é‘é

Necessary conditions
Using Lagrange multipliers the optimization problem can

written as, be rewritten as:
[ Tht1 } _ [ A —wBL ] [ 2z } L Minkrpa J:TT(PN(L))+T»,~(A(C:(K,L,P)+D(K))—P)
Tht1 wKC A—DUBL—vyKC Tk - P>0.A>0.
Wi (18)
Vi K vy, According to the minimum matrix principle [26], necessary
conditions for the optimum are:
If we define the vector,, = [z 71T € R?", the the previous P
equation can be written in a more compact form as: Q -0 8_J =0 Q =0 Q —0. (19)
oA T oP " 0K " 0L
Zhi1 = Gy (K D)2k + dy, (11) The first two conditions above can be written respectively
Now let as.
paw|| o o) o [ B P2 P = G(K,LP)+D(K), P>0 (20
b i BRI T pr2t o p22 A = G(K,L,A)+N(L), A>0 (21)



where B. lterative solution

As described above, the six coupled nonlinear Equa-
tions (24)-(29), define a set of necessary conditions. Arahtu
choice to try to find a fixed point is to use an iterative solutio
as the following:

G(K,L,P) = 30GHPGu+~5(1—0)GHPGo+
+(1-7)pGL PGu+(1—7)(1-7)GH PG (22)

Note that the operatoZ(K, L, P) is simply the dual of

G(K, L, P). Let use consider the following partition &f and Piy1 = (P, Py, Ky) (30)
A and new matrices: Py = &, (Pr, P, Ki) (31)
o { P, P ] A { Ar A } Aprt = @a(Ai, Ay, L) (32)

P1T2 Py ’ Arirz A Ak+1 = (1)4(Ak7Aka Lk) (33)

B B K, = &3P 34)
A=AN—-Ay, A=Ay, P=P—-P,, P=P, Ly = (Mg, Ay) (35)

As shown in [27], the minimality assumption implies that: For ease of notation, if we substitute the last two equations
the gainsKjy, L into the previous four, the iterative update
Aa=—A<0, Po=P>0 (23) can be written in a more compact for as follows:

An immediate result is thdtmy_, o E[(z), — &%)31] = Pi2 — (Pretts Pgrs M1 Agr) = (Pry Pyy Ak, Ay) - (36)

P, = 0, i.e. the estimate is asymptotically uncorrelated wit .
the error estimate, similarly to the standard Kalman fittgri nwas shown by De Koning in [28] that under some standard

If we substitute Eqn. (23) back into Eqn. (20) and (21), aryPotheses, that the necessary conditions given by Equa-
after performing some straightforward algebraic manipoifes  tions (24)-(29) are also sufficient and that the iteratiietion

we get: given by Equations (30)-(35) converges to the fixed point
N N N solution. We adapt his results to our scenario in the folhavi
P = 5(A-KC)P(A-KC)" +(1-7)APA" + theorem:
+7(1—-2)P+Q+~yKRK" (24) Theorem 1: Let us consider the close loop control systems
= &(P,P,K) defined by Equations (1)-(2) and (9)-(10), whejeand~;, are
P = (A-pBL)P(A-wBL)"+4K(CPCT+R)K™ (25) Bernoulli random variables with meanand ¥, respectively.
— (P, P,K) A|Tsum§|'that(tﬁ’B)' C(élT, C’g)}%(A,I/Igézrr?nd (/LT, Qz) are
< _ T AT all stabilizzable, and/ > 0,R > 0. Then, the sequence
A= A= ]?L)TA(A B BL)7+ (Tl —DATAAF defined by Equations (30)-(35) starting from initial cc?imﬁrs
+W+u(L (U+0-»B AB)L (26) B, = P, =1y = A, = 0 converges to the unique solution of
= (A A K) the optimization problem defined by Eqn. (17), i.e.
A = (A-BL)"A(A-BL)+ (1 —)A"AA + ) 3 —
+vL" (B"AB + (1—-p)B"AB+U) @27) Jm 27(0,0,0,0) = (P, P, A, A7),
= ®4(AAK) if and only if the sequence defined by Equations (30)-(35)

Similarly, if we use Eqgn. (23) into the last two partiaIV—VhereW = @=0,V =FR=0and initial conditionsPy =
derivatives of Egn. (19), and after after performing somlé0 =T andP, = A, = 0 converge to zero, i.e.

straightforward algebraic manipulations, we get: lim ®*(1,0,1,0) = (0,0,0,0)
k)HOO ) 3 3 ) 3 )
K = APCT(CPCT + R)T (28) Thg proof of the previous theqrem is_ rather involved and re-
_ o.(P quires the use of the homotopic continuation method to prove
- 5&_) - R convergence, therefore it is omitted. We refer the intedbst
L = (BAB+(1-»)B AB+U)'B'AA  (29) reader to [28] and [29] for detalils.
- ¢6(K7 A)

V. DISCUSSION

where the symbol represents the Moore-Penrose pseudoin- In the previous section we provided necessary and sufficient
verse. An iterative solution to the set of Equations (248)}(2 conditions for the existence of an optimum, along with an
shown above will provide necessary conditions for optitgali iterative method to compute it. This section shows some
Clearly, if there exists only one minimum, the conditiomumerical example and applications of the proposed iterati
becomes also sufficient. Note that f = % = 1 and algorithm.

we substitute Eqn. (28) into Eqn. (24), and Eqn. (29) into For the sake of simplicity, consider a scalar version of the
Eqn. (26), we obtain the standard Algebraic Riccati equatiosystem of Equations (1)-(3), wittlB = C = Q = R =

for the Kalman filter and LQ optimal controller, respectivel W = U = 1,4 = 1.1,v = v = 0.8. Figure 3 shows a
Next section provide an iterative algorithm that convertges contour plot of the infinite horizon cost as a function of the
solution of the optimization problem if such a solution idtén controller an estimator gains. Note that the cost funct®n i
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Fig. 5. There is little loss of performance in choosing a gineal UDP

Fig. 3. Convergence of the optimization problem.The iterative method ] - L :
controller, while saving a lot complexity in protocol desig

converges to a unigue minimum

. . - V1. CONCLUSION AND FUTURE WORK
non-convex, but that there is a unique minimum. Also, as

Figure 4 shows, the steady state cdst converges after a In this paper we have analyzed the LQG control problem

dozen iteration steps, thus suggesting that the iteratiye- a in the case where both observation and control packets may

rithm is also computational efficeint. Figure 5, insteadyvehia be lost during transmission over a communication channel.
This situation arises frequently in distributed systemsnmgh

7 sensors, controllers and actuators reside in differensiohy

locations and have to rely on data networks to exchange

information. In this context controller design heavily éegs

6.5 7

6F 1 on the communication protocol used. In fact, in TCP proto-
5,5( i cols, acknowledgements of successful transmissions dfaon
il | packets are provided to the controller, while in UDP protsco
no such feedback is provided. In the first case, the separatio
4o 1 principle holds and the optimal control is a linear functiai
Tl | the state. As a consequence, controller and estimatorrdesig

problems are decoupled. UDP-like protocols present a much
more complex problem. We have shown that the lack of ac-
3 1 knowledgement of control packets results in the failurehef t
a5 | separation principle. Estimation and control are now iatisty
coupled. We have shown that the LQG optimal control is, in
general, nonlinear in the estimated state. In the particalse,
15, = - = S - —w Where we have access to full state information, the optimal
tteration step controller is linear in the state. To fully exploit UDP-like
protocols it is necessary to have a controller/estimatsigte
Fig. 4. Convergence of the LQG cost function After just a few iteration methodology for the general case when there is measurement
steps the steady state value of the cost converges. noise and under partial state observation. As UDP protocols
are the only practical solution in many cases where the dlann
comparison between the optimal TCP-like LQG controller arid too unreliable to guarantee successful delivery of askno
the suboptimal UDP-like controller derived above, forelifint edgement, it would prove extremely valuable to determime th
values ofv,~. The figure suggests that for sufficiently higtoptimal time-invariant LQG controller. Among all possible
arrival rate, implementing an optimal controller over a TCRchoices we focused on the class of linear controllers, feirth
like network does not provide a significant advantage. Thimplicity in implementation. After casting the problemas
is particularly useful to the designer, who can trade offhhigoptimization problem, we derived necessary conditiongter
complexity in the network design with a little performancexistence of an optimal solution, hinting that this coratiti
loss. may be also sufficient. The facts that state estimator and

35 B




estimation error are asymptotically uncorrelated and that [20] N. Elia, “Remote stabilization over fading channelstems and
performance of our controller is the same as the one for TCP-

like in the lossless case point all in this direction. Prdpdhe
most interesting finding, for practical purposes, is thattod

21]

performance is not greatly affected by lack of optimality 0[1‘22]
the linear controller. In the next future we intend to estibl
this result rigorously, therefore providing proof of optlity [23]
of the solution within the class of linear controllers.
[24]
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