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Abstract— This paper is concerned with control applications
over lossy data networks. Sensor data is transmitted to an
estimation-control unit over a network, and control commands
are issued to subsystems over the same network. Sensor and
control packets may be randomly lost according to a Bernoulli
process. In this context, the discrete-time Linear Quadratic
Gaussian (LQG) optimal control problem is considered.

It is known that in the scenario described above, and for
protocols for which there is no acknowledgement of successful
delivery of control packets (e.g. UDP-like protocols), theLQG
optimal controller is in general nonlinear. However, the sim-
plicity of a linear sub-optimal solution is attractive for sensor
networks. Accordingly, this paper characterizes the best linear
controller and compares its performance to the case when there
is acknowledgement of delivery of packets.

I. I NTRODUCTION

Today, an increasing number of applications demands re-
mote control of plants over unreliable networks. The recent
development of sensor web technology [1] enables the devel-
opment of wireless sensor networks that can be immediately
used for estimation and control of dynamical systems. In
these systems issues of communication delay, data loss, and
time-synchronization play critical roles. Communicationand
control become very tightly coupled and these two issues
cannot be addressed independently. The goal of this paper isto
provide some partial answers to the question of how control
loop performance is affected by communication constraints
and what are the basic system-theoretic implications of using
unreliable networks for control. This requires a generalization
of classical control techniques that explicitly takes intoaccount
the stochastic nature of the communication channel.

In this paper, we consider a generalized formulation of
Linear Quadratic Gaussian (LQG) optimal control problem by
modeling the arrival of both observations and control packets
as random processes whose parameters are related to the
characteristics of the communication channel. Accordingly,
two independent Bernoulli processes are considered, with
parametersγ and ν, that govern packet losses between the
sensors and the estimation-control unit, and between the latter
and the actuation points (see Figure 1).

In our analysis, the we distinguish between two classes of
protocols. The distinction resides simply in the availability of
packet acknowledgements. Adopting the framework proposed

Fig. 1. Overview of the system.We study the statistical convergence
properties of the expected state covariance of the discretetime LQG control
system, when both the observation and the control signal, transmitted over
an unreliable communication channel, can be lost at each time step with
probability 1 − γ̄ and1 − ν̄ respectively.

by Imeret al. [2], we will refer therefore to TCP-like protocols
if packet acknowledgements are available and to UDP-like
protocols otherwise.

The main results of a previous paper of ours [3] are
summarized in Figure 2. We have shown the existence of a
critical domain of values for the parameters of the Bernoulli
arrival processes,ν and γ, outside which a transition to
instability occurs and the optimal controller fails to stabilize
the system. In particular, we have shown that under TCP-like
protocols the critical arrival probabilities for the control and
observation channel are independent of each other. This is
another consequence of the fact that the separation principle
holds for these protocols. A more involved situation regards
UDP-like protocols. In this case the critical arrival probabilities
for the control and observation channels are coupled. The
stability domain and performance of the optimal controller
degrade considerably as compared with TCP-like protocols as
shown in Figure 2.

We have also shown that for the TCP-like case the classic
separation principle holds, and consequently the controller and
estimator can be designed independently. Moreover, the opti-
mal controller is a linear function of the state. In sharp contrast,



for the UDP-like case, the optimal controller is in general
non-linear. In this case, a natural sub-optimal solution isto
use the optimal static linear gain. This is especially attractive
for sensor networks where simplicity of implementation and
complexity issues are a primary concern. Accordingly, in this
paper we focus on the performance of this UDP controller and
compare it with the optimal one in the TCP case.

First, we formulate the problem of finding the optimal linear
controller as a non-convex optimization problem. Then, we
write, using Lagrange multipliers, a solution to a necessary
condition for the optimum, and provide some numerical con-
vergence results for the scalar case. Although at present stage
we lack a rigorous proof, there is numerical evidence that our
solution is also sufficient for optimality, which is equivalent to
state that there is a unique minimum. Even in the scalar case,
however, an analytic solution appears to be difficult to find,
as it requires optimization overR2n×2n, wheren is the state
space. Further work will be devoted to obtain at least analytic
bounds. Finally, we show that the performance of the obtained
solution is comparable to the one of the optimal controller in
the TCP case, thus validating our strategy of looking for a
sub-optimal linear UDP controller.
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Fig. 2. Region of stability for UDP-like and TCP-like optimal control relative
to measurement packet arrival probabilityγ, and the control packet arrival
probability ν.

We now wish to mention some closely related research.
Study of stability of dynamical systems where components
are connected asynchronously via communication channels
has received considerable attention in the past few years and
our contribution can be put in the context of the previous
literature. In [4] and [5], the authors proposed to place an
estimator, i.e. a Kalman filter, at the sensor side of the
link without assuming any statistical model for the data loss
process. In [6], Smithet al. considered a suboptimal but
computationally efficient estimator that can be applied when
the arrival process is modeled as a Markov chain, which is
more general than a Bernoulli process. Drew et al [7] analyze
the problem of designing a controller over a wireless LAN.

Control design has been investigated in the context of Cross
Layer Design by Liu et al [8]. Other work includes Nilsson
et al. [9][10] who present the LQG optimal regulator with
bounded delays between sensors and controller, and between
the controller and the actuator. In this work, bounds for
the critical probability values are not provided. Additionally,
there is no analytic solution for the optimal controller. The
case where dropped measurements are replaced by zeros is
considered by Hadjicostis and Touri [11], but only in the scalar
case. Other approaches include using the last received sample
for control [10], or designing a dropout compensator [12],
which combines estimation and control in a single process.
However, the former approach does not consider optimal
control and the latter is limited to scalar systems. Yuet al.
[13] studied the design of an optimal controller with a single
control channel and deterministic dropout rates. Seileret al.
[14] considered Bernoulli packet losses only between the plant
and the controller and posed the controller design as anH∞

optimization problem. Other authors [15] [16] [17] [18] model
networked control systems with missing packets as Markovian
jump linear systems (MJLSs), however this approach gives
suboptimal controllers since the estimators are stationary.
Finally, Elia [19][20] proposed to model the plant and the
controller as deterministic time invariant discrete-timesystems
connected to zero-mean stochastic structured uncertainty. The
variance of the stochastic perturbation is a function of the
Bernoulli parameters, and the controller design is posed an
an optimization problem to maximize mean-square stability
of the closed loop system. This approach allows analysis of
Multiple Input Multiple Output (MIMO) systems with many
different controller and receiver compensation schemes [19],
however, it does not include process and observation noise
and the controller is restricted to be time-invariant, hence sub-
optimal. The remainder of this paper is organized as follows.
Section 2 provides the problem formulation. In Section 3 we
summarize our previous results that are needed to understand
the new contribution. In Section 4 we consider the optimiza-
tion problem leading to the optimal linear UDP controller
and discusses a solution to a weaker, necessary solution for
optimality. Section 5 shows the results and compares them to
the optimal TCP controller (which is always linear). Finally,
Section 6 draws conclusions and outlines the agenda for future
work.

II. PROBLEM FORMULATION

Consider the following linear stochastic system with inter-
mittent observation and control packets:

xk+1 = Axk + Buk + wk (1)

ua
k = νkuc

k (2)

yk = γkCxk + vk, (3)

whereua
k is the control input to the actuator,uc

k is the desired
control input computed by the controller,(x0, wk, vk) are
Gaussian, uncorrelated, white, with mean(x̄0, 0, 0) and covari-
ance(P0, Q, R) respectively, and(γk, νk) are i.i.d. Bernoulli
random variables withP (γk = 1) = γ̄ and P (νk = 1) = ν̄.



The stochastic variableνk models the loss of packets between
the controller and the actuator: if the packet is correctly
delivered thenua

k = uc
k, otherwise if it is lost then the

actuator does nothing, i.e.ua
k = 0. This compensation scheme

is summarized by Equation (2). The stochastic variableγk

models the packet loss between the sensor and the controller:
if the packet is delivered thenyk = Cxk + vk, otherwise if
it is lost then the controller reads pure noise, i.e.yk = vk.
This observation model is summarized by Equation (3). A
different observation formalism was proposed in [21], where
the missing observation was modeled as an observation for
which the measurement noise had infinite covariance. It is
possible to show that both models are equivalent, but the
one considered in this paper has the advantage to give rise
to simpler analysis. This arises from the fact that when no
packet is delivered, then the optimal estimator does not use
the observationyk at all, therefore its value is irrelevant. Let
us define the following information sets:

Ik =

(
Fk

∆
= {yk, γk, νk−1}, TCP-like

Gk
∆
= {yk, γk}, UDP-like

(4)

where y
k = (yk, yk−1, . . . , y1), γ

k = (γk, γk−1, . . . , γ1), and
ν

k = (νk, νk−1, . . . , ν1).
Consider also the following cost function:

JN (uN−1, x̄0, P0) =

= E

h
x′

NWNxN +
PN−1

k=0
(x′

kWkxk+νku′
kUkuk)

˛̨
˛uN−1, x̄0,P0

i

(5)
whereu

N−1 = (uN−1, uN−2, . . . , u1). Note that we are weight-
ing the input only if it is successfully received at the plant.
In fact, if it is not received, the plant applies zero input and
therefore there is no energy expenditure.

We now look for a control input sequenceu∗N−1 as a func-
tion of the admissible information setIk, i.e. uk = gk(Ik),
that minimizes the functional defined in Equation (5), i.e.

J∗
N (x̄0, P0)

∆
= min

uk=gk(Ik)
JN (uN−1, x̄0, P0), (6)

where Ik = {Fk,Gk} is one of the sets defined in Equa-
tion (4). The setF corresponds to the information provided
under an acknowledgement-based communication protocols
(TCP-like) in which successful or unsuccessful packet delivery
at the receiver is acknowledged to the sender within the same
sampling time period. The setG corresponds to the information
available at the controller under communication protocolsin
which the sender receives no feedback about the delivery of the
transmitted packet to the receiver (UDP-like). The UDP-like
schemes are simpler to implement than the TCP-like schemes
from a communication standpoint. However the price to pay
is a less rich set of information.

III. PREVIOUS WORK

Before introducing new results, it is necessary to review
recently published results [3], [22], [23], [24], for both the
TCP-like and the UDP-like case.

A. TCP-like case: estimator and controller design

The LQG control problem for the TCP-like case has been
solved in full generality in [22].

Finite Horizon LQG . The main results are summarized
below:

• The separation Principle holds under TCP-like communi-
cation, since the optimal estimator is independent of the
control inputuk.

• The optimal estimator gainKk is time-varying and
stochastic since it depends on the past observation arrival
sequence{γj}

k
j=1.

• The Optimal LQG controller is a linear function of
estimated statêxk|k, i.e. uk = Lkx̂k|k.

• The final cost cannot be computed explicitly, since it
depends on the realization ofνt and γt, but can be
analytically bounded.

Infinite Horizon LQG. Consider the system (1)-(3) with
the following additional hypothesis:WN = Wk = W and
Uk = U . Moreover, let(A, B) and (A, Q

1

2 ) be controllable,
and let(A, C) and(A, W

1

2 ) be observable. There exist critical
arrival probabilitiesνc and γc , such that, forν̄ > νc and
γ̄ > γc:

(a) The infinite horizon optimal controller gain is constant:

lim
k→∞

Lk = L∞ = −(B′S∞B + U)−1B′S∞A (7)

(b) The infinite horizon optimal estimator gainKk is
stochastic and time-varying since it depends on the past
observation arrival sequence{γj}

k
j=1.

(c) The expected minimum cost can be bounded by two
deterministic sequences:

1

N
Jmin

N ≤
1

N
J∗

N ≤
1

N
Jmax

N (8)

whereJmin
N , Jmax

N converge to the following values:

Jmax
∞

∆
= limN→+∞

1

N
Jmax

N

= trace((A′S∞A + W − S∞)( bP∞−

+γ̄ bP∞C′(C bP∞C′+R)−1C bP∞))+trace(S∞Q)

Jmin
∞

∆
= limN→+∞

1

N
Jmin

N

= (1 − γ̄)trace
“
(A′S∞A + W − S∞) eP∞

”
+

+trace(S∞Q),

and the matricesS∞, P∞, P∞ are the positive definite
solutions of the following equations:

S∞ = A′S∞A+W− ν̄ A′S∞B(B′S∞B+U)−1B′S∞A

P∞ = AP∞A′+Q− γ̄ AP∞C′(CP∞C′+R)−1CP∞A′

P∞ = (1 − γ̄)AP∞A′ + Q

The critical probabilityνc can be numerically computed via
the solution of a quasi-convex LMIs optimization problem,
as shown in [22]. Also the following analytical bounds are
provided:

pmin ≤ νc, γc ≤ pmax

pmin
∆
= 1 − 1

maxi |λu

i
(A)|2

pmax
∆
= 1 − 1

Q

i
|λu

i
(A)|2 ,

where λu
i (A) are the unstable eigenvalues ofA. Moreover,

νc = pmin when B is square and invertible [25] , and



νc = pmax whenB is rank one [20]. Dually,γc = pmin when
C is square and invertible, andγc = pmax when C is rank
one.

B. UDP-like case: estimator and controller design

As stated above, the LQG optimal control problem for
the UDP-like case presents analytical complications. The lack
of acknowledgement of the arrival of a control packet has
dramatic effects on the controller design. Complete derivations
for this case are presented in [23]. Here is a summary of them:

• The innovation step in the design of the estimator now
explicitly depends on the inputuk ;

• the separation principle is not valid anymore in this
setting.

• the LQG optimal control feedbackuk = g∗k(Gk) with
horizon N ≥ 2 that minimizes the functional (5) under
UDP-like communication is, in general, anonlinear
function of information setGk.

• In the particular case where the full state can be observed
whenever the observation packet arrives, i.e.C is invert-
ible andR = 0, the LQG controller is linear in the state,
although the separation principle does not hold.

Our experience in the design of control systems over wireless
sensor networks has taught us that it may be extremely
difficult to design and implement a TCP-like protocol on such
infrastructure. Therefore, there arises the need to designan
easily computable controller that, although suboptimal, can
guarantee “acceptable” performance in UDP-like scenarios.
The rest of paper will deal with finding such regulator in the
class of linear static controllers.

IV. A L INEAR STATIC CONTROLLER FORUDP-LIKE

NETWORKED SYSTEMS

We want to find optimal static gainsL, K for the LQG
controller and estimator respectively. The estimator equations
are:

x̂k+1 = Ax̂k + ν̄Buk + γkK(yk − ŷk)

uk = −Lx̂k (9)

ŷk = Cx̂k, (10)

After some simple algebra the close loop dynamics can be
written as,
[

xk+1

x̂k+1

]

=

[

A −νkBL

γkKC A − ν̄BL − γkKC

] [

xk

x̂k

]

+

+

[

wk

γkKvk

]

If we define the vectorzk = [xk x̂k]T ∈ R
2n, the the previous

equation can be written in a more compact form as:

zk+1 = Gγk,νk
(K, L)zk + dk (11)

Now let

Pk
∆
= E

[[

xk

x̂k

]

[

xT
k x̂T

k

]

]

=

[

P 11
k P 12

k

P 12
k

T
P 22

k

]

.

wherePk is the covariance of the vectorzk. Its evolution is
given by:

Pk+1 = E[Gγk,νk
(K, L)zkzT

k GT
γk,νk

(K, L)] + E[dkdT
k ]

= Eν,γ [Gγk,νk
(K, L)PkGT

γk,νk
(K, L)] + D(K)

= G(K, L, Pk) + D(K) (12)

where:

D(K) =

»
Q 0
0 γ̄KRKT

–
(13)

G(K, L, P ) = γ̄ν̄G11PG
T
11+γ̄(1−ν̄)G10PG

T
10+

+ (1−γ̄)ν̄G01PG01
T +(1−γ̄)(1−ν̄)G00PG00

T(14)

G11 =

»
A −BL

KC A − ν̄BL − KC

–

G10 =

»
A 0

γ̄KC A − ν̄BL − γ̄KC

–

G01 =

»
A −ν̄BL
0 A − ν̄BL

–

G00 =

»
A 0
0 A − ν̄BL

–

We next define the following cost:

ck = E
[

xT
k Wxk + ν̄uT

k Uuk

]

= Trace

([

W 0
0 ν̄LT UL

]

Pk

)

= Trace
(

N(L)Pk

)

, (15)

where:

N(L) =

[

W 0
0 ν̄LT UL

]

(16)

Clearly, if Pk converges to a finite valueP∞, then does
the cost, i.e.ck converges toc∞. . Therefore, our objective
to minimize this cost function with respect toK, L. The
optimization problem can be written as follows:

MinK,L Tr
(

PN(L)
)

s.t. P = G(K, L, P ) + D(K), P ≥ 0
(17)

This is a non convex optimization problem, and in the next
section we will find necessary conditions for the existence of
an optimum.

A. Necessary conditions
Using Lagrange multipliers the optimization problem can

be rewritten as:

MinK,L,P,Λ J = Tr
`
PN(L)

´
+Tr

“
Λ

`
Ḡ(K, L, P )+D(K)

´
−P

”

s.t. P ≥ 0, Λ ≥ 0.
(18)

According to the minimum matrix principle [26], necessary
conditions for the optimum are:

∂J

∂Λ
= 0,

∂J

∂P
= 0,

∂J

∂K
= 0,

∂J

∂L
= 0. (19)

The first two conditions above can be written respectively
as:

P = G(K, L, P ) + D(K), P ≥ 0 (20)

Λ = G(K, L, Λ) + N(L), Λ ≥ 0 (21)



where

G(K, L, P ) = γ̄ν̄G
T
11PG11+γ̄(1−ν̄)GT

10PG10+

+(1−γ̄)ν̄G
T
01PG01+(1−γ̄)(1−ν̄)GT

00PG00 (22)

Note that the operatorG(K, L, P ) is simply the dual of
G(K, L, P ). Let use consider the following partition ofP and
Λ and new matrices:

P =

[

P1 P12

PT
12 P2

]

, Λ =

[

Λ1 Λ12

ΛT
12 Λ2

]

Λ = Λ1−Λ2, Λ = Λ2, P = P1−P2, P = P2

As shown in [27], the minimality assumption implies that:

Λ12 = −Λ < 0, P12 = P > 0 (23)

An immediate result is thatlimk→∞ E[(xk − x̂k)x̂T
k ] = P12 −

P2 = 0, i.e. the estimate is asymptotically uncorrelated with
the error estimate, similarly to the standard Kalman filtering.
If we substitute Eqn. (23) back into Eqn. (20) and (21), and
after performing some straightforward algebraic manipulations
we get:

P = γ̄(A − KC)P (A − KC)T + (1 − γ̄)APA
T +

+ν̄(1 − ν̄)P + Q + γ̄KRK
T (24)

= Φ1(P , P , K)

P = (A−ν̄BL)P (A−ν̄BL)T +γ̄K(CPC
T +R)KT (25)

= Φ2(P , P , K)

Λ = ν̄(A − BL)T Λ(A − BL) + (1 − ν̄)AT ΛA +

+W + ν̄(LT
`
U + (1 − ν̄)BT ΛB

´
L (26)

= Φ3(Λ, Λ, K)

Λ = ν̄(A−BL)T Λ(A−BL)+ (1 − ν̄)AT ΛA +

+ν̄L
T

`
B

T ΛB + (1 − ν̄)BT ΛB + U
´

(27)

= Φ4(Λ, Λ, K)

Similarly, if we use Eqn. (23) into the last two partial
derivatives of Eqn. (19), and after after performing some
straightforward algebraic manipulations, we get:

K = APC
T

`
CPC

T + R
´†

(28)

= Φ5(P )

L =
`
B

T ΛB + (1 − ν̄)BT ΛB + U
´†

B
T ΛA (29)

= Φ6(Λ, Λ)

where the symbol† represents the Moore-Penrose pseudoin-
verse. An iterative solution to the set of Equations (24)-(29)
shown above will provide necessary conditions for optimality.
Clearly, if there exists only one minimum, the condition
becomes also sufficient. Note that if̄ν = γ̄ = 1 and
we substitute Eqn. (28) into Eqn. (24), and Eqn. (29) into
Eqn. (26), we obtain the standard Algebraic Riccati equations
for the Kalman filter and LQ optimal controller, respectively.
Next section provide an iterative algorithm that convergesto
solution of the optimization problem if such a solution is finite.

B. Iterative solution

As described above, the six coupled nonlinear Equa-
tions (24)-(29), define a set of necessary conditions. A natural
choice to try to find a fixed point is to use an iterative solution
as the following:

P k+1 = Φ1(P k, P k, Kk) (30)

P k+1 = Φ2(P k, P k, Kk) (31)

Λk+1 = Φ3(Λk, Λk, Lk) (32)

Λk+1 = Φ4(Λk, Λk, Lk) (33)

Kk = Φ5(P k) (34)

Lk = Φ6(Λk, Λk) (35)

For ease of notation, if we substitute the last two equationsfor
the gainsKk, Lk into the previous four, the iterative update
can be written in a more compact for as follows:

(P k+1, P k+1, Λk+1, Λk+1) = Φ(P k, P k, Λk, Λk) (36)

It was shown by De Koning in [28] that under some standard
hypotheses, that the necessary conditions given by Equa-
tions (24)-(29) are also sufficient and that the iterative solution
given by Equations (30)-(35) converges to the fixed point
solution. We adapt his results to our scenario in the following
theorem:

Theorem 1: Let us consider the close loop control systems
defined by Equations (1)-(2) and (9)-(10), whereνk andγk are
Bernoulli random variables with mean̄ν and γ̄, respectively.
Assume that(A, B), (AT , CT ), (A, W

1

2 ) and (AT , Q
1

2 ) are
all stabilizzable, andU > 0, R > 0. Then, the sequence
defined by Equations (30)-(35) starting from initial conditions
P 0 = P 0 = Λ0 = Λ0 = 0 converges to the unique solution of
the optimization problem defined by Eqn. (17), i.e.

lim
k→∞

Φk(0, 0, 0, 0) = (P
∗
, P ∗, Λ

∗
, Λ∗),

if and only if the sequence defined by Equations (30)-(35)
whereW = Q = 0, V = R = 0 and initial conditionsP 0 =
Λ0 = I andP 0 = Λ0 = 0 converge to zero, i.e.

lim
k→∞

Φk(I, 0, I, 0) = (0, 0, 0, 0)

The proof of the previous theorem is rather involved and re-
quires the use of the homotopic continuation method to prove
convergence, therefore it is omitted. We refer the interested
reader to [28] and [29] for details.

V. D ISCUSSION

In the previous section we provided necessary and sufficient
conditions for the existence of an optimum, along with an
iterative method to compute it. This section shows some
numerical example and applications of the proposed iterative
algorithm.

For the sake of simplicity, consider a scalar version of the
system of Equations (1)-(3), withB = C = Q = R =
W = U = 1, A = 1.1, ν = γ = 0.8. Figure 3 shows a
contour plot of the infinite horizon cost as a function of the
controller an estimator gains. Note that the cost function is
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Fig. 3. Convergence of the optimization problem.The iterative method
converges to a unique minimum

non-convex, but that there is a unique minimum. Also, as
Figure 4 shows, the steady state costJ∞ converges after a
dozen iteration steps, thus suggesting that the iterative algo-
rithm is also computational efficeint. Figure 5, instead, shows a
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Fig. 4. Convergence of the LQG cost function.After just a few iteration
steps the steady state value of the cost converges.

comparison between the optimal TCP-like LQG controller and
the suboptimal UDP-like controller derived above, for different
values ofν, γ. The figure suggests that for sufficiently high
arrival rate, implementing an optimal controller over a TCP-
like network does not provide a significant advantage. This
is particularly useful to the designer, who can trade off high
complexity in the network design with a little performance
loss.
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Fig. 5. There is little loss of performance in choosing a suboptimal UDP
controller, while saving a lot complexity in protocol design

VI. CONCLUSION AND FUTURE WORK

In this paper we have analyzed the LQG control problem
in the case where both observation and control packets may
be lost during transmission over a communication channel.
This situation arises frequently in distributed systems where
sensors, controllers and actuators reside in different physical
locations and have to rely on data networks to exchange
information. In this context controller design heavily depends
on the communication protocol used. In fact, in TCP proto-
cols, acknowledgements of successful transmissions of control
packets are provided to the controller, while in UDP protocols,
no such feedback is provided. In the first case, the separation
principle holds and the optimal control is a linear functionof
the state. As a consequence, controller and estimator design
problems are decoupled. UDP-like protocols present a much
more complex problem. We have shown that the lack of ac-
knowledgement of control packets results in the failure of the
separation principle. Estimation and control are now intimately
coupled. We have shown that the LQG optimal control is, in
general, nonlinear in the estimated state. In the particular case,
where we have access to full state information, the optimal
controller is linear in the state. To fully exploit UDP-like
protocols it is necessary to have a controller/estimator design
methodology for the general case when there is measurement
noise and under partial state observation. As UDP protocols
are the only practical solution in many cases where the channel
is too unreliable to guarantee successful delivery of acknowl-
edgement, it would prove extremely valuable to determine the
optimal time-invariant LQG controller. Among all possible
choices we focused on the class of linear controllers, for their
simplicity in implementation. After casting the problem asan
optimization problem, we derived necessary conditions forthe
existence of an optimal solution, hinting that this condition
may be also sufficient. The facts that state estimator and



estimation error are asymptotically uncorrelated and thatthe
performance of our controller is the same as the one for TCP-
like in the lossless case point all in this direction. Probably the
most interesting finding, for practical purposes, is that control
performance is not greatly affected by lack of optimality of
the linear controller. In the next future we intend to establish
this result rigorously, therefore providing proof of optimality
of the solution within the class of linear controllers.
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