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Abstract— In this paper we study optimal estimation design
for sampled linear systems where the sensors measurements
are transmitted to the estimator site via a generic digital
communication network. Sensor measurements are subject to
random delay or might even be completely lost. We present
two time-invariant estimator architectures and, surprisingly, we
show that stability does not depend on packet delay but only
on the packet loss probability. Finally, algorithms to compute
critical packet loss probability and estimators performance in
terms of their error covariance are given and applied to some
numerical examples.

Index Terms— Optimal estimation, packet drop, random
delay, smart-sensor, stability, Kalman filtering

I. I NTRODUCTION

Recent technological advances in MEMS, DSP capabil-
ities, computing, and communication technology are rev-
olutionizing our ability to build massively distributed net-
worked control systems (NCS) [1]. These networks can
offer access to an unprecedented quality and quantity of
information which can revolutionize our ability in con-
trolling of the environment, such as fine grane building
environmental control, vehicular networks and traffic control,
surveillance and coordinated robotics. However, they also
pose challenging problems arising from the fact that sensors,
actuators and controllers are not physically co-located and
need to exchange information via a digital communication
network. In particular, measurement and control packets
are subject to random delay and loss. These problems are
particularly evident in wireless communication networks
which are rapidly replacing wired communication infrastruc-
tures in many engineering areas. This is happening because
wireless systems are easier and cheaper to deploy and
avoid cumbersome cabling and device positioning. Besides,
new technologies like wireless sensor networks (WSNs),
which are large networks of spatially distributed electronic
devices – called nodes – capable of sensing, computation
and wireless communication, will enable the development of
applications previously unfeasible [2]. For example, WSNs
have been already employed for animal habitat monitoring in
inhospitable regions [3] and forest microclimate studies [4].
These are typical example of large scale fine grain sensor
data-collection applications where information is collected
and then analyzed off-line.

However, WSN are going to be employed also for real-
time applications. For example consider a WSN deployed
in a forest whose nodes are equipped with temperature and
humidity sensors. The same network could be employed for
monitoring climate variations (data-collection application) or
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for wild-fire detection and tracking (real-time application)
[5]. Despite the fact that these two applications adopt the
same infrastructure, they obviously have different packet
delay and packet loss requirements. In fact, in data-collection
applications it is only necessary to extract all data regardless
of packet delay, while in real-time control applications both
delay and packet loss are relevant. Unfortunately, the design
of communication protocols for communication networks
has to deal with unavoidable tradeoffs between packet loss
and packet delay. In fact, communication protocols that
aim at reducing packet loss require retransmission of lost
packets and packet delivery acknowledgment, which increase
traffic and consequently delay. Viceversa, reducing time
delay requires dropping of packets to mitigate traffic and
packet collisions. Therefore, it is not trivial to design com-
munication protocols for control systems since both delay
and packet loss negatively impact estimation and closed
loop performance of controlled systems. Currently, com-
munications protocols and networked control systems are
designed separately. In particular, protocols are design based
on conservative heuristics which specify what the maximum
time delay and maximum packet loss should be, but with no
clear understanding of their impact on the overall application
performance. On the application side, control systems are
not specifically designed to exploit information about packet
loss and delay statistics of the communication protocols they
will run on. From these observations few questions arise. For
example, how should we design estimators for networked
systems that take into account simultaneous random delay
and packet loss? How can we estimate their performance?
When is the closed loop system stable? How can we choose
between a communication protocol with a large packet delay
and a small packet loss and a protocol with a small packet
delay and a large packet loss, in terms of best performance
of a specific real-time application? These are the questions
that motivate this work.

II. PREVIOUS WORK AND CONTRIBUTION

Classical control has mainly focused on systems with
constant delay [6] or with small delay perturbation known as
jitter [7]. Recently several groups have looked at networked
control systems with large random delay or packet loss. The
survey paper [8] nicely reviews several results in this area.
These results can be divided into two main groups: the first
group focuses on variable delay but no packet drop, while
the second group focuses on packet loss but no delay.

Within the first group, some authors derived stability
conditions in terms of LMIs for closed loop continuous
time linear systems with stochastic sampling time [9][10],
and Nesic at al. [11] obtained Lyapunov-like stability condi-
tions for continuous time nonlinear systems with unknown
but bounded sampling time. These works simply determine
stability for a given closed loop system, and there is no
controller synthesis specifically designed to take into account



delay. With this respect, Yue et al. [12] proposed an LMI
approach for the design of stabilizing controllers for bounded
delay, while Nilsson at al. [13] extended LQG optimal
control design to sampled linear systems subject to stochastic
measurement and control packet delay, and showed how
the optimal controller gains are time-delay dependent. The
previous results rely on the major assumption that there is no
packet loss or there are at mostm consecutive packet drops.

In the second group of results, there has been a consider-
ably effort to apply optimal control and estimation to discrete
time systems where measurements and control packets can
be dropped with some probability, but have otherwise no
delay. This framework is equivalent of saying that all packets
have either no delay or infinite delay. For example, in
[14][15][16] the authors proposed compensation techniques
for i.i.d Bernoulli packet-drop communication networks and
derived stability conditions for closed loop discrete time
system. Elia et al. [17] proposed a stochastic perturbation
approach for general MIMO LTI discrete time systems and
showed that the optimal controller design is equivalent to
solving a convex LMI optimization problem. Sinopoli at
al. [18] looked specifically at minimum variance estimation
design for packet-drop networks and showed that the optimal
estimator is necessarily time-varying, and these results have
been extended to LQG controller design in [19] and [20].

The previous two groups of results suffer from some
limitations. In fact, even with retransmission mechanisms
present in all current digital communication networks, andin
particular in the wireless ones, it is impossible to guarantee
that all packets are correctly delivered to the destination.
On the hand, in wireless sensor networks which implement
multi-hop communication, delay is not negligible and is
subject to large variations. Therefore, none of the modelings
considered so far, i.e. random delay but no packet loss and
packet loss but no delay, fully represent control systems in-
terconnected by digital communication networks. Very little
work has been done to take into account simultaneous packet
drop and packet delay, leading to somewhat conservative
results as they are based on worst-case scenarios [21] [22].

In this paper we propose a probabilistic framework to
analyze estimation where observation packets are subject to
arbitrary random delay and packet loss. This allows packets
to arrive in burst or even out of order at the receiver side,
as long as the measurements are time-stamped at the sen-
sor side. We present two alternative estimator architectures
which constrain the estimator gains to be constant rather
than stochastic as in the true optimal estimator [25]. In
particular we show how to compute the optimal constant
gains if the packet arrival statistic is stationary and known.
We derive necessary and sufficient condition for stability of
the estimator. Surprisingly we show that stability does not
depend on packet delay but only on a critical packet loss
probability which is a function of the unstable eigenvalues
of the system to be estimated. We also provide quantitative
measures for the expected error covariance of such estimators
which turns out to be the solution of modified algebraic
Riccati equations and Lyapunov equations. These measures
can be used to compare different communication protocols
for real-time control applications. Very importantly, these
results do not depend on the specific implementation of
the digital communication network (fieldbuses, Bluetooth,
ZigBee, Wi-Fi, etc .. ) as long as the packet arrival statistics
are known, i.i.d and stationary.

In the interest of space, proofs of theorems in the next
sections are omitted and are available in a longer version of
this paper in [23].

III. PROBLEM FORMULATION

Consider the following discrete time linear stochastic
plant:

xt+1 = Axt + wt (1)
yt = Cxt + vt, (2)

where t ∈ N = {0, 1, 2, . . .}, x,w ∈ R
n, y ∈ R

m,
A ∈ R

n×n, y ∈ R
m, C ∈ R

m×n, (x0, wt, vt) are
Gaussian, uncorrelated, white, with mean(x̄0, 0, 0) and
covariance(P0, Q,R) respectively. We also assume that
the pair (A,C) is observable,(A,Q1/2) is reachable, and
R > 01. Measurements are time-stamped, encapsulated into
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Fig. 1. Networked systems modeling. Sampled observations at the plant site
are transmitted to the estimator site via a digital communication network.
Due to retransmission and packet loss, observation packets arrive at the
estimator site with possibly random delay.

packets, and then transmitted through a digital communica-
tion network (DCN), whose goal is to deliver packets from
a source to a destination (see Fig. 1). Time-stamping of
measurements is necessary to reorder packets at the receiver
side as they can arrive out of order. Modern DCNs are
in general very complex and can greatly differ in their
architecture and implementation depending on the medium
used (wired, wireless, hybrid), and on the applications they
are meant to serve (real-time monitoring, data extraction,
media-related, etc ..). In our work we model a DCN as a
module between the plant and the estimator which delivers
observation measurements to the estimator with possibly ran-
dom delays. This model allows also for packets with infinite
delay which corresponds to a packet loss. We assume that
all observation packets correctly delivered to the estimator
site are stored in an infinite buffer, as shown in Fig. 1. The
arrival process is modeled via the random variableγt

k defined
as follows:

γt
k =

{

1 if yk arrived before or at timet, t ≥ k
0 otherwise

(3)
From this definition it follows that(γt

k = 1) ⇒ (γt+h
k =

1,∀h ∈ N), which simply states that if packetyk is present
in the receiver buffer at timet, then it will be present for all
future times. We also define the packet delayτk ∈ {N,∞}
for observationyk as follows:

τk =

{

∞ if γt
k = 0,∀t ≥ k

tk − k otherwise, tk
∆
= min{t | γt

k = 1}
(4)

1These assumptions can be relaxed to(A, C) detectable,(A, Q1/2)
stabilizable, andR ≥ 0, however the proofs of the following theorems
would be more convoluted, therefore we decided to adopt the stronger
hypotheses.



wheretk is the arrival time of observationyk at the estimator
site . Since the packet delay can be random, observation
measurements can arrive out of order at the estimator site
(see Fig. 2,t = 5). Also it is possible that between two
consecutive sampling periods no packet (see Fig. 2,t = 4)
or multiple packets (see Fig. 2,t = 6) are delivered. In our
work we do not consider quantization distortion due to data
encoding/decoding since we assume that observation noise
is much larger then quantization noise, as it is the case in
most DCNs where each packet allocates hundreds of bits for
measurement data2. Also we do not consider channel noise
since we assume that if any bit error incurred during packet
transmission is detected at the receiver, then the packet is
dropped. If observationyk is not yet arrived at the estimator

Fig. 2. Packet arrival sequence and buffering at the estimator location.
Shaded squares correspond to observation packets that havebeen success-
fully received by the estimator. Cursor indicates current time.

at timet, we assume that a zero is stored in thek-slot of the
buffer, as shown in Fig. 23. More formally, the value stored
in the k-slot of the estimator buffer at timet can be written
as follows:

ỹt
k = γt

kyk = γt
kCxk + γt

kvk (5)

Our goal to compute the optimal mean square estimatorx̂t|t

which is given by:

x̂t|t
∆
= E[xt | ỹt,γt, x̄0, P0] (6)

where ỹt = (ỹt
1, ỹ

t
2, . . . , ỹ

t
t) andγt = (γt

1, γ
t
2, . . . , γ

t
t). It is

important to remark that the estimator above has the infor-
mation weather a packet has been delivered or not, and it is
not equivalent to computinĝxt|t 6= x̌t|t

∆
= E[xt | ỹt, x̄0, P0].

The latter estimator would in fact consider the zero entriesof

2For example, ATM communication protocols adopts packets with 384-
bit data field, Ethernet IEEE 802.3 packets allows for at least 368 bits for
data payload, Bluetooth for 499 bits [8] and IEEE 802.15.4 for up to 1000
bits. This assumption might not hold for multimedia signal like audio and
video signals, which however are not in the scope of this work.

3In practice, any arbitrary value can be stored in the buffer slots
corresponding to the packets which have not arrived, since as it will be
shown later, the optimal estimator does not use those values asthey do not
convey any information about the statext. Our choice of storing a zero
simply reduces some mathematical burden.

the buffer as true measurements and not as dummy variables,
thus providing a lower performance. It is also useful to design
the estimator error and error covariance as follows:

et|t
∆
= xt − x̂t|t (7)

Pt|t
∆
= E[ et|te

T
t|t | ỹt,γt, x̄0, P0] (8)

The estimatêxt|t is optimal in the sense that it minimizes the
error covariance, i.e. given any estimatorx̃t|t = f(ỹt,γt),
wheref is a measurable function, we always have

E[(xt − x̃t|t)(xt − x̃t|t)
T | ỹt,γt, x̄0, P0] ≥ Pt|t.

Another property of the mean square optimal estimator is
that x̂t|t and its erroret|t

∆
= xt − x̂t|t are uncorrelated, i.e.

E[et|t x̂T
t|t] = 0. This is a fundamental property since it gives

rise to the separation principle for the LQG optimal control,
which is of the most widely used tool in control system
design [24] [20].

IV. OPTIMAL FILTERING WITH CONSTANT GAINS

In this section we will study minimum error covari-
ance filters with constant gains under stationary i.i.d arrival
processes.
Assumption:The packet arrival process at the estimator site is
stationary and i.i.d. with the following probability function:

P[τt ≤ h] = λh (9)

where t ≥ 0, and0 ≤ λh ≤ 1 is a non-decreasing inh =
0, 1, 2, . . ., andτt was defined in Equation (4).

Equation (9) corresponds to the probability that a packet
sampled h time steps ago has arrived at the estimator.
Obviously, λh must be non-increasing sinceλh = P[τt ≤
h − 1] + P[τt = h] = λh−1 + P[τt = h].

Also, we define the packet loss probability as follows:

λloss
∆
= 1 − sup{λh|h ≥ 0} (10)

The arrival process defined by Equation (9) can be also be
defined with respect to the probability density of packet
delay. In fact, by definition we haveP[τk = 0] = λ0,
P[τk = h] = λh − λh−1 for h ≥ 1, andP [τk = ∞] = λloss.

Finally, we define the maximum delay of arrived packets
as follows:

τmax
∆
=

{

min{H|λH =λH+1} if ∃H s.t. λh = λH ,∀h ≥ H
∞ otherwise

(11)
Fig. 3 shows some typical scenarios that can be modeled.

Scenario (A) corresponds to a deterministic process where
all packets are successfully delivered to the estimator with
a constant delay. This scenario is typical of wired systems.
Scenario (B) models a DCN that guarantees delivery of all
packets within a finite time windowτmax, but the delay is
not deterministic. This is a common scenario in drive-by-wire
systems. Scenario (C) represents a DCN which drops packets
that are older thanτmax and consequently a fractionλloss >
0 of observations is lost. This scenario is often encountered
in wireless sensor networks. Scenario (D) corresponds to
a DCN with no packet loss but with unbounded random
packet delay. One example of such a scenario is a DCN that
continues to retransmit a packet till it not delivered and the
transmission channel is such that the packet is not delivered
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Fig. 3. Probability function of arrival processλh = P[τk ≤ h] for different
scenarios: deterministic packet arrival with fixed delay (A); bounded random
packet delay with no packet loss (B); bounded random packet delay with
packet loss (C); unbounded random packet delay with no packet loss (D).

correctly with a probabilityǫ. Simple calculations show that
in this caseλh = 1 − ǫh.

In the rest of the paper we will use the following definition
of stability for an estimator.
Definition: Let x̃t|t = f(ỹt,γt) be an estimator, and̃et|t =

xt − x̃t|t and P̃t|t = E[ẽt|tẽ
T
t|t|ỹt,γt] its error and error

covariance, respectively. We say that the estimator is mean-
square stable stable if and only iflimt→∞ E[ẽt|t] = 0 and
E[P̃t|t] ≤ M for someM > 0 and for all t ≥ 1.

The previous definition can be rephrased in terms of the
moments of the estimator error. In fact the conditions above
are equivalent tolimt→∞ E[||ẽt|t||] = 0 and E[ ||ẽt|t||

2] ≤
trace(M).

Let us consider the following static-gain estimatorx̃t|t =
x̃t

t|t with finite-buffer of dimensionN , where x̃t
t|t is com-

puted as follows:

x̃t
t−k|t−k = Ax̃t

t−k−1|t−k−1 +

+ γt
t−kKk(ỹt

t−k − CAx̃t
t−k−1|t−k−1) (12)

x̃t
t−N |t−N = x̃t−1

t−N |t−N (13)

x̃t
−k|−k = x̄0, γt

−k = 0, ỹt
−k = 0 (14)

for k = N − 1, . . . , 0, where the last line include some
dummy variables necessary to initialize the estimator for
t = 1, . . . , N .

In was shown in [25] and [23], the optimal choice of the
gains is given by the following theorem:

Theorem 1:Let us consider the stochastic linear system
given in Equations (1)-(2), where(A,C) is observable,
(A,Q1/2) is controllable, andR > 0. Also consider the
arrival process defined by Equations (9)-(11), and the set of
estimators with constant gains{Kk}

N
k=0 defined in Equa-

tions (12)-(14). If A is not strictly stable andλloss ≥
1−λc, whereλc depends onA,C, then there exist no stable
estimator with constant gains. Otherwise, letN such that
λN > λc and consider the optimal gains{KN

k }N
k=0 defined

as follows:

KN
k = V N

k CT (CV N
k CT+R)−1, k = 0, . . . , N(15)

V N
N−1 = ΦλN−1

(V N
N−1) (16)

V N
k = Φλk

(V N
k+1), k = N − 1, . . . , 0 (17)

Φλ(P ) = APAT+Q−λAPCT(CPCT +R)−1CPAT (18)

Also let us defineP
t

k+1|k = E[(xk+1 − x̃t
k+1|k)(xk+1 −

x̃t
k+1|k)T ], then limt→∞ P

t

t−k+1|t−k = V N
k , independently

of initial conditions(P0, x̄0). For any other choice of gains
{Kk}

N
k=0 for which the following equations exist:

TN
N = LλN

(KN , TN
N ) (19)

TN
k = Lλk

(Kk, TN
k+1), k = N−1, . . . , 0 (20)

Lλ(K,P ) =λA(I−KC)P (I−KC)T AT +

+(1−λ)APAT + Q+λAKRKT AT (21)

then limt→∞ P
t

t−k+1|t−k = TN
k , and V N

k ≤ TN
k for k =

0, . . . , N . Also V N+1
0 ≤ V N

0 . Finally, if τmax < ∞, then
V N

0 = V τmax

0 for all N ≥ τmax.
The previous theorems shows that the optimal gains can

be obtained by finding the fixed point of a modified al-
gebraic Ricatti Equation (16) and then iteratingN time
an operator with the same structure but with differentλk.
The theorem also demonstrates that a stable estimator with
static gains exists if and only if the optimal estimator with
static gains exists, therefore the optimal estimator design
implicitly solves the problem of finding stable estimators.If
the system to be estimated is unstable, then the estimator
is stable if and only if the packet loss probabilityλloss

is sufficiently small. This is a remarkable result since it
implies that stability of estimators does not depend on the
packet delayτmax as long as most most of the packets
eventually arrive. Another important result is that the perfor-
mance of the estimator, i.e. its steady state error covariance
limt→∞ Pt+1|t = limt→∞ E[et+1|te

T
t+1|t] = V N

0 , improves
as the buffer lengthN is increased. However, if the maximum
packet delay is finiteτmax < ∞, then the performance of
the estimator does not improve forN > τmax.

V. OPTIMAL ESTIMATOR FOR CO-LOCATED SMART
SENSORS

In this section we describe an alternative coding at the
sensor location which improves the overall performance of
the estimator at the controller side. This scheme was inde-
pendently proposed in [26] and [27] where it was suggested
to compute and transmit the state estimate rather than the
raw measurement at the sensor. As will be shown shortly,
this approach gives an estimator with a better performance,
however it is applicable only if some computational resources
are available on the sensor, commonly known as ”smart
sensor”, and when all entries of the observation vectoryt are
collected from sensors which are collocated. For example,
this scenario is rarely the case in applications running over
sensor networks where sensor are distributed and have very
limited computation resources [28].
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Fig. 4. Smart sensor with state estimator at encoder before transmission.

Rather than sensing the raw measurementsyt over the
DCN the sensor compute the optimal state estimate as



follows:

x̂e
t = Ax̂e

t−1 + Ke
t (yt − Ax̂e

t−1) (22)

Ke
t = P e

t CT (CP e
t CT + R)−1 (23)

P e
t+1 = AP e

tA
T+Q−AP e

t CT(CP e
t CT+R)−1CP e

tA
T(24)

= Φ1(Pt)

P e
0 = P0, x̂e

0 = x̄0 (25)

These are the equations for the standard Kalman filter, i.e. the
minimum error covariance estimatorx̂e

t = E[xt | yt, . . . , y1]
whose estimation erroree

t = xt+1 − Ax̂e
t has covariance

cov(ee
t ) = E[ee

te
eT

t | yt, . . . , y1] = P e
t . The state estimate

computed by the sensor encoder is then transmitted over the
DCN to the decoder estimator. Using the same notation of
Equation (5) the value stored at the buffer can be written as
follows:

ỹt
k = γt

kx̂e
k (26)

Let us define the delay of the most recent packet arrived at
the decoder estimator asκt = t − max{k | γt

k = 1} if ∃γt
k =

1, or κt = t otherwise. The estimate of current state at the
decoder estimator̂xd

t is computed as follows:

x̂d
t = Aκt ỹt

t−κt
= Aκt x̂e

t−κt
(27)

Note that the decoder estimate is equivalent tox̂d
t =

E[xt | yt−κt
, . . . , y1] and that the its errored

t = xt+1 − Ax̂d
t

has covariance:

cov(ed
t ) = E[ed

t e
dT

t | yt−κt
, . . . , y1]

= Φt−κt

0 (P e
t−κt

) = Φt−κt

0 ◦ Φκt

1 (P0),

where the superscript ofΦn
λ(P ) indicatesΦλ ◦ · · · ◦ Φλ(P )

composedn-times. Therefore, the decoder estimator error
at any time stept is equivalent to the optimal estimator
that one would obtain if all observations up to timet − κt

were successfully delivered. This estimation architecture is
clearly superior to the estimation architecture proposed in
the previous section. Besides having a better performance,
the estimator proposed in this section requires very limited
computational requirements at the receiver side, in fact it
suffices to store the most recent packet arrived at the receiver
and then to compute the best state estimate at current time by
pre-multiplying the packet data with a matrix which depend
on the packet delay.

However, if the packet arrival statistics are stationary
and i.i.d, then it is possible to give stability criteria and
to compute the expected error covariance as shown in the
following theorem:

Theorem 2:Let us consider the stochastic linear system
given in Equations (1)-(2), where(A,C) is observable,
(A,Q1/2) is controllable, andR > 0. Also consider the ar-
rival process defined by Equations (9)-(11), and the estimator
architecture given by Equations (22)-(27). Then the estimator
is stable if and only ifA is stable, orλloss ≥ 1

maxi |σu

i
(A)|2 ,

whereσu
i (A) are the unstable eigenvalues of the matrixA. If

the estimator is stable then the covariance of the estimation
error defined ased

t = xt+1−Axd
t has the following property:

lim
t→∞

E[ed
t e

dT

t ] = D∞ = lim
N→∞

DN
0 (28)

where the matrixDN
0 is computed as follows:

DN
N = (1−λN )ADN

N AT +(1−λN )Q+λNP e
∞ (29)

DN
k = (1−λk)ADN

k+1A
T +(1−λk)Q+λkP e

∞ (30)

for k = N − 1, . . . , 0 where Pkln is the unique positive
definite fixed point of the Ricatti EquationP e

∞ = Φ1(P
e
∞).

If τmax < ∞, thenD∞ = Dτmax

0 = DN
0 , for all N ≥ τmax.

VI. N UMERICAL EXAMPLES

Here we illustrate the use of the tools developed in the
previous sections with the aid of some numerical examples.

Let us consider the following probability function of
packet delay:

λh =

{

0.05h, h = 0, . . . , 15
0.75, h > 15

(31)

Let us consider the following discrete time system:

A =

[

1.00 0.05
0.05 1.00

]

,
C = [ 1 0 ]
R = 0.01

, Q =

[

0 0
0 0.01

]

(32)
which corresponds to the discretization with sampling period
T = 0.05 of the continuous time system̈x − x = 0. This
system has one stable pole and one unstable pole, and it
is the model for the discrete time dynamics of an inverted
pendulum. The discrete time eigenvalues of the matrixA
areeig(A) = (1.05, 0.95), which give the critical probability
λc = 1 − 1/1.052 = 0.095, as follows from Theorem 2
in [23]. According to Theorem 1 and 2 in this paper the
estimator is stable if and only ifN ≥ 2, in fact λ1 = 0.05 <
λc andλ2 = 0.01 > λc.

The trace of the covariance of the estimator error with
constant gains,V N

0 , and the estimator error for smart sensors,
DN

0 are shown in Fig. 5. It is interesting to compare the
performance of these estimators with the error covariance
P e
∞ = Φ1(P

e
∞), shown in the same figure, corresponding to

the ideal case when there is no packet loss and no delay.
In fact, P e

∞ gives an idea of the degradation due to the
communication network. It is also relevant to evaluate the
performance of an estimator with constant gains designed
without exploiting the prior knowledge about the packet
arrival statistics. A natural choice is to use the standard
Kalman gainKe

∞ = P e
∞CT (CP e

∞CT + R)−1, i.e. Kk =
Ke

∞, k = 0, . . . , N rather than the optimal constant gains
KN

k defined in Theorem 1. The corresponding expected error
covarianceTN

0 can be obtained by Equations (19)-(21) and it
is shown in Fig. 5. From this example it is clear that the tools
developed in this paper can help to substantially reduce the
degradation of performance when statistics of packet arrival
are available.

VII. C ONCLUSIONS

In this work we proposed a framework to optimally
design and analyze the performance of estimators based on
finite memory buffers and constant gains, and it was shown
that if packet arrival is i.i.d., then the estimators are mean
square stable if and only if the packet loss probability is
below a critical value. Therefore, implicitly we also provided
necessary and sufficient conditions about existence of stable
estimators. Finally, we presented numerical algorithms for
the computation of the expected estimator error covariance
of all the proposed estimators.

The tools developed in this paper are useful both from a
control system design perspective and from a communication
design perspective. In fact, from a control perspective they
can help to evaluate the tradeoffs between performance
(error covariance), memory requirements (buffer length),
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corresponds to the trace of the error
covariance in the ideal scenario with no delay and no packet loss, i.e.
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∞

. The error covariancesV N
0
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are unbounded for
N < 2, while the covarianceP e

∞
is unbounded forN < 4, and they are

all cosnstant constant forN ≥ τmax = 15.

and the hardware resources (“smart” sensor and fast ma-
trix inversion). In particular, the knowledge of the packet
arrival statistics can be used to find the optimal constant
gains {KN

k }N
k=0 and thus improving performance. From a

communication perspective, these tools can be used to aid
communication protocol design for real-time applications.
In fact, as mentioned in Section I, when designing commu-
nication protocols, in particular for wireless systems, there
is tradeoff between packet loss and packet delay. At the
moment, the choice between favoring reduction of overall
packet delay or reduction of packet loss is based on heuristics
and experience, and it is not tailored to the specific real-time
applications. Therefore, being able to quantitatively measure
performance of different protocols can improve cross-layer
design of complex networked control systems.

A possible future avenue of research is the extension of
this work to the design of optimal LQG-like controller de-
sign. This is not a trivial step as many important assumptions
in standard LQG control, like the separation principle, do
not always hold for NCSs [20]. Another research direction
is the implementation and testing of these tools in real-
time control applications for wireless sensor networks. A
preliminary attempt has already been successfully applied
to multiple target tracking [29], but extensive experimental
work is still needed.
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