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Abstract—In this paper we study optimal estimation design for wild-fire detection and tracking (real-time applicat)o
for sampled linear systems where the sensors measurements[5]. Despite the fact that these two applications adopt the
are transmitted to the estimator site via a generic digital game infrastructure, they obviously have different packet

communication network. Sensor measurements are subject to . . .
random delay or might even be completely lost. We present delay and packet loss requirements. In fact, in data-dodiec

two time-invariant estimator architectures and, surprisingly, we ~ applications it is only necessary to extract all data relgasd
show that stability does not depend on packet delay but only of packet delay, while in real-time control applicationgtbo
on the packet loss probability. Finally, algorithms to compute  delay and packet loss are relevant. Unfortunately, thegdesi
critical packet loss probability and estimators performance in ¢t ~ommunication protocols for communication networks

F]eurm:riocfa}hee)g%rrr)cl)ersc.;ovanance are given and applied to some has to deal with unavoidable tradeoffs between packet loss

Index Terms— Optimal estimation, packet drop, random and packet delay. In fact, communication protocols that

delay, smart-sensor, stability, Kalman filtering aim at reducing packet loss require retransmission of lost
packets and packet delivery acknowledgment, which inereas
. INTRODUCTION traffic and consequently delay. Viceversa, reducing time

Recent technological advances in MEMS, DSP capabil yet collisions. Therefore, it is not trivial to designnco

|t||es_, computing, S—Td congm_tjdnlcanor) t?Chdr?OIng a:jre '®Vmunication protocols for control systems since both delay
outLondlzmg oulr ability to l\llJICS ma:tlssn_/l_ehy Istribute ktne and packet loss negatively impact estimation and closed
wf?r e contr? systems ( g )t [ d]' Ftse ngtwor st.tca op performance of controlled systems. Currently, com-
offer access 1o an unprecedented quality and quantity §fnications protocols and networked control systems are
information which can revolutionize our ability in con- yogigned separately. In particular, protocols are desiged
trolling of tthel en\tllr(?nm?]nt, ISUCht as kflne 3;6‘”;’. bm:?tln n conservative heuristics which specify what the maximum
environmental control, venicuiar nelworks and traiic Cont  yime gelay and maximum packet loss should be, but with no
surveillance and coordinated robotics. However, they al§aa; nderstanding of their impact on the overall appiticat
pose challenging problems arising from the fact that S&Nsol e tormance. On the application side, control systems are
actuators and controllers are not physically co-located any qhecifically designed to exploit information about ptck
need to exchange information via a digital commumcaﬂolgss and delay statistics of the communication protocay th

networlg: I? tpartlcglar, (;n?asureénlent a?ﬂ controlblpacke ill run on. From these observations few questions arise. Fo
are subject to random delay and 10Ss. These problems aes mpie  how should we design estimators for networked
particularly evident in wireless communication network

hich idl laci ed ication infrast’ Ssystems that take into account simultaneous random delay
which are rapidly replacing wired communication INfrastiu 5,4 haciket loss? How can we estimate their performance?
tures in many engineering areas. This is happening becayggen, js the closed loop system stable? How can we choose
wireless systems are easier and cheaper to deploy ween a communication protocol with a large packet delay
avoid cumbersome cabling and device positioning. Beside,

technolodies ik el works (WSN nd a small packet loss and a protocol with a small packet
new technologies like wireless sensor networks (WSNSsgeiay and a large packet loss, in terms of best performance
which are large networks of spatially distributed eleciton

, . .of a specific real-time application? These are the questions
devices — called nodes — capable of sensing, computati P PP q

. o2 ; t motivate this work.
and wireless communication, will enable the development o
applications previously unfeasible [2]. For example_, WSNs Il. PREVIOUSWORK AND CONTRIBUTION
have been already employed for animal habitat monitoring in ~|5ssical control has mainly focused on systems with

inhospitable regions [3] and forest microclimate studils [ oonstant delay [6] or with small delay perturbation known as
These are typical example of large scale fine grain sens@fer (7] Recently several groups have looked at netwdrke
data-collection applications where information is Cal&E o1 systems with large random delay or packet loss. The

and then analyzed off-line. b loved also f Isurvey paper [8] nicely reviews several results in this area
However, WSN are going to be employed also for realrhege results can be divided into two main groups: the first

time applications. For example consider a WSN deployego,, focuses on variable delay but no packet drop, while
in a _fo_rest whose nodes are equipped with temperature ajg, second group focuses on packet loss but no delay.
humidity sensors. The same network could be employed for \yithin the first group, some authors derived stability
monitoring climate variations (data-collection applioa) or  .,nqitions in terms of LMIs for closed loop continuous
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schenat o@lei . uni pd. it controller synthesis specifically designed to take intamaat

\ﬁelay requires dropping of packets to mitigate traffic and



delay. With this respect, Yue et al. [12] proposed an LMI In the interest of space, proofs of theorems in the next
approach for the design of stabilizing controllers for bdedh sections are omitted and are available in a longer version of
delay, while Nilsson at al. [13] extended LQG optimalthis paper in [23].

control design to sampled linear systems subject to sttichas

measurement and control packet delay, and showed how [1l. PROBLEM FORMULATION

the optimal controller gains are time-delay dependent. The cqngiger the following discrete time linear stochastic

previous results rely on the major assumption that there is 'blant:
packet loss or there are at mastconsecutive packet drops.

In the second group of results, there has been a consider- Tey1 = Azt wy 1)
ably effort to apply optimal control and estimation to dister vy = Cxp+ v, @)
time systems where measurements and control packets can ’
be dropped with some probability, but have otherwise naheret ¢ N = {0,1,2,...}, z,w € R", y € R™,
delay. This framework is equivalent of saying that all pdske A ¢ R"*", y € R™, C € R™", (xg,ws,v;) are
have either no delay or infinite delay. For example, irGaussian, uncorrelated, white, with me&ny,0,0) and
[14][15][16] the authors proposed compensation techriqueovariance (P,, Q, R) respectively. We also assume that
for i.i.d Bernoulli packet-drop communication networksdan the pair (A, C) is observable A, Q'/?) is reachable, and

derived stability conditions for closed loop discrete timer > ol. Measurements are time-stamped, encapsulated into
system. Elia et al. [17] proposed a stochastic perturbation

approach for general MIMO LTI discrete time systems anc'

showed that the optimal controller design is equivalent tc " PLANT 2 ESTIMATOR
solving a convex LMI optimization problem. Sinopoli at v—t“ erps = Arytun | 2EC Commanieaton Bulter |2
al. [18] looked specifically at minimum variance estimation —|__w=Cn+u Netwrork [ro]valvalo [ve[ 0F * **

design for packet-drop networks and showed that the optimw.

estimator is necessarily time-varying, ,and, these resalie h Fig. 1. Networked systems modeling. Sampled observationg gidmt site

been extended to LQG controller design in [19] and [20]. are transmitted to the estimator site via a digital communinatietwork.
The previous two groups of results suffer from soméue to retransmission and packet loss, observation packete at the

limitations. In fact, even with retransmission mechanism&>timater site with possibly random delay.

present in all current digital communication networks, and

particular in the wireless ones, it is impossible to guaant packets, and then transmitted through a digital communica-
that all packets are correctly delivered to the destinatiofion network (DCN), whose goal is to deliver packets from
On the hand, in wireless sensor networks which implemest source to a destination (see Fig. 1). Time-stamping of
multi-hop communication, delay is not negligible and ismeasurements is necessary to reorder packets at the receive
subject to large variations. Therefore, none of the modslin side as they can arrive out of order. Modern DCNs are
considered so far, i.e. random delay but no packet loss afl general very complex and can greatly differ in their
packet loss but no delay, fully represent control systems iyrchitecture and implementation depending on the medium
terconnected by digital communication ne.tworks. Veryitt ysed (wired, wireless, hybrid), and on the applicationy the
work has been done to take into account simultaneous packgé meant to serve (real-time monitoring, data extraction,
drop and packet delay, leading to somewhat conservatiygedia-related, etc ..). In our work we model a DCN as a
results as they are based on worst-case scenarios [21] [28}odule between the plant and the estimator which delivers

In this paper we propose a probabilistic framework t@bservation measurements to the estimator with possihly ra
analyze estimation where observation packets are suliiectdom delays. This model allows also for packets with infinite
arbitrary random delay and packet loss. This allows packegiglay which corresponds to a packet loss. We assume that
to arrive in burst or even out of order at the receiver sideall observation packets correctly delivered to the estimat
as long as the measurements are time-stamped at the ssife are stored in an infinite buffer, as shown in Fig. 1. The
sor side. We present two alternative estimator architesturarrival process is modeled via the random variafjleefined
which constrain the estimator gains to be constant rathgg follows:
than stochastic as in the true optimal estimator [25]. In . ) .
particular we show how to compute the optimal constant ¢ _ { 1 if y, arrived before or at time, ¢ > k
gains if the packet arrival statistic is stationary and know ¥ 0 otherwise
We derive necessary and sufficient condition for stability o ] o . h 3)
the estimator. Surprisingly we show that stability does ndtrom this definition it follows that(y, = 1) = (v, =
depend on packet delay but only on a critical packet losk ¥ € N), which simply states that if packey; is present
probability which is a function of the unstable eigenvalued the receiver buffer at time, then it will be present for all
of the system to be estimated. We also provide quantitatijéture times. We also define the packet defaye {N, oo}
measures for the expected error covariance of such estisnatér observationy;. as follows:
which turns out to be the solution of modified algebraic e

X . : . 00 if v =0,Vt >k
Riccati equations and Lyapunov equations. These measures, — { k= "
can be used to compare different communication protocols bk —k otherwise ¢ = min{t | 7} = 1}
for real-time control applications. Very importantly, Hee )
results do not depend on the specific implementation of

the digital communication network (fieldbuses, Bluetooth, ‘These assumptions can be relaxed (i, C') detectable (A, Q'/?)
Stabilizable, andR > 0, however the proofs of the following theorems

ZigBee, Wi"_:_i’ etc ..) as_ long as the packet arrival stassti would be more convoluted, therefore we decided to adopt thenger
are known, i.i.d and stationary. hypotheses.



wherety, is the arrival time of observation, at the estimator the buffer as true measurements and not as dummy variables,
site . Since the packet delay can be random, observatitimus providing a lower performance. It is also useful to gesi
measurements can arrive out of order at the estimator sitee estimator error and error covariance as follows:

(see Fig. 2,t = 5). Also it is possible that between two A .
consecutive sampling periods no packet (see Fig.=2,4) e = Ty — Ty (7)
or multiple packets (see Fig. 2,= 6) are delivered. In our Py A E[et\teat | §67,, %o, o] ®)

work we do not consider quantization distortion due to data

encoding/decoding since we assume that observation noisge estimate, |, is optimal in the sense that it minimizes the

is much larger then quantization noise, as it is the case Bror covariance, i.e. given any estimaty, = (5, 7:),
most DCNs where each packet allocates hundreds of bits f@here f is a measurable function, we always have

measurement dataAlso we do not consider channel noise

since we assume that if any bit error incurred during packet E[(zt — Zye) (2 — jt‘t)T | ¥t:7¢, To, Po] > Py
transmission is detected at the receiver, then the packet is . ) )
dropped. If observatio;, is not yet arrived at the estimator Another property of the mean square optimal estimator is

~ . A - .
that #,, and its errore,, = x; — &, are uncorrelated, i.e.

Eles ¢ 2};,] = 0. This is a fundamental property since it gives
. rise to the separation principle for the LQG optimal control
t:3l ° which is of the most widely used tool in control system
T design [24] [20].
wal fvsl [ | [ ¢
t_4l IV. OPTIMAL FILTERING WITH CONSTANT GAINS
T In this section we will study minimum error covari-
|y1| |y3| | | | : ance filters with constant gains under stationary i.i.dvatri
- 5l processes.
: AssumptionThe packet arrival process at the estimator site is
|l/1|y2|3/3| | | | ! stationary and i.i.d. with the following probability furiah:
t=6 Plry < ] = A ©)
|y1|y2|y3|y4| |y6| : wheret > 0, and0 < )\, < 1 is a non-decreasing ih =
R 0,1,2,..., andr; was defined in Equation (4).
. Equation (9) corresponds to the probability that a packet
° sampled h time steps ago has arrived at the estimator.

Obviously, A\, must be non-increasing since, = P[r; <
h—1]+ P =h] = Ap—1 + Pz = h].

Fig. 2. Packet arrival sequence and buffering at the estimatation. Also. we define the packet loss probability as follows:
Shaded squares correspond to observation packets thabblemesuccess- ! ’

fully received by the estimator. Cursor indicates curremieti

Aoss = 1 —sup{\n|h > 0} (10)

at timet, we assume that a zero is stored in thslot of the  The arrival process defined by Equation (9) can be also be
buffer, as shown in Fig.2 More formally, the value stored defined with respect to the probability density of packet

in the k-slot of the estimator buffer at timecan be written delay. In fact, by definition we hav@[r, = 0] = o,
as follows: Pl = h] = A\ — Ap—1 for h > 1, and P, = 00] = Ajpss-
i . . . Finally, we define the maximum delay of arrived packets
Uk = MYk = 10Tk + vk ()  as follows:
Our goal to compute the optimal mean square estimgipr Afmin{HAg=Aga} if 3H st. A\, = Ag,Vh > H
which is given by: Tmaz :{oo otherwise -
o1 2 Elar | §17,0 20, R ©® - - )
Leje T 1 Y6, 7 %o, 1o Fig. 3 shows some typical scenarios that can be modeled.
wherey, = (gt 45, ...,3¢) andy, = (7,4%,...,41). Itis  Scenario (A) corresponds to a deterministic process where

important to remark that the estimator above has the infofll packets are successfully delivered to the estimaton wit

mation weather a packet has been delivered or not, and itdsconstant delay. This scenario is typical of wired systems.
. . . A ~
o cquivalent (0 computng,, # 7y, 2 i | 510, 7, Soopen, ) models 2 DON thal guaraniecs dlvery of al
The latter estimator would in fact consider the zero entrfes — o mazs VU T .
not deterministic. This is a common scenario in drive-byewi

2For example, ATM communication protocols adopts packets wa#-3 Systems. Scenario (C) represents a DCN which drops packets
bit data field, Ethernet IEEE 802.3 packets allows for atti&8 bits for  that are older than,,., and consequently a fractioq,s >
data payload, Bluetooth for 499 bits [8] and IEEE 802.15#4up to 1000 ; ; ; i
bits. This assumption might not hold for multimedia signal likedi@ and 0 of _Observatlons is lost. This Scenam.) is often encountered
video signals, which however are not in the scope of this work in wireless sensor networks. Scenario (D) corresponds to

3In practice, any arbitrary value can be stored in the buffietss a DCN with no packet loss but with unbounded random
corresponding to the packets which have not arrived, siscé will be packet delay One example of such a scenario is a DCN that
shown later, the optimal estimator does not use those valudgegpsio not . ' . o .
convey any information about the state. Our choice of storing a zero Continues to retransmit a packet till it not delivered ane th

simply reduces some mathematical burden. transmission channel is such that the packet is not detivere



. =t ~
A (A) A (B) Also let us deflnePkHlk. = E[(zr41 — x?@+1\k)(xk+1 _

S — e : 7L )" thenlimy o Py, y, , = V;, independently
Tmaz ; i/rnm of init]i\?l conditiqns(PO,:Eo). For any other cho_icg of gains
T ; S ; {K}x},_, for which the following equations exist:
A ©) A (D) TN = Lay(En,TY) (19)
1 Niows T L Y = L (KiTH,), k=N-1,...,0 (20)
| jTmas Tomaz =00 LA(K,P) =M(I-KC)P(I-KC)TAT +
0i33as8..> : 0i13345.> : H1-NAPAT + Q+NAKRKT AT (21)

: Bt _ TN N N —
Fig. 3. Probability function of arrival process, = P[r, < h] for different then lim; o Pt—k+1|t—’<~‘ =T ! and Vk < T for k =
scenarios: deterministic packet arrival with fixed delay; @9unded random (,..., N. Also V™' < VN, Finally, if 7,,.. < oo, then
packet delay with no packet loss (B); bounded random paodietydwith VN — ymaes for all N > 7
packet loss (C); unbounded random packet delay with no paage (D). o_—"%0 — 'max- . .
The previous theorems shows that the optimal gains can
be obtained by finding the fixed point of a modified al-
gebraic Ricatti Equation (16) and then iteratidg time

correctly with a probability. Simple calculations show that an operator with the same structure but with differapt

in this case\, = 1 — €". The theorem also demonstrates that a stable estimator with
In the rest of the paper we will use the following definitionstatic gains exists if and only if the optimal estimator with

of stability for an estimator. static gains exists, therefore the optimal estimator desig

Definition: Let Z,; = f(¥:,~,) be an estimator, ang,; = implicitly solves the problem of finding stable estimatdfs.

its error and error the system to be estimated is unstable, then the estimator
aiﬁ staplg if and only if.thg packet loss probability_oss _
square stable stable if and only lifn E[&,] = 0 and IS syfﬁuently small. This is a remarkable result since it
~ t—oo =(Et|t implies that stability of estimators does not depend on the
E[Py,] < M for some)M > 0 and for allt > 1. packet delayr,,., as long as most most of the packets

The previous definition can be rephrased in terms of th@ventually arrive. Another important result is that thefper
moments of the estimator error. In fact the conditions abovg,;nce of the estimator. i.e. its steady state error covagian

: : ror. Nt ditior _
are equivalent tdim; .. E[|[é;[|]] = 0 and E[|[|é;||?] < im0 Pyt = limy o0 E[€t+1\t6tT+1|t] = VN, improves
trace(M). as the buffer lengthV is increased. However, if the maximum

Let us c_:olnsider the foII'owing.static-gain eStim.anrt ~ packet delay is finiter,,,, < oo, then the performance of
z!,, with finite-buffer of dimensionV, Wherefcilt IS COM-  the estimator does not improve foF > Tyax.

puted as follows:

e — Ty and Py = E[éﬂtéat‘g’t,’)’t]
covariance, respectively. We say that the estimator is me

~t e
Ty_gp—ry = ATy qp_p1 +

+ v K (T — CAi'kautfkq) (12)

V. OPTIMAL ESTIMATOR FOR COGLOCATED SMART
SENSORS

¢ 1 In this section we describe an alternative coding at the
Ti-Nig-N = T Njg-N (13)  sensor location which improves the overall performance of
ft—k\—k = Zo, v, =0, 7, =0 (14) the estimator at the controller side. This scheme was inde-
pendently proposed in [26] and [27] where it was suggested

for k = N—1,...,0, where the last line include someto compute and transmit the state estimate rather than the
dummy variables necessary to initialize the estimator fataw measurement at the sensor. As will be shown shortly,

t=1,...,N. this approach gives an estimator with a better performance,
In was shown in [25] and [23], the optimal choice of thehowever it is applicable only if some computational researc
gains is given by the following theorem: are available on the sensor, commonly known as "smart

Theorem 1:Let us consider the stochastic linear systensensor”, and when all entries of the observation vegtare
given in Equations (1)-(2), wheréA, C) is observable, collected from sensors which are collocated. For example,
(A,Q'?) is controllable, andR > 0. Also consider the this scenario is rarely the case in applications running ove
arrival process defined by Equations (9)-(11), and the set 8ensor networks where sensor are distributed and have very
estimators with constant gaingk} , defined in Equa- limited computation resources [28].
tions (12)-(14). If A is not strictly stable and\;,ss >
1— X, where), depends oM, C, then there exist no stable
estimator with constant gains. Otherwise, I8t such that PLANT+ ENCODER

. X . . W] SENSOR |yt |ESTIMATOR [t
An > . and consider the optimal gaifd<}Y }2_, defined 3, e = aee+ [ e, - 4 50

DECODER
ESTIMATOR | ¢4

8)

Digital
Communication
Network

e
Tt h

7d — phze
Ty = A ‘T;h

as follows: — y=cutu| | a=u-on
N N ~T N —1 _
[]\fk = VC (ijk CT+R) , k=0,..., N(15) Fig. 4. Smart sensor with state estimator at encoder befanertrigsion.
Vo = @y (Voy) (16)
N N —
Vil = ®n(Viia), k=N-1,....0 @n Rather than sensing the raw measuremenpt®ver the

®\(P) =APA"+-Q—-\APC(CPC" +R/'CPA"(18) DCN the sensor compute the optimal state estimate as



follows: for k = N —1,...,0 where P, is the unique positive
definite fixed point of the Ricatti EquatioRS, = ®;(P%).

o = AT+ Ki(ye — Aty (22) If Tynaz < 00, thenD> = Dimae = DIV, for all N > 7,0,
ki = PfCT(CPfCT R (23) VI. NUMERICAL EXAMPLES
e eAT e 1} e ~T —1 ep 1y .
Fin _AgtAP+Q APFCACF O R)"OPAN(24) Here we illustrate the use of the tools developed in the
= O t)A previous sections with the aid of some numerical examples.
Py = P, #5=20 (25) Let us consider the following probability function of
These are the equations for the standard Kalman filterhiee. tPacket delay:
minimum error covariance estimatéf = E[z |y, ..., y1] 0.05h. h=0 15
whose estimation erroef = z,,; — A#§ has covariance An = { 075. h>15 (31)
cov(ef) = Ele¢ed” |y, ..., ;] = Pf. The state estimate ’

computed by the sensor encoder is then transmitted over thd-et us consider the following discrete time system:

DCN to the decoder estimator. Using the same notation of 100 0.05 C=[1 0] 0 0

Equatl(?n (5) the value stored at the buffer can be written ag — { 0.05 1.00 ] R —001 , Q= { 0 001

follows: (32
Uh = V% (26)

which corresponds to the discretization with samplingqari
Let us define the delay of the most recent packet arrived &t = 0.05 of the continuous time systetia — x = 0. This

the decoder estimator as = ¢t — max{k |+, = 1} if 37f = system has one stable pole and one unstable pole, and it
1, or k; = t otherwise. The estimate of current state at thi the model for the discrete time dynamics of an inverted
decoder estimatoty is computed as follows: pendulum. The discrete time eigenvalues of the mattix
nd _ ARest  _ ARise areeig(A) = (1.05,0.95), which give the critical probabilit
Ty = AMg_ o, = AT, @n 5, = g —) 1/(1.052 = ()).095, asgfollows from Tpheorem)é
Note that the decoder estimate is equivalentith = in [23]. According to Theorem 1 and 2 in this paper the
E[z¢ | Yi—x,,---,y1] and that the its erroed =z, — A2¢  estimator is stable if and only i¥ > 2, in fact A\; = 0.05 <
has covariance: Ae and Ay = 0.01 > A..
d d.d” The trace of the covariance of the estimator error with
cov(ey) = Egej,ft Lf‘/t—'w - 'tﬁ{}] . constant gains/;", and the estimator error for smart sensors,
=0y " (P,,) =Py " 0 7 (P), DY are shown in Fig. 5. It is interesting to compare the

where the superscript @b} (P) indicates®y o - - - o & (P) performance of these estimators with the error covariance

composedn-times. Therefore, the decoder estimator errofs = ®1(F%), shown in the same figure, corresponding to
at any time stept is equivalent to the optimal estimator the ideal case when there is no packet loss and no delay.
that one would obtain if all observations up to time x, In fact, PS5, gives an idea of the degradation due to the
were successfully delivered. This estimation architectisr communication network. It is also relevant to evaluate the
clearly superior to the estimation architecture proposed iPerformance of an estimator with constant gains designed
the previous section. Besides having a better performanc#ithout exploiting the prior knowledge about the packet
the estimator proposed in this section requires very lihitearrival statistics. A natural choice is to use the standard
computational requirements at the receiver side, in fact alman gainkKs, = PL.CT(CPL,CT + R)™', ie. Ky =
suffices to store the most recent packet arrived at the mrceift s, # = 0,..., N rather than the optimal constant gains
and then to compute the best state estimate at current ime By defined in Theorem 1. The corresponding expected error
pre-multiplying the packet data with a matrix which depen@ovariancely" can be obtained by Equations (19)-(21) and it
on the packet delay. is shown in Fig. 5. From this example it is clear that the tools

However, if the packet arrival statistics are stationargleveloped in this paper can help to substantially reduce the
and i.i.d, then it is possible to give stability criteria anddegradation of performance when statistics of packetarriv
to compute the expected error covariance as shown in tAée available.
following theorem:

Theo?em 2:Let us consider the stochastic linear system VII. ConcLusIOoNs
given in Equations (1)-(2), wheréA,C) is observable, In this work we proposed a framework to optimally
(A,Q"?) is controllable, andR > 0. Also consider the ar- design and analyze the performance of estimators based on
rival process defined by Equations (9)-(11), and the estimatfinite memory buffers and constant gains, and it was shown
architecture given by Equations (22)-(27). Then the estma that if packet a_rrival is i.i.d_., then the estimators are mea
is stable if and only if4 is stable, or\;,.s > m square stable if and only if the packet loss probability is
wherec®(A) are the unstable eigenvalues of the mattixf ~ Pelow a critical value. Therefore, implicitly we also prded
the estimator is stable then the covariance of the estimati§€cessary and sufficient conditions about existence ofestab

estimators. Finally, we presented numerical algorithms fo

error defined as{ = — Az¢ has the following property: . , .
¢ = 1AL g property the computation of the expected estimator error covariance

lim Efefed | = D® = lim DY (28) of all the proposed estimators.
t=oo N—oo The tools developed in this paper are useful both from a
where the matrixD}’ is computed as follows: control system design perspective and from a communication
design perspective. In fact, from a control perspectivey the
N N AT e
Dy = (1=An)ADN A" +(1=AN)Q+ANPL (29)  can help to evaluate the tradeoffs between performance

DY = (1-X)ADp AT +(1-M\)Q+\.PS (30)  (error covariance), memory requirements (buffer length),
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Fig. 5. Trace of the steady state error covariance for thenaptestimator (12]
with constant gains%N), for the optimal estimator with a smart sensor
(D). The horizontal linePS, corresponds to the trace of the error [13]

covariance in the ideal scenario with no delay and no paahst, li.e.
Ap = 1 for all h, while T({V is the actual steady state error when using
the Kalman gaink’g,. The error covariance®yY, D}’ are unbounded for
N < 2, while the covariancePs, is unbounded forV < 4, and they are
all cosnstant constant fa¥ > 7,42 = 15.

[14]

[15]

and the hardware resources (“smart” sensor and fast nias]
trix inversion). In particular, the knowledge of the packeli&n
arrival statistics can be used to find the optimal consta
gains { K}’ }#_, and thus improving performance. From a
communication perspective, these tools can be used to ai]
communication protocol design for real-time applications
In fact, as mentioned in Section I, when designhing commu-
nication protocols, in particular for wireless systemsgrén [19]
is tradeoff between packet loss and packet delay. At the
moment, the choice between favoring reduction of overalbo]
packet delay or reduction of packet loss is based on hezgristi
and experience, and it is not tailored to the specific reaéti |51
applications. Therefore, being able to quantitatively suea
performance of different protocols can improve crossﬂaytizz]
design of complex networked control systems.

A possible future avenue of research is the extension of
this work to the design of optimal LQG-like controller de-[23]
sign. This is not a trivial step as many important assumption
in standard LQG control, like the separation principle, do
not always hold for NCSs [20]. Another research directiof?4]
is the implementation and testing of these tools in reaizg,]
time control applications for wireless sensor networks.
preliminary attempt has already been successfully applie[gs]
to multiple target tracking [29], but extensive experinant
work is still needed.
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