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Abstract: In this work we consider the problem of simultaneously dfsissy sensor types and
estimating hidden parameters in a network of sensors dubjgossip-like communication limitations.
In particular, we consider a network of scalar noisy sensdigch measure a common unknown
parameter. We assume that a fraction of the nodes is subjéot same (but possibly unknown) offset.
The goal for each node is to simultaneously identify the <ldee node belongs to and to estimate
the common unknown parameter, only through local commtinicand computation. We propose a
distributed estimator based on the maximum likelihood (Mpproach and we show that, in case the
offset is known, this estimator converges to the centrdliZk. as the numbeN of sensor nodes goes
to infinity. We also compare this strategy with a distributaglementation of estimation-maximization
(EM) algorithm and a distributed naive strategy; we showegdfs via numerical simulations in terms
of robustness, speed of convergence and implementatigiisityn

1. INTRODUCTION its specific oneT;. Notice that the presence of the common
parameteB impose that any efficient estimation technique will
In recent years, we have witnessed an increasing interéise in require cooperation between units and therefore will nequi
design of control, estimation algorithms which can openiate communication. We will assume that communication between
a distributed manner over a network of locally communigatinthe units can occur only according to a graph as discussed
units. A prototype of such problems is the average consensiisSection 3, which is devoted to the distributed algorithm
algorithm Olfati-Saber and Murray (2004); Olfati-Sabermkt —description.

(2007), which can be used as a distributed procedure pr@yidit o0 are various examples of applications in which theiprev

the average of real numbers, each of them belonging to a unjh,q e imation problem could be of interest. One applicétio
Since the average is the building block for many estimatiof),|1iad to fault detection. Indeed, the units could represe

methods, the average consensus has been proposed as Bposil case some sensors that, when working properly, measure
way to obtain distributed estimation algorithms and, irtipar a noisy version the parametérand that, when faulty, add a

lar, to obtain distributed Kalman filtering Olfati-Sabe0(5); bias to the measurement. Similar application could comgist

Carli et al. (2008). However, while averaging is suitabletfe heterogeneous sensors belonging to classes which difféaeby

estimation of real valued parameters, it is typically of redph bi . Lo
o ; ' 7 ias they add. In both cases the parameter of primary intisres
when the quantities to be estimated belong to a finite alghab . Another example could consigts in differentpunits beloggi

Moreover, the average is by definition an operation whiclked$us to different classes, the objective being to classify thesen

information loosing in this way the possible informatiorath on they;’s while also estimating the common parameer
is specific of each unit. The model we consider in the presen

paper has two characteristics, namely we consider the nase=or example we can imagine a network for environmental
which the information of each unit contains both a commomonitoring; the different values @ could model for instance
parameter and a unit specific parameter. Moreover we assumeonstant external field only active in certain areas whese t
the unit specific parameter belong to a finite alphabet. sensor is located, such as for instance being on the sunshine

. . on the shade or being inside or outside of a fire.
More precisely we assume that we haveinits and that each S ing inst uts! !

uniti has a numbey; that can be decomposed as follows More in general these problems fit in the general class of the
Vi=0+Ti+Vvi. (1) unsupervised clustering problems, which are quite stahdar
. . . . . in statistics Titterington et al. (1985); Duda et al. (2001)
whered € R is a continuous parameter influencing all the unitsa g rithms for clustering have been widely proposed in the
Ti € o, with &/ being a finite set, is a discrete parameteg,mpyter science literature both for the standard cenémli
influencing each unitindependently ands a noise term. The g6 Berkhin (2006) and for the distributed case Rabbat and
goal of each unit is to estimate the common param@tand  \gwak (2004): Nowak (2003); Safarinejadian et al. (2010):

* This research has been partially supported by EU FP7-IGB&@@ Ban(_jyopadhyay et al. (2006). I_nd_eed' the tec_hnique p_r_mpose
FeedNetBack project, by CaRiPaRo Foundation “WISE-WABjpct and by N this paper can be seen as a distributed algorithm for afgpec
the Progetto di Ateneo CPDA090135/09 funded by the UniterfiPadova.  Clustering problem.




The structure of the paper is as follows: Section 2 introducever is not directly available, so that (4) is not an impletabte
the model we consider; the decentralized estimator isetlidi  solution. Rather, we can substitute (4) inside (3) and wainbt

Section 3 while its limit behavior is characterized in Sewti wy) | w(T) 2

4. In section 5 an alternative approach based on a Bayesian A _ (y -~ tN *Ti)

model is presented and the some generalization are digtinsse T= argmin > 252 ®)
I

Section 6. Some simulations are presented in Section 7. Some
of the proofs are omitted for reasons of space and can be fo

in Chiuso et al, (2010). Whis minimization can be solved in a two-step way by consid-

ering
2
2. THE MODEL (yif%ymuﬂ)
min min 552 (6)

In this section we give a more precise description of the rhode W=0, N Tow(T)=w G o
we consider and of the estimation cost we will try to minimizgz reverw — 0. N. put
by the proposed estimation algorithm. Assume that the nusnb oreveryw=4q,...,N, pu
y; are given by (1), where we assume tBat R, T; € {0,1} and (yi _wy) L w T.) 2
thatv; are independent Gaussian random variables. The goal of T,y = argmin NN @)
each unit is to estimate andT;. For simplicity, with respect to Tw(T)=w4 20?2
what mentioned in the introduction, we will restrict to these | ot ;s define
in which T; can take only two values, that are supposed to be w(y)
known and which, with no loss of generality, can be supposed ni=Yi— N

to be 0 and 1. Extension to the case in which the differencg,q consider its ordered permutation < N < - < Niy-
between the two symbols is unknown are discussed in Secti barly. the above minimization is solved_b th; vedi_psuch
6. The algorithm we propose does not need to know the varianggat Y y

o which therefore can be assumed unknown. 0ifj<N—w

(Tw)gj = { 1 otherwise (®)
Substituting in (6) and performing simple algebraic transf
mations, we obtain that the solution of the outer minimizati
mproblem becomew = minF (w) where

2.1 The maximum likelihood estimator

When the bias terr; is not present, the centralized maximu

likelihood estimator of6 (assuming that all measuremets

are available) is given by Cow N
R . F(w) .:*W+W72 N
6=N"3y. (2) =1

. _ ! _ Clearly, from Eqn. (8),

This arithmetic average can be asymptotically evaluateithdy - -

agents in the graph through standard consensus algorithms a ML = (fa)g = { Oif J<N—W 9)

long as the graph is strongly connected. ) 1 otherwise

The presence of the bias terms makes the problem quite harcflenrd from Eqn. (4) we get.

In this paper we propose a decentralized version of thealentr gML _ w(y) — W _ w(y) —w(TAMY) (10)
ized maximum likelihood estimator for this problem. We set N N

some useful notation. We consider the vectpes (y1,...yn)

andT = (Ty,Tz,... Tn) and the following weightsv(T) = 3 T;, 3. ADECENTRALIZED ESTIMATOR

w(y) = 3 ¥i. The maximum likelihood estimator is given by

(i — 0 —T)?

> gorithm. Moreover, as will be discussed later, there exasts
20

efficient decentralized algorithm capable of orderingheso
(3) that each agentknows its ordering indexi: ni = ny;;. For
Remark 1.The choice of the maximum likelihood estimator iseach valuew, the agent is thus capable of computindw)i
motivated by the simplicity of the solution we obtain from it through (8). In order to comput€ly,); using (9) we need to
Of course, it would be natural to seek for “optimal” estinrato know the ordered positiof of agenti with respect taN — W.
which minimize, e.g., the variance &, E[(6 — 8)?] and/or This would follow if we could computev in a decentralized
the average classification eri@fy N, |Ti — Ti|]. Unfortunately fashion, but this is no;tuat all evident, because of the presen
these optimal estimators are in general difficult (if not osgi- the aggregation teri;”y_,,1 1}j)-
ble) to find even in the centralized case. We will show insteagOnSider
that the maximum likelihood estimator is not only computati

] Notice that each agentcan compute; by a consensus al-

(M-, T) = argmaw(y|6,T) = argmin|
(6,T) CAY I

ally simple, but also prone to a decentralized implemeoati A(w) :=F(w+1)—F(w) = —ZWTH +1-2NNn-w  (11)
From (3) we immediately obtain that Notice thatA(w) can be computed by the agent in ordered

- Loy W) —w(T) positionN — w.
e N 'Z(yl e N @) Define the set of local minima:
So, to estimated, what is needed is the average measure = 1{we [LN—1]| A(w—1) <0, Aw) > 0}

N~'w(y) which can be obtained by a standard consensus algé-we knew that|.’| = 1 then our computational problem
rithm, and the average bids w(T). This second term how- could be solved in the following way. Notice that in this case



we would have thaG(w) decreases till the poinw and then Proposition 3.(Distributed ranking for complete graphs). Letus
starts to increase. Consider a generic agémposition jj. He  assume that each nodknows its own labei and has a sensor
computesh(N — ji). If AN — ji) < O it means thaN — j <W, measuremery € R. Let us defingj;, the sorted measurements
namely ji > N — W which implies, by (9) thatTs)j; = 1. If  inincreasing order, i.gy; <y <--- <yjy and let us indicate
insteadA(N — i) > O, then(fw)[ji] — 0. So, in this way, each with j;, the index in the ordered measurements of sensa@r.

agent could compute its ML estimated bigs Again, using Yi =Yl

consensus all agents can then compitéw = N~'w(T) and  Letus consider the following algorithm: each sensor setsal |
can therefore also compufeusing formula (4). variable to its label, i.e.

Of course the decentralized algorithm proposed above can Xi(o) =i, Vi

always be implt_amented by the agents. In the following part ofhen, at each time step= 1,2,..., one edge(i,j) € & is
the paper we will show that, typically, fot large,F possesses selected with probabilitys; > 0 such thaty ; jcs pij = 1.
just one local minimum ir{0,1/2] which happens to be the The nodes andj exchange their measuremewts/; and their

global minimum o0, 1] while it can show other local minima . (k) (k)
on]1/2,1]. In this way, applying previous algorithm but for all currentindexeg; ™, x;”, and updates them as follows

agents whose positiopis aboveN/2 and forcing all agents

whose positionj is belowN/2 to estimatefj] = 0, with high o Xi(k> if (vi *yj)(xi(k) ,ng)) >0
probability we will obtain the maximum likelihood estimato X =
We can summarize the previous reasoning in the following x® otherwise
conditions: Y
. k) . k K
1 ifz(yi—w(y))>1_2(N_Ji)+l Agis N [T Gy —x) = 0
TAML_ N N 2 Xj =

K .
0 otherwise Xi( ) otherwise
(12) Wwhile all other nodes do no perform any operation.

where the superscrigfML stands forapproximate maximum |f the graph iscomplete i.e. (i, }) € &,Vi, then there exists
likelihood This approximate maximum likelihood estimatorT < g sych that

converges (abl — ) to the maximum likelihood estimator in W i
(3) as stated in corollary 12. X =ji Vk>TVi as

Before describing the algorithm to comquéﬁML,T”AML) ina Proof The proposed algorithm can be interpreted as a Markov
distributed fashion, we need to introduce some useful géne€hain defined on the indexes of the nodes and this chain has

distributed algorithms that will be used in our algorithm. a unique absorbing state defined by the sorted list. Let us firs
definel};; the node’ such that
3.1 Decentralized average and ranking computation Yoy = Vil

o ) i.e.£)j is the label of the node that it is in positigmn the sorted
We model the network of distributed agents with a gréph-  measurement list. We start by observing that if there eflists
(4, &) where.#” = {1,2,...,N} is the set of nodes and  sychthak, (T)=j,Vj, thenaisoy, (T+1)=j,V], therefore
is the set of edges corresponding to the communication.lin . V'“i]s an absorbing state il
We indicate withV (i), the set of neighbors of node i.e. "l — 1] 9 '

V(i)={j| (i,j) € &}. We assume that the graph is connected,et us know compute the probability that after tiffiethe list
i.e. there is a path between any two nodes, and it is undiectgs ordered, i'ep[xfm (T) = j, Vj]. To do so we compute the

I.e. nodes are capable of bidirectional communicationsald® - ,papility of a specific sequence that leads to the absgrbin
assume that each sensor nod@ows its label, i.e. nodes are . : )
state. Let us consider the noﬁ@ defined as

numbered from 1 ti\.
k)

Proposition 2(Symmetric gossip consensus). Let us assume X(-m =i
that each nodehas a sensor measuremgrg R, and initialize Ji
a local variable tag(0) = y;. At each time stefk=1,2,...,  j.e. the nodg for which x§k> is equal toi at timek. Let us now

one edg€(i, j) € & is selected _vvith p_robabilit)pij >0 such  onsider the following sequence of edges
that y i j)es Pij = 1. The nodes and j exchange their local )
€ = (JN_kae[ka]% k= Oa---aN_l

variablesxi(k) andx¥ and updates them as follows
and consider the update &ﬁk) as specified in the algorithm.

i

(k1) xi(k) +x§k> Then this sequence is designed so btﬁta;ti] =N-—Kk, i.e. the

T 2 index N — k is set in the right position. Since the ranking is

o Xi(k) +X§k) done starting from the largest, it also foILows th@tM (t) =

i = 2 N—kfort=k+1,...,N, and thereforeé“)] =j, Vj for all
while all other nodes do no perform any operation. Then wie> N. Since this is only one specific sequence that leads to the
have absorbing state, it follows that

. 0 1 _ N-1
S B VDR Pl (T) =1 ¥i.T =N| > Pleo.er,...en-1] = [ P > e
k=



wheree = min; j pij > 0 sinceg € & being the graph complete, i 2(N—jp+1
and the events, are all independent by hypothesis. From the 0= mng 20yi—y) -1+ TN
independence of the everdgsalso follows that

.....

From Proposition 2 it also follows that there exi$issuch that

. . k— o0
P[E(),1) st. X?“)] #jt>T=kN < (1-eM)*==0 In® — (yi —y)| < & for all k > T; and foralli almost surely.
which concludes the proof. This fact and Proposition 3 imply that there exi$tsuch that
k)
k Z(N - ﬁ.( )+1 k N as.

3.2 Decentralized estimation and classification algorithm 2 -1+ N oA (> 5 k2T
2(N—ji)+1 . N

We are now ready to present the algorithm that allow each & 2yi—y) — 1+% >0A ;> 5

sensofi to compute the maximum likelihood estimate for th
unknown parameted and for its unknown clasg.

Proposition 4. Let us consider the following algorithm based
on the measuremenys available to each node We defined Note now that
and initialize the following local variables:

®rherefore, according to Eqgn. (12), this implies that Eqi$) (1
holds almost surely for ak > T.

N N N
R R (k) _ (k-1) £k w(k=1)
A . 9i<0> —yi, w9 =0, $@ =0, (O] _;wi = _;wi + > (T =T
At each time stefk = 1,2,..., one edg€i, j) € & is selected = 'L N'_
with probability pij > 0 such thaty ; ;e pij = 1. The nodes =5 w9 (”_(k> _-f_(O))
I I I
i and j exchange their local variablegx®, ¢® w® and is =
perform the following update for node N N
_ -|—i(k) _ Z-l—iAML —W, k>T
g E_(k—l)JrE_(k—l) i; i=
Ei< )= where we used the fact that(0) = T;(0) = 0,Vi and the last
2
® (k1) equality follows from Equation (16) almost surely for sohe
N =Yi—§ Then Eqgns. (17) and (18) follows from Proposition 2.
K=1) & v v\ (7 _
g Jo (i=yp)(li(k=1)=¢;(k=1)) = 0 4. THE LIMIT BEHAVIOR
i =
égkfl) otherwise In what follows we study the behavior (in particular the meno
® tonicity) of the objective random functiof whenN — oo,
1 if2n® o1 2(N=¢7)+1 o S ﬂ To emphasize dependence Mnfrom now on we will use the
‘fi(k) - dl N I notationFy.
0 otherwise We recall that, in our approach, the bias valGiesre fixed, even
if unknown to the agents. We put
wk Y kb 1_ g 0_ g
Wi(k): i i +(-Iﬁi(k)7Ai(k_l>) I"={i=1,....N|Ti=1}, 1"={i=1,...,N|Ti=0}
W ey 2 o and we assume that
AR _ (1) (ke 1
O =& Towe _ o im U= im "D _pep12 a9
and likewise for nodg by simply replacing the indek with i N—to N = Noto N

andi with j in the previous equations. All other nodes do no

perform any update We start with some preliminary considerations on the ordlere

variablesn,;. We can writen; = & + Q where

If the graph iscompletethenalmost surelywe have T
E=T+v, andQ:%-%. (20)

lim Ei(k> =y= % (13) The variablest; are thus independent and have two possible
ke ) distribution functions:
lim n® =yi—y (14) P(& <t)=Fy(t—1) ifiel
lim o =j; (15) P(& <t)=Fy(t) ificl®

. . where
lim T = FAML (16) 1 a2
k—oo Fo(a) = —/ e 202 dx
_ W W V270 J—c
Illm W = N (17) Notice now that

. W - E[w}<t < Mh=|il&i<t}>w (22)
lim ¥ —y— = — gAML (18) .
e TYTN T Put Al == |{i € 19]& < t}| for g = 0,1. A} and A? are

_ . two Binomial r.v. of type, respectivelyB(|I1|,F5(t — 1)) and
Proof Egns. (13) and (13) f_o_IIow directly from Proposition 218(|I°| Fo(t)). Since, Ay = AL+ A, we have thatE(A) =
and Eqns. (15) from Proposition 3. 11|Fo (t — 1) + [Io|F5 (t) and

Let us now assume that all measurements are different, i.e. i E(/Nt)
Yy <Y < ... <Y and define :

wm =Fe(t) == pRo(t—1)+ (1-p)Fs(t)  (23)



Let us now consider the functiday (w) defined as follows:

— 1 ) 2 XN
Fn(w)=giviNw) = —0+w-5 N
KSIN(I=w)+1]
2 2 -1
=—w+w—20wQ — — E[k], we [N
KSIN(TEw)+1]

which is a normalized, scaled and interpolated version ef th

functionFy(w).

Equations (22) and (23) suggest tégf andFE‘l(w/N) should
be close to each other for lardgfe We can thus guess (forma
proofs are omitted for reasons of space) that:

1
lim Fn(w)E 7 ():=—w’+w+2pw-2 [FeXt)dt, we (0,1]

Likely enough, local extrema oFy will converge, almost
surely, to the local extrema oF so that if.# possess just one
local minimum on[0, 1/2] which is the global minimum, then
this will also happen foFy almost surely whel — +o. This
would mean that our decentralized algorithm will almosesur
coincide with the centralized ML algorithm. Next sectiorllwi
make precise all these considerations.

4.1 The analysis of the functia#i (w)

We start with some preliminary remarks on the functisnlt is
immediate to verify that is continuous. The other importan
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Fig. 1. Minima of 7 (w) (asymptotic) and oF y(w) (sample,
10 Monte Carlo runs) vs. noise standard deviatioiData
are always generated with—= Z,'\I—T' =0.3.

4.2 The concentration results

Inthe sequel we present some concentration results whikh ma
rigorous the considerations done above. In the intere taufes
all technical proofs are omitted.

We recall a standard result on the concentration of binonvial
twhich will be our main technical tool.

fact is that can have one or two local minima depending on thEheorem 6.Let Z be a binomial r.v of typeB(N, p). Put, for

particular values foo andp, i.e. the derivative of# is equal to
zero once or three times. However, the derivativeoeems
to be equal to zero in only one point @ € (0,1/2) which

corresponds to the global minimum.

The “small noise” case, i.e. the limd — 0, deserves to be
studied; this is done in the following proposition:

x>0, y(x) = xlogx— x4+ 1. Then, for anyk < 1 <y, it holds
P(Z<Npx <e NPX  Ppz>Npy) <e NP

Remark:Notice that, for anyyg > 1, there exists a constant
C > 0, such thay(y) > Cylogy

The following result is standard but we will give an elemeyta

Proposition 5. Under the assumption of model given by Eqn. (3)roof for the sake of making the paper self-contained.

we have that
lim 7 (w) = —w?+ w+2pw—2p—2(w—p)d 1(p— W)
lim
o—0
whered_1(x) is equal to one for positive and zero otherwise.
We also have

w:=argminZ (w)=p
w

1

lim @:=argmin%(w) = 5

0—+0 ©
The previous theorem states that if the the two distribution
not overlap, then the proposed algorithm exactly compuge
proportions measurements generated by each of the two G
sian distributions. However, when there is substantiatlape

the estimation has a bias toward the midpoifi2,1and in the

limit of very large variance estimai@ is completely uninfor-
mative.

The value of the minimund of the asymptotic functior” (w)

as a function of the noise variancefor p = 0.3 is reported
in Figure 1 (dotted line). As stated in the previous proposit
@ = p for small o and @ = 1/2 for largeo. As mentioned

Lemma 7.For any O< a < b < 1 and for everyd > 0, there
existsl s > 0 such that, foN sufficiently large,

P(|&;—F; '(i/N)|>3) <e Mo, vjelaN,bN]

With the following bound we take care of the behaviorégf
for j close to 0 and tiN.

Lemma 8.There exist O< a < 1 andl > 0 such that, folN
sufficiently large and foj € [1,aN], it holds

P (&< ~(N/p)Y) < o™
P (E[ij] > (N/))?) < e
P(E[N] Z Nl/Z) S efLN

Theorem 9.For everyd > 0 there existd 5 > 0 such that, for

N sufficiently large,
| ENw) W —NL,
IP<3W. —ﬂ/(ﬁ) >5) <e N

N
Since our decentralized algorithm is influenced by the posit
of the local minima ofFy in [0,1/2], the result above is not

<

th
aus-

(24)

above, the graph shows that this minimum monotonically irsufficient to study the performance. Indeed, we need to study
creases fromp to 1/2, thus confirming the hypothesis thatthe asymptotic behavior of the variation functiyw).

the global minimum is always in the intervéd,1/2) for all

values ofp andg. Figure 1 also shows the mean and standard

deviation of the minimum oFy(w) over 10 Monte Carlo runs
for N = 100 sensor nodes.

Theorem 10.For everyd > 0, there exist§ 5 > 0 such that
W N
; ~F' (=) =98)<eMs
e ‘A(W) F (N)‘ >5)<e
for N sufficiently large.



Proposition 11.Consider an intervala, b] C [0,1] ande > 0. The maximum likelihood problem (28) is a typical estima-
Then, tion problem for a finite mixture distribution (see Tittegtion
FX>evxe[ab = PAW)>0vwe [NaNb]) > ps(N) et al. (1985)) and does not have a closed form solution. One

1) < < > possible approach is to resort to the well known Expectation
F ¥ < —&Vxelab] = PA(w) <0¥we[Na,Nb))> ps(l(\lz)s) Maximization (EM) algorithm in Dempster et al. (1977). This

is an iterative algorithm which is known to converge to a loca
wherepg (N) := 1_Ce LN maxima of.the Iikelih_ood. For reasons of space we shall only
. _ report the final equations for EM iterations; we refer thedexa
We are now ready to state and prove the main theoreticalrestd the book by Titterington et al. (1985) for a derivation of
of our work. Denote bySy the set of local minima ofy in  the EM algorithm which can be easily adapted to this specific
0,1/2] and by%"’b_ the subset ofy consisting of the global problem.
minima of Fy living in [0,1/2] (of course a priori this set could Let 80, 60 and 5™ the estimators at thie— th iteration of

as well be empty). the EM algorithm; the estimators for tife+ 1)-th iteration are

Corollary 12. Assume that given by:
(@) weﬁg’iﬂz}y (w) < wErHi/gjl]ﬁ‘ (). (1) Expectation Step compute the posterior probabilities
(b) 7 admits just one local minimum poird in [0,1/2] ﬁj(k“) = p(Tily,6®,p®,6W)
(which is thus the only global minimum for (a)). (0 2
Then, for everyd > 0, there existds > 0 such that ﬁ(k)ez< 6 )
P(Su/N C]w— 8,0+ 5[) > 1—Ce %N - %wéwly %néwy
p(%“)b L0)>1—ce (26) ple 2\ Tl (1 pMe 2 a(k)(30)

(2) Maximization Step:

5. BAYESIAN MODELING AND EM 1 N
ﬁ(k+l) _ = ;]-(k+l)
i
An alternative approach to this estimation and detectiatpr N =1
lem is possible if one postulates thiati = 1,..,N are indepen- i) _ 1N Akt
dent and identically distributed (i.i.d.) binary randormigales, N Yi—P

Il
o

taking values in{0,1}. This implies that thd;’s are Bernoulli
random variables with parameter ~(ke1)

| —0)2+ pj — 2uj(y; — 6
Ti~%(p) p=PT=1. (27) g QW )7+ Hj— 245 (Yj O
so that 0_p(ki1) ”jzﬂjgk+1>

N
PKTIP):;[]p“(l—fpff“

Zl-
M=

(31)

The EM algorithm (30),(31) has a “centralized” nature; how-
ever it can be easily decentralized (i.e. computed by eadk no
ando from measurementg, ...,yn. The maximum likelihood only using local mformatl_on) since it Is essentlz_;llly basgon
estimator is defined by computing averages. It is wgll kngwn t_hat this can be d_one
. resorting to consensus algorithms; for instance an alyarit
(p,6,6) :=arg max(y|6,T)P(T|p) (28) based on gossip has been proposed by Kowalczyk and Vlassis
P.6,0 (2005). In this paper we have implemented the averages )n (31
Note that in the estimation problem (3) the number of undsing a symmetric gossip algorithm assuming the nodes are
knowns grows with the number of data; instead the i.i.d. agonnected via a complete graph. We shall refer to this alyuri
sumption on thel’'s allows to keep the parameter space irasdistributed-EM
28) of fixed dimension. As a result, the asymptotic propstti . - . . -
(()f t)he estimators in (28), such as consiste);c;r/) and gsyprr?pto‘ﬁ‘s expected, if the numper .of gossip iterations is sufficient
efficiency, follow straightforwardly from standard asymofit to reach consensus, the distributed-EM algorithm congetge

theory of maximum likelihood estimators, see Zacks (1971). the maximum likelihood estimator (28). However, as soon as
the number of iterations is not sufficient to reach consensus

An estimator of the variableF, .., Ty can then be obtained by the distributed-EM algorithm either oscillates or everedge,

Hence, one can formulate the problem of estimatmgo

maximizing the posterior probability failing to provide sensible estimates. This simple simarat
(To,..Tn) := arg maxp(Tly, 8, p, o). experiments suggest that distributed-EM is not robustregai
Tefo N errors in computing the averages in (31) which may resuthfro

The maximum likelihood estimatas(T|y, 6, p, o) of the pos- 2" insufficient number of consensus iterations.

terior probability p(T|y, 8, p,0) is given, from the invariance
principle (see e.g. Zacks (1971)), by 6. GENERALIZATION

A(T1Y,0.p,0) = p(Tly.6,p, UA) 2 5 One drawback of the model in (1) is that tfés are assumed
—%zi“:l(yi—’g’—“) +n(25) SNy T (29) o belong to a known alphabet. In particular in this paper

e we have considered the cages {0,1}. A simple yetimportant

wherec is a suitable normalization constant. generalization is to allow that the alphabet is partiallitumwn.



For instance one can assume that only the cardinality/of

is known. In the binary case considered in this paper this is E—
equivalent to assume that g - = =Naive Threshold
Yi=0+aTi+v (32) ) PRV
with T € {0,1} anda € R* unknownt . i e
In this more general scenario the maximum likelihood estima E
(3) becomes: &
E
(OME TML ML) — argma(y|6,T,a) E
(6,T,a) Z
. i — 0 —aT;)? (33) &
= argmin Zi(y' 5 ) © -
(8,Ta) |9 20 0 ‘ [T
0 500 1000 1500 2000

iteration

Solving (33) is considerably more difficult than (3); one pos
sible approach is to utilize and alternating minimizatidgoa

rithm as follows: Fig. 2. Example 1. Average (over 50 Monte Carlo runs) of

o - the classification errof ; [T, — Ti| as a function of the
(i) Fix a := a*b and solve number of gossip iterations. Data are generated as follows:

. _9_qT 6=0,T~#(0.3),0=0.3.
f(k)(a) — argminmein [Z M] (34) ( ) o

T [ 202 proposed in Section 5, 6), we consider the following setop. |
(i) Fix T:=T® and solve Example 1 (see Fig. 2) we assuide= 50 sensors are deployed
which measure data according to the model (1) or equivalentl
. (yi — 6—aT))? according to the model (32) witth = 1. We generate data with
(9<k> (T),a<k> (T)) = argmmlz % 6 =0, o0 = 0.3 and assume thdt are i.i.d. Bernoulli random
8,a) |9 20 variables with mearp = 0.3. In order to test the robustness
(35) of the algorithms against outliers, in Example 2 we consider
2 second setup in which data are generated as in Example 1,

Problem (34) is analogous to (3) with the only differencd th chept for an outlieyy = —2 which is artificially added.

in (3) we assume = 1. Hence this can be solved as describe

in Section 2.1. We compare the following algorithms:
Instead, problem (35) admits a closed form solution as: (1) Distributed AML ( a = 1): this is the distributed approx-
= (k) sty 5T Sivi @mate Maximum Likelihood Qescribed in S_ection 3 which
gl — 2iYi g™ il gW - _N_— N N is based on the model (1) with € {0,1} as in Section 2.
N N 5t 0 (1 zifi“‘)) (2) Distributed AML : the distributed approximate Maxi-
TN\t TN mum Likelihood based on model (32), which also es-
(36) timatesa using the alternating maximization approach

. , ) o described in Section 6.
In _Sectlon (7) we shall also report S|mulat|pn expenmemts,. 3) EM (a = 1): this is the distributed implementation of
which a is not assumed to be known, using the alternating’ * ihe EM algorithm introduced in Section 5, based on the
minimization approach above; experimental evidence shows easurement model (1) with € {0,1} as in Section 2.
that this alternating minimization algorithm convergedew (4) EM: this is the distributed implementation of the EM
steps (2 or 3) in all the examples considered. Of course, in * gigorithm for the estimation of a mixture of two Gaussian
the distributed scenario the averages in (36) will have to be  gistributions with different and unknown means discussed
computed resorting to consensus algorithms. at the end of Section 6.

As an alternative one could also consider the Bayesian fort>) Naive threshold This is the most naive algorithm one
mulation in Section 5 for the measurement model (32). This ~ can come up with: classify measurements based on the
is standard estimation problem for a mixture of two Gaussian  following rule:

distributions with unknown means and unknown (but common) { - min{y; } + max{y; }
T —

variance. An EM algorithm similar to (30), (31) in Section 5

can be derived (see Titterington et al. (1985)). Of counse, i 0 otherwise

the distributed setting, averages will have to be compustgu |, jts distributed version the maximum and the minimum
consensus algorithm, with the same limitations discuseed i can be calculated using a distributed ranking algorithm as
Section 5. in Section 3.1.

7. SIMULATIONS The simulation results show that there is not a clear-cut dis

) _ o _tinction between different algorithms. The EM algorithnmist
In order to compare the algorithm introduced in this papén wi ropust if the number of gossip iterations between succe$8iv
more standard EM algorithms (based on gossip iterations, g&ps and E-steps is not sufficient to reach “almost” conmsens
1 It is immediate to show that, for identifiability reasonslyothe difference ~ (I-€. compute reliably enough the averages in (31)). Thelrarm
between the two symbols have to be parameterized; in addtis difference  Of these gossip iterations has been fixed to 300 in our siiualat
can be assumed to be positive modulo permutations. experiments; this number seemed large enough to reach-essen




35
— ’ —\ e m e e e - —— =
a0 )
| y - Distributed AML
& ] = = = Naive threshold
—25r r - |i== EM (0=1)
N L e EM
o 1 Distributed AML (a=1)
35 20t 1
£ 1
s 1.
= T’
5 15
=
g
<« 10
‘0
w0
=
O 5

1000 1500 2000

iteration

500

Fig. 3. Example 2 (with outlier): Average (over 50 Monte @arl
runs) of the classification errqriN:1 |Ti — Ti| as a function
of the number of gossip iterations. Data are generated
follows: 6 =0, T; ~ %(0.3), 0 = 0.3. An outlier is added
to each Monte Carlo realization by settipg= —2.
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Fig. 4. Distributed AML: estimate§ andé; for each nodé as
a function of the number of gossip iterations.

logical communication constraints. The proposed ML sgyate
has shown different trade-offs as compared to an EM approach
in terms of speed of convergence and robustness in particula
when the offset of the “misbehaving” sensors is not known.
Different research avenues are possible, such as the ¢jeaera
tion of the distributed ranking to simply connected grajths,
generalization to multiple class, and the development afemo
robust strategies when the offset is unknown.
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