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Abstract— In this paper, we study sensor fusion for the atti-
tude estimation of Micro Aerial Vehicles (MAVs), in particu lar
mechanical flying insects.

First, following a geometric approach, a dynamic observer
is proposed which estimates attitude based on kinematic data
available from different and redundant bio-inspired sensors
such as halteres, ocelli, gravitometers, magnetic compassand
light polarization compass. In particular, the traditiona l struc-
ture of complementary filters, suitable for multiple sensor
fusion, is specialized to the Lie group of rigid body rotations
SO(3).

Then, a numerical implementation of the filter is provided
for the specific case of inertial/magnetic navigation, i.e.when
gravitometers, magnetometer and gyroscopes are available.

Finally, the filter performance is experimentally tested via
a 3 degrees-of-freedom robotic flapper and a custom-made set
of inertial/magnetic sensors. Experimental results show good
agreement, upon proper tuning of the filter, between the actual
kinematics of the robotic flapper and the kinematics recon-
structed from the inertial/magnetic sensors via the proposed
filter.

Index Terms— sensor fusion, ocelli, halteres, gravitometer,
polarization sensor, attitude control, SO(3) Lie group

I. I NTRODUCTION

Today there are several successful examples of au-
tonomous flying vehicles, from airplanes [19] to helicopters
[20]. However, their size hamper their use in surveillance
and search-and-rescue missions in urban areas, in indoor
environments and in natural disaster scenarios as after earth-
quakes. Therefore, there is an increasing need for very small
size air vehicles with high performance. In particular, the
current trend is to study micro aerial vehicles (MAVs) using
traditional air-vehicle paradigms such as fixed-winged air-
vehicles [16] or rotorcrafts [21]. Differently, inspired by the
unmatched maneuverability and hovering capability by real
insects, some groups have started using biomimetic princi-
ples to develop micromechanical flying insects (MFIs) with
flapping wings that will be capable of sustained autonomous
flight [14], [26].

The extraordinary performance of flying insects is the
result of two peculiar features: the first feature is the
enhancedunsteady-state aerodynamicforces and moments
generated by the flapping wings [30], [35], [11], and the
second feature is themultimodal sensor fusion, i.e. the ability
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to integrate information from a number of different and
redundant sensors to reduce the effect of noise and external
disturbances [38], [13].

In this paper, we focus explicitly on the latter feature
of insect flight, i.e. on sensor fusion of redundant infor-
mation for attitude control, and we assume that we can
control directly the torque applied to the insect body as
shown in [11]. Although sensor fusion and filtering have
been studied for decades and many results are available for
linear spaces [2], it remains a hard problem on the Lie
group of rigid body rotationsSO(3) where standard tools
like Kalman filtering cannot be applied directly. Theory of
complementary and Kalman filters has traditionally been
used to design attitude observers, especially in presence
of redundant measurements. Kalman filters were originally
developed for linear systems and then extended to cope with
nonlinearities via linearization techniques. On the otherhand,
complementary filters are capable of fully exploiting the rich
nonlinear structure underlying problems such as rigid body
rotations, well described by the theory of Lie groups.

As the main contribution of this work, the traditional
structure of complementary filters is specialized to the Lie
group of rigid body rotationsSO(3). In particular, a dynamic
observer is proposed which derives an attitude estimate from
redundant information typically available from bio-inspired
sensors. Following the geometric approach of [22], [4], [25],
this is achieved by avoiding the parametrization step. The
proposed observer is based on a notion of state error which is
intrinsic, so its performance does not depend on an arbitrary
choice of coordinates, andcoordinate-free, in the sense that
the equations may be written explicitly without specifying
coordinates for the configuration space.

A numerical implementation of the filter is provided for
the specific case of inertial/magnetic navigation, i.e. when
gravitometers, magnetometer and gyroscopes are available.

As an experimental validation, the filter was used to
reconstruct the kinematics of a 3 degrees-of-freedom robotic
flapper on which a suite a redundant inertial/magnetic sensors
was assembled.

Section II briefly reviews necessary notation, definitions
and metric properties concerning the Lie groupSO(3) of
rigid body rotations. Section III reviews flying insect dy-
namics and the navigation sensory system of real insects. In
Section IV, a complementary filter approach is proposed for
sensor fusion. In Section V, the experimental validation of
the filter performance is presented.



II. M ATHEMATICAL BACKGROUND

This section briefly describes the notation and several
geometric notions that will be used throughout the paper.
For additional details, the reader is referred to texts suchas
[1], [15], [27], [32], [3].

As shown in [1], [27], the natural configuration space for
a rigid body is theLie groupSO(3), i.e. the configuration of
a rigid body can always be represented by a rotation matrix
R, i.e. a matrix such thatR−1 = RT anddetR = +1.
Consider now the coordinate framesR

3
S andR

3
B:

• R
3
S ≈ R

3: thespacecoordinate frame, or initial config-
uration frame.

• R
3
B ≈ R

3: thebodyframe, which is attached to the body
(can be thought of as defined by the sensors sensitive
axis), initially coincident with the space frame.

An elementR of SO(3) can be thought of as a map from
the body frame to the space frame, i.e.R : R

3
B → R

3
S .

A trajectory of the rigid body is curveR(t) : R → SO(3).
The velocity vectorṘ is tangent to the groupSO(3) in R
but, as shown in [1], [27], rather than consideringṘ, two
important quantities are worth to be considered:

• Ṙ RT : representing the rigid body angular velocity
relative to the space frame;

• RT Ṙ: representing the rigid body angular velocity rel-
ative to the body frame.

These are both elements of theLie algebraso(3), i.e. the
tangent space to the groupSO(3) at the identityI.

Elements of the Lie algebra are represented by skew-
symmetric matrices. Systems on Lie groups described in
terms of body (space) coordinates are calledleft-invariant
(right-invariant).
Left-invariance: let R1(t) be a trajectory of a rigid body
relative to a space frameR3

S1
. Consider a change of space

frame G : R
3
S1 → R

3
S2, now R2(t) = GR1(t) represents

the sametrajectory but with respect to the new space frame.
It is straightforward to verify thatRT

2 Ṙ2 = RT
1 Ṙ1, i.e. the

angular velocity relative to the body frameRT Ṙ does not
depend on the choice of space frame.
Right-invariance: similarly, it can be shown that the angular
velocity of a rigid body relative to a space frameṘ RT does
not depend on the choice of coordinate frame attached to the
body.

In the case ofSO(3), there exists [27] an isomorphism
of vector spaceŝ· : so(3) → R

3, referred to ashat operator,
that allows writingso(3) ≈ R

3. For a given vectora =
[a1 a2 a3]

T ∈ R
3, we write:

·̂ : a =




a1

a2

a3



 −→




0 −a3 a2

a3 0 −a1

−a2 a1 0



 = â (1)

III. T HE SENSORYSYSTEM OF FLYING INSECTS

One reason for superior performance exhibited by flying
insects, besides the enhanced unsteady state aerodynamic
forces from flapping flight, is the highly specialized sensory
system. In order to stabilize flight, insects can rely upon
a number of different sensors. In the following, we briefly

review a number of sensors available to insects for navi-
gation, which represent a rich source of inspiration for the
mechanical flying insect [7], [10].

Fig. 1. Photo of a fly haltere. Courtesy of [8].

1) Halteres: The halteres are club-shaped small ap-
pendages behind each wing that oscillate in anti-phase with
respect of the wing, as shown in Fig. 1. The plane of
oscillation is slightly tilted toward the tail of the insectto
be able to measure Coriolis forces along all three body axes
[18]. The halteres function as tiny gyroscopes and through
appropriate signal processing [28] they can reconstruct the
body angular velocity vector:

yhl = ω (2)

Recently, preliminary prototypes of micro-electromechanical
halteres have been fabricated and have shown promising
results [39].

2) Mechanoreceptors:Insects wings and other parts of
the body such as the antennae, neck and legs are innervated
by campaniform sensilla. These nerves can sense and encode
pressure forces when they are stretched or strained [12]. In
particular, the sensilla on the legs can be used to measure the
gravity sensor, thus acting as a gravitometer. Therefore, we
can assume that insect can measure the gravity vector with
respect to the body frame, i.e.

yg = RT g0 (3)

whereg0 are the (known) gravity vector components, mea-
sured with respect to the fixed frame.

3) Ocelli: The ocelli are three additional light-sensitive
organs that look forward, leftward and rightward, respec-
tively, located in the middle of the compound eyes as shown
in Fig. 2 and provide signals that are used for stabilization
with respect to rapid perturbations in roll and pitch [7]. In
fact, these sensor can estimate the position of the sun with
respect to insect body by comparing the signals from the left
and right ocelli to estimate the roll angle, and by comparing
the signal from the forward-looking ocellus with the mean
of the signals from the left and the right ocelli to estimate
the pitch angle [34].



Compound
eyes

Ocelli

Fig. 2. Photo of fly’s head showing compound eyes and the ocelli with
its three photoreceptors. Courtesy of [36].

4) Compound eyes:The compound eyes of the insects
provides different types of signals needed for the optomo-
tor systems. They provide computation of insect angular
velocities accomplished by using large-field neurons that
are tuned to respond to the specific patterns of optic flow
that are generated by yaw, roll and pitch [29]. Compound
eyes precisely estimate angular velocities at low frequencies.
The compound eyes can also estimate body orientation and
position by higher level visual processing like object fixation
and landmarks detection for navigation and path planning
[13]. Finally, the dorsally directed (upward-looking) regions
of the compound eyes of many insects are equipped with
specialized photoreceptors that are sensitive to the polarized
light patterns that are created by the sun in the sky. More
precisely insects can measure their orientation relative to the
direction of the light polarization:p0 ∈ R

3, as:

yp = RT p0 (4)

Differently from the ocelli, the light polarization direction is
not affected by light intensity. Bio-inspired polarized light
compasses have been successfully fabricated and used for
robot navigation [23].

5) Magnetic compass:Recent studies indicate that some
insects also possess a magnetic sense that informs them of
their heading direction, and helps them maintain it [37].
Similarly to the light polarization sensor, we can argue that
insect can measure the components of the magnetic field with
respect to the body as follows:

ym = RT b0 (5)

whereb0 ∈ R
3 is the direction of magnetic field relative to

the fixed frame. A possible electromechanical implementa-
tion of a magnetic compass suitable for small size vehicles
is given in [40].

IV. SENSORFUSION VIA COMPLEMENTARY FILTERS

The sensory system of real insects is clearly redundant,
i.e. kinematic quantities such as the angular velocity are de-

rived from more than one sensor. Information from different
sensors is then “fused” together.

Complementary filters traditionally arise in applications
where redundant measurements of the same signal are
available [2] and the problem is combining all available
information in order to minimize the instrumentation error.

For sake of simplicity, consider only two sensors,s1 and
s2, providing readings of thesamequantity, e.g. the angular
velocity ω, with different noise characteristics, i.e.s1 = ω +
n1 ands2 = ω + n2, where‖n1‖ < ‖n2‖ at high frequency
while ‖n2‖ < ‖n1‖ at low frequency.

1-L(s)

L(s)

+

ω+n2

ω+n1

ω + n2 L(s) + n1(1-L(s))

Fig. 3. Sensor fusion via a complementary filter. The low-pass is L(s)
while the high-pass is defined as1 − L(s), in this sense the filter is
“complementary”.

Complementary filters such as the one in Fig. 3 can be
used to fuse information from two or more sensors (e.g.
halteres, ocelli and compound eyes) with the characteristic
of sensing thesamevariable (e.g. angular velocity) although
being subject to noise and disturbances with different spectral
content [2].

Remark 1 (non-dynamic estimation): The kinematic
variable (ω in Fig. 3) is dynamicallyunaffectedby the filter.
The estimated variable (i.e. the output of the filter) is related
to the input variable via a purely algebraic relation in the
time domain and no dynamics are involved in the noiseless
case.

Such filters can be safely used in feedback loops to
fuse readings of thesamekinematic variable from different
sensors since no extra dynamics is added to the overall
system and stability (which involves noiseless conditions)
is not affected.

Complementary filters can be generalized to fuse infor-
mation deriving from sensors when the sensed variables are
related by differential equations, i.e. the filter introduces
some dynamics between the estimated output and the sensed
inputs.

The differential equations relating the sensed variables
may be nonlinear, this is typically the case when attitude
is concerned. Theory of complementary and Kalman filters
has been traditionally been used to design attitude filters.
Although the Kalman filters can be extended (EKF) to non-
linear cases, they fail in capturing the nonlinear structure of
the configuration space of problems involving, for example,
rotations of a rigid body, and most importantly, they can run
into instabilities. On the other hand, nonlinear filters [9], in
particular complementary filters, can better capture such a
nonlinear structure.

A. Dynamic Attitude Estimation

As an example of use of complementary filters when
differentkinematic variables are involved, consider the linear



case of a rotational mechanical system with one degree of
freedom (θ). As shown in [2], complementary filters such
as the one represented in Fig. 4 are traditionally used to
fuse information available from both angular position sensors
and tachometers, respectivelyθsens and ωtacho. Let θ∗ be
the estimate ofθ. The filter gaink in Fig. 4 determines the
transition frequency of the filter after which the data from the
tachometer (ωtacho) are weighted more whereas before the
transition frequency data from the position sensors (θsens)
are predominant on the dynamic equation (the integrator
1/s). The optimal value fork is in fact determined by the
characteristics of measurement noise, see [2].

θsens

k

+
1
s

+
_

θ*ωtacho

Fig. 4. Linear complementary filter for a rotational mechanical system
with one degree of freedom.

Differently from previous example,SO(3) is a nonlinear
space and that is where the advantages of a geometric ap-
proach can be fully appreciated. Besides nonlinear dynamics,
the very definition of estimation error requires caution. Inthe
linear casee = θ−θ∗ is a typical choice while quantities such
asR−R∗ with R, R∗ ∈ SO(3) are no longer guaranteed to
belong toSO(3). Following [5], the estimation error will be
defined asE = RT R∗.

Next, a complementary filter onSO(3) for dynamic
attitude estimation is presented which fuses information
from gyroscopes and from different and possibly redundant
navigation sensors, such as the ones described in Section III.

B. Complementary filtering onSO(3)

ConsiderN ≥ 2 homogenous and time-invariant vector
fields~v1, ~v2, . . . , ~vN (e.g. the gravitational field, the geomag-
netic field, the light direction etc...) without the need, for the
moment, to specify their components (therefore the symbol
~· ). Assume that at least two of them (e. g.~v1 and~v2, without
loss of generality) are independent, this can be expressed in
a form that is invariant and coordinate-free:

~v1 × ~v2 6= 0 (6)

Given a rigid body, define a body frameB on it. Let the
rigid body be at rest at some timet0 and define thus a space
frame S0 as the one coincident with the body frameB at
time t0. Let the constant vectorsvi0 = [vi0x vi0y vi0z ]

T

represent the components of each vector field at timet0 as
measured by a set of sensors on the rigid body. At any time
t, let R(t) : R → SO(3) be a twice-differentiable function
representing the orientation of the rigid body in 3D space
with respect to the space frameS0, let vi = [vix viy viz ]

T

be the (time-variant) components of each field and letωgyr

be readouts of the gyroscopes, bothvi andωgyr are referred
to the (body) moving frame.

The trajectoryR(t) ∈ SO(3), as defined above, is re-
flected in the measurements of the gyroscopes and of the
vector fields sensors and can be expressed as

{
ω̂gyr = RT Ṙ = ω̂
vi = RT v0i

(7)

Theorem 1: Let R(t) : R → SO(3) represent the
orientation of the rigid body. LetR∗(t) denote the estimate
of R(t) and let it be defined by the following observer:






Ṙ∗ = R∗ ω̂∗

ω∗ = ωgyr +
∑N

i=1
ki(vi × v∗i )

v∗i = R∗T v0i

(8)

whereki > 0 are the filter gains,ωgyr and vi represent the
sensor readings as in (7).

The observer (8) asymptotically tracksR(t) for almostany
initial condition R∗(0) 6= R(0) and in particular:

lim
t→∞

RT (t)R∗(t) = I (9)

The theorem is stated in a form which is similar to [17],
where a possible proof can also be found. Independently
from [17], we develped a proof which extends our previous
work [6], based on a geometrical approach. In our proof,
too lengthy to be presented here, we clearly distinguish the
role of gyroscopes from the other sensors, coming to a more
general conclusion summarized in the following remark.

Remark 2: Gyroscopes, in fact, are not necessary for
stability, at least when tracking a certain (large) subset of
trajectories of interest, for which the measurements of 2
vector fields such as the gravitational and the geomagnetic
ones are sufficient [6], but knowledge of the angular velocity
is beneficial for performance, especially when disturbances
are present.

Remark 3: The proposed filter, see next section for an
implementation, can be still used for stable tracking when
the information from gyroscopes is completely or partially
missing (e.g. only mono-axial or bi-axial gyroscopes are
available, as for the case of the halteres), of course with
a worsening of the performance.

C. Filter Implementation

In this section, the implementation for the specific case
of two vector fieldsv1 = g and v2 = b, with setup mea-
surementsv01 = g0 and v02 = b0, together with data from
gyroscopes (ωgyr), is presented. In particular, Fig. 5 shows
the general observer (8) in terms of block diagrams which
can be directly implemented in simulation environments such
as MATLAB/Simulink from MathWorks Inc.

The diagram in Fig. 5, in particular the integration block
1/s, is a continuos-time filter. Any digital implementation
of the filter would i) transform the filter in a discrete-time
one with time sequencetn and ii) necessarily introduce
numerical errors. The main risk is that, as numerical errors
accumulate, quantities such asR∗

n = R∗(tn) are likely to
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Fig. 5. Complementary filter for dynamic attitude estimation.

drift away from SO(3), i.e. det R∗

n very different from1
and/or R∗T

n R∗

n very different from the identity matrixI.
This can be avoided by considering that data from analog
sensors are typically acquired via DACs (Digital to Analog
Converters) with a fixed sampling time, let this sampling
time be∆T . In the time intervaltn ≤ t < tn+1 = tn +∆T ,
data from sensors are assumed constant, i.e.ω(t) = ωn,
g(t) = gn and b(t) = bn. This allows computingR∗

n+1 via
the Rodrigues’ formula [27] as:

ω∗

n = ωn + kb(gn × (R∗T
n g0)) + kb(bn × (R∗T

n b0))
αn = sin ‖∆T ω̂∗

n‖ / ‖∆T ω̂∗

n‖
βn = (1 − cos ‖∆T ω̂∗

n‖) / ‖∆T ω̂∗

n‖
2

R∗

n+1 = R∗

n

(
I + αn∆T ω̂∗

n + βn∆T ω̂∗2
n

)

(10)
which is guaranteednot to drift away fromSO(3).

Remark 4 (sensor fusion on the Lie algebra):in lin-
ear cases as in Fig. 4, all the variables belong to the same
spaceRn while, in the nonlinear filter in Fig. 5, variables in
different nodes of the block diagram belong to very different
spaces, some linear (so(3)) and some nonlinear (SO(3)).
The adopted geometric approach leads to recognize how
sensor fusionnaturally occurs on the linear space of angular
velocities, i.e. the Lie algebraso(3).

V. EXPERIMENTAL RESULTS

In this section, the experimental results relative to atti-
tude estimation of the end-effector of a robotic flapper are
presented.

A. Experimental Setup

A robotic wrist was designed to generate motion in three
independent rotational degrees of freedom. A bevel gear
wrist mechanism was developed to transmit the motion of
coaxial drive shafts to the plate holder as shown in Fig. 6.
The roll and pitch ranges do not have any limits, but the yaw
angle was constrained to 450 in our mechanical wrist. Drive
shafts were powered by Maxon 16mm DC brush motors
with planetary gearheads and magnetic encoders. Gearhead
reductions were 19:1 for yaw and pitch, and 84:1 for roll.
All three motors have been upgraded to 84:1 gearheads. The

Bevel gears

driven by DC motors
Spur gears

Base plate

L−plate to host
the end shaft

Bearing
Rigid attachment

Force sensor and fin end

Mounting plate
for rotation shaft

for deviation shaft
Mounting plate

shafts

Gear box housing

Coaxial shafts

Fig. 6. Design layout of the first generation 3DOF mechanicalflapper (not
to scale)

mechanism itself saw gear ratios (drive to driven) of 4:1 for
roll, 8:1 for yaw, and 1:1 for pitch. The wrist mechanism
was reduced in size (roughly 1.5” x 1.5” x 1.25”) to accom-
modate greater motion. A parallel plate mounting structure
for the motors makes the setup compact and portable (see
Fig. 6). The design allows for quick and easy changing
of sensor plate. The motors were driven from MATLAB
Simulink models, which used an additional toolbox provided
by the control board manufacturer (Quanser consulting) to
communicate with the hardware. PID controllers were used
to run the motors at a high level of precision: up to a
tenth of a degree. Motion commands from the computer
were amplified by analog amplifier units (Advanced Motion
Control) running in torque mode, which directly controls the
input current that the motor receives in order to perform a
given motion.

As for the sensors, we used the Honeywell HMC2003
high sensitivity, three-axis magnetic sensor to measure low
magnetic field strengths, such the geomagnetic field. The sen-
sitivity is 1V/gauss and the bandwidth is 1 kHz. The micro



accelerometer we used is ADXL330 (from Analog Devices)
which is a small, thin, low power 3-axis accelerometer with
signal conditioned voltage outputs all on a single monolithic
IC. It measures acceleration with range of up to 3g. It can
measure the static acceleration of gravity, as well as dynamic
acceleration resulting from motion. Bandwidth has a range
of 0.5 Hz to 1600 Hz for X and Y axes, and a range of
0.5 Hz to 550 Hz for the Z axis. The sensitivity each axis
is 300 mV/g with good linearity. For angular rate sensor,
we used IDG-300 (from InvenSense), an integrated 2-axis
angular rate sensor (gyroscope). Two chips of IDG-300 was
used to make a 3-axis gyroscope system, and the bandwidth
is 140Hz.

B. Results

The sensors were assembled and mounted on the plate
attached to the robotic wrist. Angular motions in roll, pitch,
yaw were performed independently and real time sensor
output was obtained from the data acquisition systems and
the sensor fusion algorithm results are compared with the
actual wrist motion (read from the motor encoder).
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Fig. 7. Normalized calibrated data from sensors.

Coupled motions with multiple degrees of freedom were
also performed, calibrated data from sensors derived from
a particular motion are shown in Fig. (7). Experimental
results are promising in the sense that the actual motion
can be reconstructed after proper tuning of the filter (i.e.
after choosing appropriate gain values). Fig. (8) shows the
estimate of a particular angle (φ) during a motion of the
robotic flapper which involved all the 3 degrees of freedom.

Note, in Fig. (7), that the actual sensor data from the
test have high frequency oscillations which is due to the
plate vibration during acceleration, this can be reduced by
mounting the sensors on a shorter plate therefore reduce the
load induced torque on the gearbox.

VI. CONCLUSION

In this work, we present a geometric, i.e. intrinsic and
coordinate-free, approach to attitude estimation of a mi-
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Fig. 8. The angular motion, as desired input (solid line) to the high
precision motors servo system, can be reconstructed from calibrated data
via the complementary filter algorithm.

cromechanical flying insect, derived from multiple and pos-
sibly redundant bio-inspired navigation sensors.

Such a multimodal sensor fusion is implemented by a
dynamic observer, in particular a complementary filter is
proposed which is specialized to the nonlinear structure of
the Lie group of rigid body rotations.

The numerical implementation is also provided in the
specific case of interest for inertial/magnetic navigation,
i.e. when gravitometers, magnetometers and gyroscopes are
available.

The proposed filter was experimentally tested. In par-
ticular, a 3 degrees of freedom robotic flapper was used
to generate a known trajectory. A custom-made suite of
inertial/magnetic sensors was assembled on the end-effector
of the robotic flapper and the filter was used to estimate the
actual (known) motion of the robotic flapper.

As future work, convergence properties of the proposed
observer will be analyzed in presence of noisy data and dis-
turbances(e.g. non-inertial accelerations, geomagneticfield
distortion etc...). The filter will be also tested in more
realistic conditions: miniaturized inertial/magnetic systems
will be mounted onboard of small flying vehicles as well as
biomimetic swimming robots.
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