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Abstract— In this paper, we study sensor fusion for the atti-
tude estimation of Micro Aerial Vehicles (MAVS), in particular
mechanical flying insects.

First, following a geometric approach, a dynamic observer
is proposed which estimates attitude based on kinematic dat
available from different and redundant bio-inspired sensas
such as halteres, ocelli, gravitometers, magnetic compassd
light polarization compass. In particular, the traditional struc-
ture of complementary filters, suitable for multiple sensor
fusion, is specialized to the Lie group of rigid body rotati;s
SO(3).

Then, a numerical implementation of the filter is provided
for the specific case of inertial/magnetic navigation, i.ewhen
gravitometers, magnetometer and gyroscopes are available

Finally, the filter performance is experimentally tested va

a 3 degrees-of-freedom robotic flapper and a custom-made set

of inertial/magnetic sensors. Experimental results show @pd
agreement, upon proper tuning of the filter, between the actal
kinematics of the robotic flapper and the kinematics recon-
structed from the inertial/magnetic sensors via the propoed
filter.

Index Terms—sensor fusion, ocelli, halteres, gravitometer,
polarization sensor, attitude control, SO(3) Lie group

I. INTRODUCTION

to integrate information from a number of different and
redundant sensors to reduce the effect of noise and external
disturbances [38], [13].

In this paper, we focus explicitly on the latter feature
of insect flight, i.e. on sensor fusion of redundant infor-
mation for attitude control, and we assume that we can
control directly the torque applied to the insect body as
shown in [11]. Although sensor fusion and filtering have
been studied for decades and many results are available for
linear spaces [2], it remains a hard problem on the Lie
group of rigid body rotationsSO(3) where standard tools
like Kalman filtering cannot be applied directly. Theory of
complementary and Kalman filters has traditionally been
used to design attitude observers, especially in presence
of redundant measurements. Kalman filters were originally
developed for linear systems and then extended to cope with
nonlinearities via linearization techniques. On the otiaard,
complementary filters are capable of fully exploiting thehri
nonlinear structure underlying problems such as rigid body
rotations, well described by the theory of Lie groups.

As the main contribution of this work, the traditional

Today there are several successful examples of astructure of complementary filters is specialized to the Lie

tonomous flying vehicles, from airplanes [19] to helicoptergroup of rigid body rotation§O(3). In particular, a dynamic
[20]. However, their size hamper their use in surveillancebserver is proposed which derives an attitude estimate fro
and search-and-rescue missions in urban areas, in indeedundant information typically available from bio-insg
environments and in natural disaster scenarios as aftér-earsensors. Following the geometric approach of [22], [4]][25
quakes. Therefore, there is an increasing need for veryl smdiis is achieved by avoiding the parametrization step. The
size air vehicles with high performance. In particular, theproposed observer is based on a notion of state error which is
current trend is to study micro aerial vehicles (MAVS) usingntrinsic, so its performance does not depend on an arbitrary
traditional air-vehicle paradigms such as fixed-winged aifchoice of coordinates, amzbordinate-fregin the sense that
vehicles [16] or rotorcrafts [21]. Differently, inspired/ithe the equations may be written explicitly without specifying
unmatched maneuverability and hovering capability by reaoordinates for the configuration space.

insects, some groups have started using biomimetic princi-
ples to develop micromechanical flying insects (MFIs) Wiﬂ}h
flapping wings that will be capable of sustained autonomo
flight [14], [26].

The extraordinary performance of flying insects is the AS an experimental validation, the filter was used to
result of two peculiar features: the first feature is théeconstruct the kinematics of a 3 degrees-of-freedom fobot
enhancedunsteady-state aerodynamiocrces and moments flapper on which a suite a redundant inertial/magnetic ssnso
generated by the flapping wings [30], [35], [11], and thevas assembled.

second feature is theultimodal sensor fusion.e. the ability ~ section 11 briefly reviews necessary notation, definitions
and metric properties concerning the Lie gro8p(3) of

rigid body rotations. Section Il reviews flying insect dy-
namics and the navigation sensory system of real insects. In
Section 1V, a complementary filter approach is proposed for
sensor fusion. In Section V, the experimental validation of
the filter performance is presented.

A numerical implementation of the filter is provided for
e specific case of inertial/magnetic navigation, i.e. mvhe
Lt;sravitometers, magnetometer and gyroscopes are available
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Il. MATHEMATICAL BACKGROUND review a number of sensors available to insects for navi-

This section briefly describes the notation and sever@@tion, which represent a rich source of inspiration for the
geometric notions that will be used throughout the papefechanical flying insect [7], [10].

For additional details, the reader is referred to texts sagh
[1], [15], [27], [32], [3].

As shown in [1], [27], the natural configuration space fol—
a rigid body is the.ie group.SO(3), i.e. the configuration of
a rigid body can always be represented by a rotation mat
R, i.e. a matrix such thak—! = R” anddet R = +1.
Consider now the coordinate framBg andR%;:

« R? ~ R3: the spacecoordinate frame, or initial config- |
uration frame.

« R} ~ R3: thebodyframe, which is attached to the body
(can be thought of as defined by the sensors sensiti'™®
axis), initially coincident with the space frame.

An elementR of SO(3) can be thought of as a map from
the body frame to the space frame, ife: R}, — R¥.

A trajectory of the rigid body is curv&(t) : R — SO(3).

The velocity vectorR is tangent to the grougO(3) in R Fig. 1. Photo of a fly haltere. Courtesy of [8].

but, as shown in [1], [27], rather than consideriRy two

important quantities are worth to be considered: 1) Halteres: The halteres are club-shaped small ap-
« RRT: representing the rigid body angular Ve|ocitypendages behind each wing that oscillate in anti-phase with

relative to the space frame: respect of the wing, as shown in Fig. 1. The plane of

« RTR: representing the rigid body angular velocity rel-oscillation is slightly tilted toward the tail of the insett
ative to the body frame. be able to measure Coriolis forces along all three body axes
These are both elements of thie algebraso(3), i.e. the [18]. The halteres function as tiny gyroscopes and through

tangent space to the gro0(3) at the identityl. appropriate signal processing [28] they can reconstruet th

Elements of the Lie algebra are represented by skevF/)—Ody angular velocity vector:

symmetric matrices. Systemg on Lie groups _desc_ribed in Y = w 2)
terms of body (space) coordinates are calleft-invariant o _ _
(right-invariant). Recently, preliminary prototypes of micro-electromedbah

Left-invariance: let R () be a trajectory of a rigid body halteres have been fabricated and have shown promising
relative to a space fram@% . Consider a change of spaceresults [39].
frame G : RY, — R, now Ry(t) = GRy(t) represents 2) Mechanoreceptorsinsects wings and other parts of
the sametrajectory but with respect to the new space frameéhe body such as the antennae, neck and legs are innervated
It is straightforward to verify thai?? R, = RT Ry, i.e. the by campaniform sensilla. These nerves can sense and encode
angular velocity relative to the body franf®e” R does not Pressure forces when they are stretched or strained [12]. In
depend on the choice of space frame. particular, the sensilla on the legs can be used to measere th
Right-invariance: similarly, it can be shown that the angulargravity sensor, thus acting as a gravitometer. Therefoee, w
velocity of a rigid body relative to a space frameR” does Ccan assume that insect can measure the gravity vector with
not depend on the choice of coordinate frame attached to tFSpect to the body frame, i.e.
body. T
. . . =R 3

In the case ofSO(3), there exists [27] an isomorphism Yo go 3)

of vector spaces: so(3) — R?, referred to ahat operator, whereg, are the (known) gravity vector components, mea-

that allows writingso(3) ~ R3. For a given vectolm =  sured with respect to the fixed frame.
[a1 a2 as]” € R3, we write: 3) Ocelli: The ocelli are three additional light-sensitive
a 0 — organs that look forward, leftward and rightward, respec-
1 as a2 . . .
Sa=|ay | — | as 0 —ai | =a () Flvely, located in thg m@dle of the compound eyes as .sho_wn
as S 0 in Fig. 2 and provide signals that are used for stabilization

with respect to rapid perturbations in roll and pitch [7]. In
Il. THE SENSORY SYSTEM OF FLYING INSECTS fact, these sensor can estimate the position of the sun with
One reason for superior performance exhibited by flyingespect to insect body by comparing the signals from the left
insects, besides the enhanced unsteady state aerodynaamid right ocelli to estimate the roll angle, and by comparing
forces from flapping flight, is the highly specialized segsorthe signal from the forward-looking ocellus with the mean
system. In order to stabilize flight, insects can rely uponf the signals from the left and the right ocelli to estimate
a number of different sensors. In the following, we brieflythe pitch angle [34].



Ocelli ' ) rived from more than one sensor. Information from different
sensors is then “fused” together.

Complementary filters traditionally arise in applications
where redundant measurements of the same signal are
available [2] and the problem is combining all available
information in order to minimize the instrumentation error

For sake of simplicity, consider only two sensoss,and
s2, providing readings of theamequantity, e.g. the angular
7 e velocity w, with different noise characteristics, i.€. = w+
\ = B 71 andss = w + ng, wWhere||n;|| < ||nz| at high frequency

while ||nz|| < [|n1]| at low frequency.

Compound \{¥

wtn,

W+ nL(s) + n(1-L(s))

Fig. 2. Photo of fly’'s head showing compound eyes and the iowéh
its three photoreceptors. Courtesy of [36].

Fig. 3. Sensor fusion via a complementary filter. The lowsp&sL(s)
. while the high-pass is defined as— L(s), in this sense the filter is
4) Compound eyesThe compound eyes of the insects‘complementary”.

provides different types of signals needed for the optomo-

tor systems. They provide computation of insect angular Complementary filters such as the one in Fig. 3 can be
velocities accomplished by using large-field neurons thatsed to fuse information from two or more sensors (e.g.
are tuned to respond to the specific patterns of optic flowalteres, ocelli and compound eyes) with the characteristi
that are generated by yaw, roll and pitch [29]. Compoundf sensing thesamevariable (e.g. angular velocity) although
eyes precisely estimate angular velocities at low fregigsnc being subject to noise and disturbances with differenttsplec
The compound eyes can also estimate body orientation aodntent [2].

position by higher level visual processing like object figat Remark 1 (non-dynamic estimation): The kinematic
and landmarks detection for navigation and path planningariable (v in Fig. 3) is dynamicallyjunaffectedby the filter.
[13]. Finally, the dorsally directed (upward-looking) fegs The estimated variable (i.e. the output of the filter) is teda

of the compound eyes of many insects are equipped witb the input variable via a purely algebraic relation in the
specialized photoreceptors that are sensitive to theigethr time domain and no dynamics are involved in the noiseless
light patterns that are created by the sun in the sky. Morease.

precisely insects can measure their orientation relatiee Such filters can be safely used in feedback loops to

direction of the light polarizationp, € R3, as: fuse readings of theamekinematic variable from different
T sensors since no extra dynamics is added to the overall
Yp = 1" po (4) system and stability (which involves noiseless condifjons

Differently from the ocelli, the light polarization dirdon is IS not affected. . _ .
not affected by light intensity. Bio-inspired polarizeght Complementary filters can be generalized to fuse infor-

compasses have been successfully fabricated and used mgtion deriving from sensors when the sensed variables are
robot navigation [23]. related by differential equations, i.e. the filter introdac

5) Magnetic compassRecent studies indicate that someSOMe dynamics between the estimated output and the sensed

insects also possess a magnetic sense that informs therdBRYtS: _ , , _
their heading direction, and helps them maintain it [37]. The differential equations relating the sensed variables

Similarly to the light polarization sensor, we can arguet thg"@y be nonlinear, this is typically the case when attitude
§,concerned. Theory of complementary and Kalman filters

insect can measure the components of the magnetic field wi o - : k
respect to the body as follows: has been tradltlonally_been used to design attitude filters.
Although the Kalman filters can be extended (EKF) to non-
ym = RTbg (5) linear cases, they fail in capturing the nonlinear struetofr
. o o ) the configuration space of problems involving, for example,
whereb, € R? is the direction of magnetic field relative to yotations of a rigid body, and most importantly, they can run
the fixed frame. A possible electromechanical implementas g instabilities. On the other hand, nonlinear filters, ]
tion of a magnetic compass suitable for small size Veh'd%articular complementary filters, can better capture such a

is given in [40]. nonlinear structure.

V. SENSORFUSION VIA COMPLEMENTARY FILTERS A. Dynamic Attitude Estimation

The sensory system of real insects is clearly redundant,As an example of use of complementary filters when
i.e. kinematic quantities such as the angular velocity ae ddifferentkinematic variables are involved, consider the linear



case of a rotational mechanical system with one degree bé readouts of the gyroscopes, bottandw,, are referred
freedom @). As shown in [2], complementary filters suchto the (body) moving frame.

as the one represented in Fig. 4 are traditionally used to The trajectoryR(t) € SO(3), as defined above, is re-
fuse information available from both angular position sgas flected in the measurements of the gyroscopes and of the
and tachometers, respectivaly.,,; and wy.cho- Let 6* be  vector fields sensors and can be expressed as

the estimate ob. The filter gaink in Fig. 4 determines the { Byyr = TE—05

transition frequency of the filter after which the data frdre t . _ Rty @)
[ - 02

tachometer ;..1o) are weighted more whereas before the
transition frequency data from the position sensés,() Theorem 1: Let R(t) : R — SO(3) represent the
are predominant on the dynamic equation (the integratarientation of the rigid body. LeR*(¢) denote the estimate
1/s). The optimal value fork is in fact determined by the of R(¢) and let it be defined by the following observer:

characteristics of measurement noise, see [2].

R* = R*&*
* N *
esens+ — woo= wgyTT + 2z Kivi X vf) (8)
’U: = R* Voq
i wherek; > 0 are the filter gainsw,,, andv; represent the
K sensor readings as in (7).
The observer (8) asymptotically trackgt) for almostany

Wiacho % 1 9" initial condition R*(0) # R(0) and in particular:

s Jim RTR*(t) =1 9)

v

Fig. 4. Linear complementary filter for a rotational mecleahisystem ) ) S
with one degree of freedom. The theorem is stated in a form which is similar to [17],

where a possible proof can also be found. Independently

Differently from previous example§O(3) is anonlinear from [17], we develped a proof which extends our previous
space and that is where the advantages of a geometric amwrk [6], based on a geometrical approach. In our proof,
proach can be fully appreciated. Besides nonlinear dyremidoo lengthy to be presented here, we clearly distinguish the
the very definition of estimation error requires cautiontie role of gyroscopes from the other sensors, coming to a more
linear case = 6—6* is a typical choice while quantities such general conclusion summarized in the following remark.
asR — R* with R, R* € SO(3) are no longer guaranteed to Remark 2: Gyroscopes, in fact, are not necessary for
belong toSO(3). Following [5], the estimation error will be stability, at least when tracking a certain (large) subdet o
defined ask = RT R*. trajectories of interest, for which the measurements of 2

Next, a complementary filter or6O(3) for dynamic vector fields such as the gravitational and the geomagnetic
attitude estimation is presented which fuses informatioones are sufficient [6], but knowledge of the angular vejocit
from gyroscopes and from different and possibly redundaig beneficial for performance, especially when disturbance
navigation sensors, such as the ones described in Sedtion #re present.

Remark 3: The proposed filter, see next section for an
implementation, can be still used for stable tracking when

ConsiderN > 2 homogenous and time-invariant vectorine information from gyroscopes is completely or partially
fields#, 7o, ..., Un (e.g. the gravitational field, the geomag-mjssing (e.g. only mono-axial or bi-axial gyroscopes are

netic field, the light direction etc...) without the need; foe  ayailable, as for the case of the halteres), of course with
moment, to specify their components (therefore the symbglworsening of the performance.

7). Assume that at least two of them (e 4y.and v, without
loss of generality) are independent, this can be expressedG- Filter Implementation
a form that is invariant and coordinate-free: In this section, the implementation for the specific case
By X T £ 0 ©6) of two vector fieldsv; = g andvs = b, with_ setup mea-
surementsy; = go andwvge = by, together with data from
Given a rigid body, define a body frani® on it. Let the gyroscopesdy,.), is presented. In particular, Fig. 5 shows
rigid body be at rest at some tinig and define thus a spacethe general observer (8) in terms of block diagrams which
frame Sy as the one coincident with the body franeat can be directly implemented in simulation environmentsisuc
time to. Let the constant vectors,y = [vioz vioy vioz]?  as MATLAB/Simulink from MathWorks Inc.
represent the components of each vector field at tignas The diagram in Fig. 5, in particular the integration block
measured by a set of sensors on the rigid body. At any timg/s, is a continuos-time filter. Any digital implementation
t, let R(t) : R — SO(3) be a twice-differentiable function of the filter would:) transform the filter in a discrete-time
representing the orientation of the rigid body in 3D spacene with time sequence, and ii) necessarily introduce
with respect to the space fran®®, let v; = [v;; viy vi]7  numerical errors. The main risk is that, as numerical errors
be the (time-variant) components of each field anddgf.  accumulate, quantities such & = R*(¢,) are likely to

B. Complementary filtering 080(3)
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R*T for rotation shaft

b* b Spur gears

2 Mounting plate driven by DC motors
for deviation shaft
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A\ 4

Fig. 5. Complementary filter for dynamic attitude estimatio Coaxial shafts

B Rigid attachment

drift away from SO(3), i.e. det R}, very different from1 B Bearing

and/or RXT R very different from the identity matrix.
This can be avoided by considering that data from analog
sensors are typically acquired via DACs (Digital to Analog
Converters) with a fixed sampling time, let this sampling
time beAT. In the time intervak,, <t < t,,11 = t, + AT,
data from sensors are assumed constant,ui(€) = wy,

g(t) = gn andb(t) = b,. This allows computing®;,_ ; via

the Rodrigues’ formula [27] as:

Wi = wnt ko(gn x (BT g0)) + ko(ba x (R3Tbo))
an = sin [[ATGL| / || ATG|]
On (1 — oS ||AT@n||) / HAT@:H2 ~ /Bevel gears
Ri = R:(I+a,ATT: + B,ATT:?) shatts
(20) L-plate to host
Force sensor and fin end the end shaft

Gear box housing

which is guaranteedot to drift away fromSO(3).
Remark 4 (sensor fusion on the Lie algebra)in lin-  fig 6. Design layout of the first generation 3DOF mecharfiegiper (not

ear cases as in Fig. 4, all the variables belong to the sanwescale)

spaceR™ while, in the nonlinear filter in Fig. 5, variables in

different nodes of the block diagram belong to very diffeéren

spaces, some lineasq(3)) and some nonlinearSO(3)). mechanism itself saw gear ratios (drive to driven) of 4:1 for

The adopted geometric approach leads to recognize h?\(’)VII, 8:1 for yaw, and 1:1 for pitch. The wrist mechanism

\Slgﬂ)sc?trie]cgszogiﬁgil:g (;(Tczrbsr on3the linear space of angularwas reduced in size (roughly 1.5” x 1.5” x 1.25") to accom-
T gebra(3). modate greater motion. A parallel plate mounting structure

V. EXPERIMENTAL RESULTS for the motors makes the setup compact and portable (see
In this section, the experimental results relative to attif'd- 6). The design allows for quick and easy changing

tude estimation of the end-effector of a robotic flapper ar@l Sensor plate. The motors were driven from MATLAB
presented. Simulink models, which used an additional toolbox provided

by the control board manufacturer (Quanser consulting) to

A. Experimental Setup communicate with the hardware. PID controllers were used

A robotic wrist was designed to generate motion in thret run the motors at a high level of precision: up to a
independent rotational degrees of freedom. A bevel getgnth of a degree. Motion commands from the computer
wrist mechanism was developed to transmit the motion ofere amplified by analog amplifier units (Advanced Motion
coaxial drive shafts to the plate holder as shown in Fig. zontrol) running in torque mode, which directly controlg th
The roll and pitch ranges do not have any limits, but the yawiput current that the motor receives in order to perform a
angle was constrained to 4 our mechanical wrist. Drive given motion.
shafts were powered by Maxon 16mm DC brush motors As for the sensors, we used the Honeywell HMC2003
with planetary gearheads and magnetic encoders. Gearhédgh sensitivity, three-axis magnetic sensor to measuse lo
reductions were 19:1 for yaw and pitch, and 84:1 for rolimagnetic field strengths, such the geomagnetic field. The sen
All three motors have been upgraded to 84:1 gearheads. Téidvity is 1V/gauss and the bandwidth is 1 kHz. The micro
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accelerometer we used is ADXL330 (from Analog Device input
which is a small, thin, low power 3-axis accelerometer wit 4| | e gains =0 |- 4ol _
signal conditioned voltage outputs all on a single monmith -==== gains = 1 RN
IC. It measures acceleration with range of up to 3g. It ¢i 30|~~~ gains = 10 . ————— B R
measure the static acceleration of gravity, as well as dymal ’ |
acceleration resulting from motion. Bandwidth has a ran
of 0.5 Hz to 1600 Hz for X and Y axes, and a range ¢
0.5 Hz to 550 Hz for the Z axis. The sensitivity each ax
is 300 mV/g with good linearity. For angular rate sensc
we used IDG-300 (from InvenSense), an integrated 2-a
angular rate sensor (gyroscope). Two chips of IDG-300w .10
used to make a 3-axis gyroscope system, and the bandw

is 140Hz.

B. Results Fig. 8. The angular motion, as desired input (solid line) e tigh

precision motors servo system, can be reconstructed frdifrated data
The sensors were assembled and mounted on the p via the complementary filter algorithm.

attached to the robotic wrist. Angular motions in roll, pitc
yaw were performed independently and real time sen:

output was obtained from the data acquisition systems ¢ cromechanical flying insect, derived from multiple and pos-
the sensor fusion algorithm results are compared with 1 sibly redundant bio-inspired navigation sensors.

¢ [deg]
S

I

i

I I

| |

6 8 10 12 14
time [s]

actual wrist motion (read from the motor encoder). Such a multimodal sensor fusion is implemented by a
05 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ dynamic observer, in particular a complementary filter is
- —— 9] proposed which is specialized to the nonlinear structure of
L — RN the Lie group of rigid body rotations.
E— The numerical implementation is also provided in the
-0.5 : ] : : ‘ : : : ‘ specific case of interest for inertial/magnetic navigation
4 5 6 7 8 9 10 11 12 13 14 . .
05 ie. _when gravitometers, magnetometers and gyroscopes are
b available.
o bx; The proposed filter was experimentally tested. In par-
e by ticular, a 3 degrees of freedom robotic flapper was used
05 , ‘ , , ‘ ‘ , ‘ - to generate a known trajectory. A custom-made suite of

4 5 6 7 8 9 10 1 12 1B 14 jpnertial/magnetic sensors was assembled on the end-affect
of the robotic flapper and the filter was used to estimate the

! Wy actual (known) motion of the robotic flapper.
AW il As future work, convergence properties of the proposed
/ "y observer will be analyzed in presence of noisy data and dis-
S % 7 8 9 10 11 12 13 1. turbances(e.g. non-inertial accelerations, geomagrfieid
time [s] distortion etc...). The filter will be also tested in more

realistic conditions: miniaturized inertial/magneticsms
will be mounted onboard of small flying vehicles as well as

Coupled motions with multiple degrees of freedom we Piomimetic swimming robots.
also performed, calibrated data from sensors derived fri
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