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Abstract

This paper describes recent development on the design of
the flight control system for a Micromechanical Flying In-
sect (MFI), a 10-25mm (wingtip-to-wingtip) device capable
of sustained autonomous flight. High level attitude control
is considered. Based on our previous work [1], in which
the complex time-varying component of aerodynamic forces
are treated as external disturbances, a nominal state-space
linear time-invariant model in hover is developed through
linear estimation. The identified model is validated through
the Virtual Insect Flight Simulator(VIFS), and is used to
design feedback controllers for the MFI. A LQG controller
is designed and compared with a PD controller. The identi-
fication scheme provides a more systematic way of treating
aerodynamic modeling errors, and the controllers designed
based on the identified model shows better overall perfor-
mance in simulation. Another advantage of this approach is
that measurement of the instantaneous aerodyhamic forces
is not necessary, thus simplifies the experimental setup for
the real MFI.

1 Introduction

The extraordinary flight capabilities of insects have in-
spired the design of small UAVs with flapping wings
mimicking real flying insects. Their unmatched ma-
neuverability, low fabrication cost and small size make
them very attractive for cost-critical missions in envi-
ronments which are unpenetrable for larger size UAVs.
This is the challenge that the Micromechanical Flying
Insect project (MFI) being currently developed at UC
Berkeley, has taken [2]. Figure 1 shows a mockup of
the target robot fly. In this paper we will present re-
cent improvements in the control system design for the
MFI originally proposed in [3].

Similar to aerial vehicles based on rotary wings, such
as helicopter, flying insects control their flight by con-
trolling their attitude and the magnitude of the vertical
thrust [1]. This is accomplished by the aerodynamic
forces and torques generated from the wing flapping
motion. However, different from aerodynamic forces
exerted on helicopter blades, aerodynamic forces on in-
sect wings are highly nonlinear and time-varying along
a wingbeat due to the periodic motion of the flapping

∗This work was funded by ONR MURI N00014-98-1-0671,
ONR DURIP N00014-99-1-0720 and DARPA.

Figure 1: mockup of a robot fly

wing blades. Moreover, the total force and torques on
the MFI body are the result of two wings, which can
have asymmetric kinematics.

Despite the above differences, valuable lessons can
still be learned from the control of helicopters. As
is widely adopted by rotorcrafts based on quasi-static
assumption on the rotary blades, the complicated he-
licopter dynamics is approximated by a linear time-
invariant model, and various linear control algorithms
have proved to be successful [4]. This linearizing idea
can also be applied on the MFI, provided that the
wing is flapping at high enough frequency (in our case,
around 150Hz) when the chattering of the motion is
small. In this case the periodic response of the real con-
tinuous model can be approximated by a time-invariant
model of averaged signals over one wingbeat, and the
time varying components(residues) appears as external
disturbances [1]. Moreover, the wing motion can be
changed at most on a wingbeat-to-wingbeat basis, since
the wings need to follow a periodic motion to generate
sufficient lift to sustain the insect weight. Therefore, a
continuous control modeling is not applicable.

Therefore, the first problem addressed in this work is
the identification of a discrete-time linear time-invariant
(LTI) model which captures the main dynamic features
of the MFI near hover. The second problem considered
is that of constructing controllers to stabilize hover and
provide setpoint tracking.
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Figure 2: The model for the insect dynamics.

A complete model of an insect can be divided into
three different subsystems, which are the aerodynamics,
force and torque generation process, and body dynamics
as shown in Figure 2. Stroke angles and rotation an-
gles are defined in Figure 3, together with lift and drag
aerodynamic forces generated from the wing flapping
motion.

Note from Figure 2, the actuator dynamics is not in-
cluded, which will be designed as a PWM to drive the
stroke and rotation angles into periodic motion. In our
present work with high level flight control, it is assumed
that the stroke and rotation angles take form of trigono-
metric functions and their amplitude and phase can be
modulated directly.
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Figure 3: Aerodynamic forces decomposed into lift(L)
and drag(D) forces in stroke plane; (a) lateral view; (b)
top view; φ: stroke angle, ϕ: rotation angle, α: angle
of attack, u: wing velocity.

Given lift, drag forces and stoke angles, the total
torques in the body frame can be derived. As shown
in [5], the attitude dynamics for a rigid body subject to
an external torque τ b applied at the center of mass and
specified with respect to the body coordinate frame is
given by

Iωb + ωb × Iωb = τ b (1)

where I is the inertia matrix. ωb is the angular velocity
vector in body frame.

Let R represents the rotation matrix of the body axes
relative to the the spatial axes, we have ω̂b = RT Ṙ.
For R ∈ SO(3), we parameterize R by roll(φ), pitch(θ),
yaw(ψ) Euler angles about x,y,z axes respectively. By
differentiating R with respect to time, we have the state
equations of the Euler angles, Θ = [φ θ ψ]T , which

can be defined as Θ̇ = Wωb. By defining the state
vector Θ ∈ R3, the equations of motion of the insect is
rewritten as

Θ̈ = (IW )−1[τ b −W Θ̇× IW Θ̇− IẆ Θ̇ (2)

where the body torques are periodic, nonlinear and dis-
continuous functions of the wing kinematics. i.e.

τ b = τ b(φi(t), φ̇i(t), ϕi(t), ϕ̇i(t)) (3)

where i ∈ {l, r} represents the left and right wing, re-
spectively. The aerodynamic force and torque calcula-
tions are very complicated and highly nonlinear, which
is described in our previous work [6].

3 Wing Kinematic Parameteri-
zation

Since the relation between wing motions and corre-
sponding torques are highly nonlinear and not eas-
ily invertible, as found from Equation (3), we sim-
plify the problem by representing the wing motions
(φi(t), φ̇i(t), ϕi(t), ϕ̇i(t)) within one wingbeat by a set
of three parameters. These parameters, if properly cho-
sen, can decouple the averaged roll, pitch, yaw torques
generated during one wingbeat, thus simplifying the de-
sign of hovering controllers.

The parameterization is based on recent work [7] that
have evidenced how the modulation of the mean angle of
attack and the phase of rotation between the two wings
can generate asymmetric instantaneous forces along a
wingbeat, thus giving rise to positive or negative mean
torque and forces. Intuitively, the mean angle of attack
can modulate the magnitude of the aerodynamic forces
on the wing: lift is maximal at an angle of attack of
45o and decreases for different angles. The advanced
or delayed phase of rotation respectively increases or
decreases both lift and drag at the stroke reversals.

Following these observations, we parameterize the
motion of the wings with only three parameters as fol-
lows:

φr(t) = φl(t) = Φ sin(2πf t)
ϕr(t) = Υr [sin(2πf t) + αr sin(4πf t)]
ϕl(t) = Υl [sin(2πf t) + αl sin(4πf t)]

Υl =
π

4
+

π

8
ramp(γ)

Υr =
π

4
+

π

8
ramp(−γ) (4)

where φ is the stroke angle, f is the wingbeat frequency,
Φ is the maximal stroke amplitude, ϕ is the rotation
angle, Υ is the maximal rotation angle and the subscript
r and l stand for right and left wing, respectively. The
function ramp() is defined as follows:

ramp(γ) =
{

0 : γ < 0
γ : γ ≥ 0 (5)

The parameters αl and αl are strongly related to wing
flip timing: a positive value corresponds to advancing
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Figure 4: Average roll torque, τη, map (left) as a func-
tion of the parameter γ and different values for the other
two parameters (dotted lines). The solid line corre-
sponds to the approximate function τη = c−1γ3. Mean
lift, fz, calculated at different frequencies (right).

the wing rotation on the downstroke and delaying on
the upstroke, a negative value does the opposite, a null
value results in a symmetric wing rotation at both the
half-strokes. The parameter γ modifies the mean angle
of attack of the wings: a negative value corresponds
to a smaller mean angle of attack on the right wing, a
positive value to the opposite, and a zero value to equal
mean angle of attack.

We obtained an empirical map from wing kinematic
parameters to the average torques generated over one
wingbeat through the VIFS with the morphology of a
honey bee. Figure 4 and Figure 5 show the simulation
results. The empirical map can be written as follows.

τ̄η = f1(αr, αl, γ) = cγ3 + δη

τ̄θ = f2(αr, αl, γ) = a11αl + a12αr + δθ

τ̄ψ = f3(αr, αl, γ) = a21αl + a22αr + δψ (6)

where the coefficients a11, a12, a21, a22, c are constants,
and the errors δη, δθ, δψ are bounded. It is seen that f2

and f3 can be approximated with linear functions of αl

and αr, while f1 with a simple nonlinear function of γ
only. Therefore the mean torques are decoupled for the
identification and control purposes.

4 Model Identification

The analysis in the previous section provide us with a
torque decoupling scheme, together with a set of feasi-
ble control inputs (wing kinematic parameters). With
respect to the original continuous dynamics as in Equa-
tion (2), our goal is to approximate the averaged atti-
tude model in hover by a discrete-time LTI model in
the following form
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Figure 5: Average pitch and yaw torque maps.

x(k + 1) = Ax(k) + Bu(k) + w(k)
y(k) = Cx(k) + Du(k) + v(k)

(7)

where x = [φ̄, θ̄, ψ̄, p̄, q̄, r̄]T is the vector of average roll,
pitch, yaw angles and angular rates over one wing-
beat, and w represents the time varying component
which appears as an external disturbance to the linear
model [1]. y is the vector of measured outputs, with
additional measurement noise v. C and D matrices
are set to be identity and zero matrices, respectively.
u = [u1, u2, u3]T = [γ3, αl, αr]T are the control inputs,
i.e., the wing kinematic parameters.

The model identification problem can be recast
into a least square solution to an overdetermined
set of linear equations as Ez = b, where z =
[A11, ..., A66, B11, ..., B63]T is the vector of system pa-
rameters to be estimated, E and b are matrices whose
elements consists of the experiment data. The least
square solution which minimizes the norm of the error
‖ e ‖2=‖ b−Az ‖2 is given by z = E(ET E)−1ET b.

The experiments were performed on the Virtual In-
sect Flight Simulator (VIFS), developed by the authors
to provide a software testbed for insect flight [?]. The
experimental data were generated with random inputs
and initial conditions near the equilibrium.

Estimation of the system parameters and further in-
vestigation into the system dynamics in Equation (7)
results in the following approximate parameter struc-
tures

A =
[

I3×3 TI3×3

A21 A22

]
B =

[
03×3

B22

]

where T is the sampling period, namely the wingbeat
period. The parameters of the state-space realization in
Equation (7) consist of the elements of the A21, A22 and
B22 matrices. It was found that the diagonal elements
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of A22 and the block diagonal elements in B22 were very
repeatable on different experiments. The final values of
the estimated parameters are given in Equation (8).

T = 6.8139

A21 = 0.0001

[ −0.1555 0.0453 −0.1317
0.2282 0.0571 −0.0242

−0.0501 −0.0683 0.0099

]

A22 =

[
1.0049 −0.0090 0.0338
0.0059 1.0013 0.0021
0.0160 0.0010 1.0006

]

B22 = 0.00001

[
210 −4.1765 2.8645

−2.8950 −70 −80
0.2153 −110 120

]
(8)

It can be seen from Equation (8) that A21 is close to
an zero matrix, and A22 matrix is close to an identity
matrix. The structure of the B22 matrix also reflects
our previous torque decoupling scheme through wing
kinematic parameterization of Equation (6).

To check the ability of the identified model to pre-
dict the behavior of the MFI in hover, the model was
simulated for a consecutive 50 wingbeats, and is com-
pared to the results from the simulator. Figure 6 plots
the mean angle and angular rates predicted by the LTI
model together the simulation results from VIFS. It can
be seen that the predicted values match the simulated
ones very well.
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Figure 6: Comparison of the predicted mean angles and
angular velocities from the nominal LTI model(dashed line)
and those simulated from VIFS (solid line) over a conseque-
tive 50 wingbeats; γ, αl, and αr are chosen randomly.

5 Controller Design

Based on the identified model found above, stabilizing
state feedback control laws are designed and tuned first
on the nominal LTI model, then implemented on the

MFI. This approach provides a more systematic way
of design feedback controllers compared to our previ-
ous work [3]. Non-lineararities are negligible and can
be treated as additional disturbance into the nomi-
nal LTI model, which captures the main dynamic be-
haviour of the system near hover, as shown in Figure
(6). As our first approach, we employ a classical PD
controller through multi-input multi-output pole place-
ment method. To account for model uncertainties and
control input saturation, a LQG controller were de-
signed and compared to the PD controller.

5.1 PD control via Pole Placement

Given the LTI system 7 be controllable, the closed
loop system poles (i.e., eigenvalues of A − BK) can
be arbitrarily assigned through a state feedback con-
trol law u(k) = −Kx(k). The controller gain K
was found by classical multi-input multi-output pole
placement method such that the closed loop poles
are assigned at desired locations inside the unit cir-
cle [8]. The controller was designed with standard dis-
crete time pole placement software and through itera-
tively tuning and experimenting on the nominal LTI
model, a set of optimal poles are found to be p =
(0.4, 0.5, 0.55, 0.6, 0.65, 0.7).

As an alternative to sensor measurements, we imple-
mented a full state observer and substitute the states
with their estimates in the above control law design.

Since the LTI system (7) is observable, the state es-
timator of the form ξ(k + 1) = Aξ(k) + Bu(k) + L(y −
Cξ − Du(k)) can be constructed by proper selection
of the estimator gain matrix L, such that the estimator
poles (i.e., eigenvalues of A−LC) are assigned at proper
locations. Replacing the control law by u = −Kξ yields
the closed loop dynamic output feedback compensator
with both states x and estimation error e = x− ξ con-
verge to zero [9].

As a rule of thumb, the estimator dynamics should
be faster than the controller dynamics (eigenvalues of
A − BK). Here we design the estimator poles to be
q = 0.5p, and again the estimator gain matrix L is cal-
culated by available pole placement algorithm. Figure 7
shows the simulation results of the observer-based state
feedback controller through VIFS. As can be seen, the
angles are recovered from [35o,−30o, 25o] to zeros in less
than 50 wingbeats. However, there is serious saturation
of the control inputs which is not desirable in our de-
sign. Furthermore, the simulations show chattering in
both states and control inputs due to the external dis-
turbances resulting from the periodic motion and also
measurement noise.

5.2 LQG control

In order to address the trade off between regulation
performance and control effort to avoid control input
saturation, and also to take into account process dis-
turbances and measurement noise in Equation (7), we
employed a linear quadratic Gaussian (LQG) optimal
controller.

As a first step, a state feedback LQR regulator u =
−Kx was designed to minimizes the following quadratic
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Figure 7: PD control in hover: both states(solid line) and
their estimates (dashed line) from the observer are plotted.
The last row are the control inputs.

cost function

J = lim
N→∞

E(
N∑

k=1

x(k)T Qx(k) + u(k)T Ru(K)) (9)

where Q ≥ 0 and R > 0 are the weighting matrices
to define the trade-off between regulation performance
and control effort. The controller was designed with
standard discrete-time LQG software, and the diag-
onal entries in the weighting matrices are iteratively
tuned to ensure a good transient response without sat-
urating the control inputs. The final choice of the
the weighting matrices Q and R for the regulator are
Q = diag(10, 20, 20, 1, 1, 1) and R = diag(1, 2, 5).

As in the case of pole placement, the above LQR op-
timal state feedback u = −Kx is not implementable
without full state measurement. As the second step for
the output feedback problem, a state estimator was gen-
erated by the Kalman filter x̂(k+1) = Ax̂+Bu+L(y−
Cx̂ − Du), with inputs u (controls) and y (measure-
ments). The noise covariance data E(wwT ) = Qn and
E(vvT ) = Rn determines the Kalman gain L through
an algebraic Riccati equation [9].

The input disturbance noise covariance matrix Qn =
E(wwT ) was calculated from the w(k) of the identified
LTI model in (7), where w(k) represents the periodic
component of the real system which enters into the LTI
model as a pseudo-disturbance, and was obtained as
the residue of the identified model from the real process.
The measurement noise v(k) was set to be random noise
of the same covariance matrix Rn = Qn.

The Kalman filter was also designed through stan-
dard software, and the resulting LQG controller u =
−Kx̂ was implemented on the MFI and simulated for
a consecutive 100 wingbeats. Figure 8 shows the simu-
lation results from VIFS. As is with the results of the
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Figure 8: LQG control in hover: both states(solid line)
and their estimates (dashed line) from the Kalman filter are
plotted. The last row are the control inputs.

previous PD controller, the angles are recovered from
[35o,−30o, 25o] to zeros in less than 50 wingbeats. How-
ever, comparing with Figure 7, there are several notable
improvements of the LQG controller over the PD con-
troller: the response is smoother and with less chatter-
ing near equilibrium; the Kalman filter provides a much
faster and closer estimate of the system states; and most
importantly, the control inputs are not saturated, they
are also smoother and shows much less chattering.

Figure 9 shows the actual response in the continu-
ous time (with respect to the mean signals in Figure
8). Note that in the continuous time, the oscillations
(especially in the pitch axis) are due to the back and
forth periodic wing flapping motion.
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Figure 9: LQG control in hover: detail in continuous time
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Figure 10: LQG control in recovering from upside down
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Figure 11: LQG control in steering

Additional tests were performed on various initial
conditions which all yield good results. For example
Figure 10 shows the response in recovering from upside
down and Figure 11 shows the response of steering 90
degrees in the yaw axis. It can be seen that the angles
are recovered less than 50 wingbeat with some satura-
tion of the control input, but it can be improved by
adjusting the weights in 9. Therefore we can conclude
that the nominal LTI model captures the main dynam-
ics of the insect very well, and the LQG controller is
well suited for our control design.

6 Conclusion

In this work, high level attitude control of the MFI was
considered. Based on proper wing kinematic parame-
terization, a nominal discrete-time linear time-invariant
(LTI) model which captures the main dynamic features

of the MFI near hover was identified. Feedback con-
trollers were designed and tuned on the nominal LTI
model before they are implemented on the MFI. An
observer based dynamic output feedback control was
designed and compared to a LQG controller. The con-
troller are simulated through VIFS and both PD con-
troller and LQG controller shows good results. In addi-
tion, the LQG controller demonstrate better overall per-
formance, and is preferred to the PD control in its abil-
ity to avoid control input saturation. It is also shown
that the under LQG control the MFI is able to recover
from large angular displacement such as recovering from
upside down and steering 90 degrees in the yaw axis
with fast transient response.

Recent development involves adding the tho-
rax(actuator) model and various sensor models such as
halteres(gyro), ocelli(light sensor), and magnetic cam-
puss and simulations through VIFS showed satisfactory
overall performances. Future work involves quantifi-
cation of the parameter uncertainties in our nominal
model, and apply robust control methods such as H∞
control and µ analysis to address model uncertainty, ex-
ternal disturbance, and measurement noise. Extension
to the complete 6 DOF system dynamics including po-
sition control need to be investigated in hovering and
forward flight. Implementation of an atmaspheric tur-
bulence model will also need be addressed to the test
the MFI’s ability for wind gust disturbance rejection.
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