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Abstract— In this paper we study optimal estimation design
for sampled linear systems where the sensors measurements
are transmitted to the estimator site via a generic digital
communication network. Sensor measurements are subject
to random delay or might even be completely lost. We
show that the minimum error covariance estimator is time-
varying, stochastic, and it does not converge to a steady state.
Moreover, this estimator is independent of the communication
protocol and can be implemented using a finite memory
buffer if and only if the delivered packets have a finite
maximum delay. We also present an alternative estimator
with constant gains and finite buffer menory for which,
surprisingly, the stability does not depend on packet delay
but only on the packet loss probability. Finally, algorithms
to compute critical packet loss probability and estimators
performance in terms of their error covariance are given
and applied to some numerical examples.

Keywords— Networked control systems, packet loss, ran-
dom delay, optimal estimation, stability

I. INTRODUCTION

Recent technological advances in MEMS, DSP capa-
bilities, computing, and communication technology are
revolutionizing our ability to build massively distributed
networked control systems (NCS). These networks can
offer access to an unprecedented quality and quantity of
information which can revolutionize our ability in con-
trolling of the environment. However, they also present
challenging problems arising from the fact that sensors,
actuators and controllers are not physically collocated and
need to exchange information via a digital communication
network. In particular, measurement and control packets
are subject to random delay and loss. In this paper we
study optimal estimation design for sampled linear sys-
tems where the sensors measurements are transmitted to
the estimator site via a generic digital communication
networks. Sensor measurements are subject to random
delay or might even be completely lost. We show that
the minimum error covariance estimator is time-varying
and stochastic which does not converge to a steady state.
Moreover this estimator can be implemented using a finite
memory buffer if and only if the delivered packets have
a finite maximum delay and it is independent of the
communication protocol. In particular, the memory length
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is equal to the maximum packet delay. We also present
a suboptimal but simpler to implement estimator which
constrains the estimator gains to be constant rather than
stochastic as for the true optimal estimator. In particular
we show how to compute the optimal static gains if
the packet arrival statistic is stationary and known. We
derive necessary and sufficient condition for stability of
the estimator. Surprisingly we show that stability does
not depend on packet delay but only on the packet loss
probability which needs to be smaller that a threshold
which depend on the unstable eigenvalues of the system
to be estimated. We also provide quantitative measures for
the expected error covariance of such estimators which
turn out to be the solution of some modified algebraic
Riccati equations and Lyapunov equations. These measures
can be used to compare different communication protocols
for real-time control applications. Very importantly, these
results do not depend on the specific implementation of
the digital communication network (wired bus, Bluetooth,
ZigBee, Wi-Fi, etc .. ) as long as the packet arrival
statistics are stationary and i.i.d. In particular, this paper
provides a useful tool for the designer of communication
protocols since he/she can compare the performance of
different protocols schemes. For example it is possible to
quantitatively compare the performance of a protocol that
has small average packet delay but a large packet loss
probability with a protocol that has large packet delay but
a low packet loss probability.

II. PROBLEM FORMULATION

Consider the following discrete time linear stochastic
plant:

xt+1 = Axt + wt (1)

yt = Cxt + vt, (2)

where t ∈ N = {0, 1, 2, . . .}, x,w ∈ R
n, y ∈ R

m,
A ∈ R

n×n, y ∈ R
m, C ∈ R

m×n, (x0, wt, vt) are
Gaussian, uncorrelated, white, with mean (x̄0, 0, 0) and
covariance (P0, Q,R) respectively. We also assume that
the pair (A,C) is observable, (A,Q1/2) is controllable,
and R > 0.

Observation packets are then transmitted through a
digital communication network (DCN), whose goal is to
deliver packets from a source to a destination (see Fig. 1).
Modern DSNs are in general very complex and can greatly
differ in their architecture and implementation depending
on the medium used (wired, wireless, hybrid), and on the
applications they are meant to serve (real-time monitoring,
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Fig. 1. Networked systems modeling. Sampled observations at the plant site are transmitted to the estimator site via a digital communication network.
Due to retransmission and packet loss, observation packets arrive at the estimator site with possibly random delay.

data gathering, media-related, etc ..). In our work we
model a DSN as a module between the plant and the
estimator which delivers observation measurements to the
estimator with possibly random delays. This model allows
also for packets with infinite delay which corresponds to
observation loss. We assume that all observation packets
correctly delivered to the estimator site are stored in an
infinite buffer, as shown in Fig. 1. The arrival process is
modeled by defining the random variable γt

k as follows:

γt
k =

{
1 if packet yk has arrived before or at time t
0 otherwise

(3)
From this definition it follows that (γt

k = 1) ⇒ (γt+h
k =

1,∀h ∈ N), which simply states that if packet yk is present
in the buffer at time t, it will be present for all future
times. We also define the packet delay τk ∈ {N,∞} for
observation yk as follows:

τk =

{
∞ if γt

k = 0,∀t ≥ k ≥ 1

tk − k otherwise, tk
Δ
= min{t | γt

k = 1}
(4)

where tk is the arrival time of observation yk at the
estimator site . The packet delay can be random, therefore
there can be observation measurements that can arrive out
of order at the estimator site (see Fig. 2 for t = 5) and
there can be no packet or multiple packets delivered at
the same time (see Fig. 2 for t = 4 and t = 6). In our
work we do not consider quantization distortion due to data
encoding/decoding since we assume that observation noise
is much larger then quantization noise, as it is the case
for most DSNs where packets allocate tens to hundreds
of bits for measurement data. Also we do not consider
channel noise since we assume that any bit error incurred
during packet transmission is detected at the receiver and
the packet is dropped.

If observation yk is not yet arrived at the estimator at
time t, we assume that a random number dk stored in
the k-slot of the buffer with zero mean and covariance

Fig. 2. Packet arrival sequence and buffering at the estimator loca-
tion. Shaded squares correspond to observation packets that have been
successfully received by the estimator. Cursor indicates current time.

E[dkdT
k ] = R, as shown in Fig. 11. More formally, the

value stored in the k-slot of the estimator buffer at time t
can be written as follows:

ỹt
k = γt

kyk+(1−γt
k)dk = γt

kCxk+γt
kvk+(1−γt

k)dk (5)

Our goal to compute the optimal mean square estimator
x̂t|t which is given by:

x̂t|t
Δ
= E[xt | ỹt,γt, x̄0, P0] (6)

where ỹt = (ỹt
1, ỹ

t
2, . . . , ỹ

t
t) and γt = (γt

1, γ
t
2, . . . , γ

t
t).

The optimal mean square estimator is more commonly

1In practice, any arbitrary value can be stored in the buffer slots
corresponding to the packets which have not arrived, since as it will
be shown later, the optimal estimator does not use those values as they
do not convey any information about the state xt. Our choice of storing a
random number with the same covariance of measurement noise simply
reduces some mathematical burden.



known as Kalman filter. It is also useful to design the
estimator error and error covariance as follows:

et|t
Δ
= xt − x̂t|t (7)

Pt|t
Δ
= E[ et|te

T
t|t | ỹt,γt, x̄0, P0] (8)

The estimate x̂t|t is optimal in the sense that it minimizes
the error covariance, i.e. given any estimator x̃t|t =
f(ỹt,γt) we always have

E[(xt − x̃t|t)(xt − x̃t|t)
T | ỹt,γt, x̄0, P0] ≥ Pt|t.

Another property of the mean square optimal estimator
is that x̂t|t and et|t

Δ
= xt − x̂t|t are uncorrelated, i.e.

E[et|t x̂T
t|t] = 0. This is a fundamental property since it

gives rise to the separation principle for the LQG optimal
control, which is of the most widely used tool in control
system design.

III. MINIMUM ERROR COVARIANCE ESTIMATOR

DESIGN

In this section we want to compute the optimal estimator
given by Equation (6). First, it is convenient to define the
following variables:

x̂t
k|h

Δ
= E[xk | γt

h, . . . , γt
1, ỹ

t
h, . . . , ỹt

1, x̄0, P0]

êk|h
Δ
= xk − x̂k|h

P t
k|h

Δ
= E[êt

k|h(êt
k|h)T | γt

h, . . . , γt
1, ỹ

t
h, . . . , ỹt

1, x̄0, P0]

from which it follows that x̂t|t = x̂t
t|t and Pt|t = P t

t|t.
It is also useful to note that at time t the information

available at the estimator site, given by Equation (5), can
be written as the output of the following system:

xk+1 = Axk + wk (9)

ỹt
k+1 = Ct

k+1xk+1 + ṽt
k+1, k = 0, . . . , t−1(10)

where Ct
k = γt

kC, and the random variables ṽt
k = γt

kvk +
(1 − γt

k)dk are uncorrelated, zero mean white noise with
covariance Rt

k = E[ṽt
k(ṽt

k)T ] = R. For any fixed t this
system can be seen as a linear time varying stochastic
system with respect to time k, where the only time-varying
element is the observation matrix Ct

k.
We can now state the main theorem of this section:
Theorem 1: Let us consider the stochastic linear system

given in Equations (1)-(2), where R > 0. Also consider
the arrival process defined by Equation (3), and the mean
square estimator defined in Equation (6). Then we have:

(a) The optimal mean square estimator is given by
x̂t|t = x̂t

t|t:

x̂
t

k|k = Ax̂
t

k−1|k−1+γ
t

kK
t

k(ỹt

k−CAx̂
t

k−1|k−1) (11)

K
t

k = P
t

k|k−1C
T (CP

t

k|k−1C
T + R)−1 (12)

P
t

k+1|k = AP
t

k|k−1A
T +Q−γ

t

kAK
t

kCP
t

k|k−1A
T(13)

x̂
t

0|0 = x̄0, P
t

1|0 = P0 (14)

where for k = 1, . . . , t.
(b) The optimal estimator x̂t|t can be computed iter-
atively using a buffer of finite length N if and only

if γt
k = γt−1

k ,∀k ≥ 1,∀t − k ≥ N . If this property
is satisfied then x̂t|t = x̂t

t|t where x̂t
t|t is given by

Equations (11)-(14) for t = 1, . . . , N and as follows
for t > N :

x̂
t

k|k = Ax̂
t

k−1|k−1+γ
t

kK
t

k(ỹt

k−CAx̂
t

k−1|k−1),(15)

K
t

k = P
t

k|k−1C
T (CP

t

k|k−1C
T + R)−1 (16)

P
t

k+1|k = AP
t

k|k−1A
T +Q−γ

t

kAK
t

kCP
t

k|k−1A
T(17)

x̂
t

t−N|t−N = x̂
t−1

t−N|t−N
, (18)

P
t

t−N+1|t−N = P
t−1

t−N+1|t−N
(19)

where k = t − N + 1, . . . , t.
Proof: (a) Since the information available at the

estimator site at time t is given by the time-varying linear
stochastic system of Equations (9)-(10) , then the opti-
mal estimator is given by its corresponding time-varying
Kalman filter:

x̂t
k|k = Ax̂t

k−1|k−1 + Kt
k(ỹt

k − Ct
kAx̂t

k−1|k−1)

Kt
k = P t

k|k−1C
tT

k (Ct
kP t

k|k−1C
tT

k + Rt
k)−1

P t
k+1|k = AP t

k|k−1A
T + Q − AKt

kCt
kP t

k|k−1A
T

x̂t
0|0 = x̄0, P t

1|0 = P0

whose derivation can be found in any standard text on
stochastic control [1] [2]. By substituting Ct

k+1 = γt
k+1C

and Rt
k+1 = R into the previous equations and after

performing some simplifications we obtain the equivalent
optimal estimator of Equations (11)-(14).

(b)(=⇒) Let us consider t > N . If γt
k = γt−1

k ,∀k ≥
1,∀t−k ≥ N , then also P t

k+1|k = P t−1

k+1|k and x̂t
k|k = x̂t−1

k|k
hold under the same conditions on the indices. In particular
it holds for k = t − N which implies P t

t−N+1|t−N =

P t−1

t−N+1|t−N and x̂t
t−N |t−N = x̂t−1

t−N |t−N . Therefore, it
not necessary to compute P t

t+1|t and x̂t
t|t at any time step

t starting from k = 1, but it is sufficient to use the values
x̂t−1

t−N |t−N and P t−1

t−N+1|t−N precomputed at the previous
time step t − 1, as in Equations (18) and (19), and then
iterate Equations (15)-(17) for the latest N observations.

(⇐=) Using a contradiction argument suppose that there
exist N for which estimator defined by Equations (15)-(19)
is optimal. Now consider an arrival sequence for which
γt
1 = 0 for t = 1, . . . , N and γN+1

1 = 1, and also P0 > 0.
Then PN+1

2|1 < PN
2|1 and recursively it follows PN+1

k+1|k <

PN
k+1|k for all k = 2, . . . , N + 1. Therefore, the estimator

using Equation (19) cannot be optimal, which concludes
the theorem.

If there is no packet loss and no packet delay, i.e.
γt

k = 1,∀(k, t), then Equations (11)-(14) reduce to the
standard Kalman filter equations for a time-invariant sys-
tem. However there some differences that is important to
remark. The first difference is that the optimal estimator
under our framework jumps between an open loop estimate
when the value stored in the buffer is not used and the error
covariance increases (γt

k = 0), and a closed loop estimate
when the observation measurement is used and the error
covariance decreases (γt

k = 1). Therefore, the optimal esti-
mator is strongly time-varying and stochastic. Differently,



in standard Kalman filtering the error covariance Pt|t and
the optimal gain Kt converge to finite steady-state values,
P∞ and K∞ respectively, as time progresses. Even more
remarkably it is possible to show that using the steady-state
optimal gain K∞ it is possible to achieve the same steady-
state error, thus not requiring any on-line matrix inversion.

ESTIMATOR

ESTIMATOR
N

(A)

(B)

Fig. 3. Optimal Kalman estimator memory requirements for general
arrival processes (A). Optimal Kalman estimator with finite memory
buffer (B).

The second difference is that the standard Kalman filter
does not need to store all past observations and to compute
x̂t|t starting from k = 0, but the optimal estimate can
be computed incrementally by storing only the current
observation yt, the past state estimate xt−1,t−1 and the past
error covariance Pt,t−1. Differently, the optimal estimator
subject to random packet delay requires the storing of all
past packets and the inversion of up to t matrices at any
time step t to calculate the optimal estimate, as shown in
Theorem 1(b). The optimal estimator can be implemented
incrementally according to Equations (15)-(19) using a
buffer of finite length N only if all successfully received
observations have a delay smaller than N time step, i.e.
γt

k = γt−1

k ,∀k ≥ 1,∀t − k ≥ N . This does not mean that
all packets arrive at the receiver within N time steps, but
only that if a packet arrives then it does within N time steps
(see Fig. 3). Equivalently, this condition can be written in
terms of the packet delay τk ∈ {0, . . . , N−1,∞},∀k ≥ 1.
This condition is rather common in DSNs since it is very
difficult to guarantee correct delivery of all transmitted
packets, while it is rather easy to implement mechanisms
to drop packets that are too old.

Up to this point we made no assumptions on the packet
arrival process which can be deterministic, stochastic or
time-varying. However, from an engineering perspective
it is important to determine the performance of the esti-
mator, which is evaluated based on the error covariance
Pt+1|t. If the packet arrival process is stochastic, also the

error covariance is stochastic. In this scenario a common
performance metric is the expected error covariance, i.e.
Eγ [Pt+1|t], where the expectation is performed with re-
spect to the arrival process γt

k. However, other metrics
can be considered, such as the probability that the error
covariance exceeds a certain threshold, i.e. P[Pt+1|t >
Pmax] [3]. In this work we will consider only the expected
error covariance Eγ [Pt+1|t]. It has been shown in [4] that
computing Eγ [Pt+1|t] analytically it is not possible even
for a simple Bernoulli arrival process, and only upper and
lower bounds can be obtained. Rather than extending those
results by trying to bound performance of the time-varying
optimal estimator, we will focus on filters with constant
gains and with a finite buffer dimension, i.e. we will
consider Kt

t−h = Kh for all t ∈ N, h = 0, . . . , N−1. The
gains Kh will then be optimized to achieve the smallest
error covariance at steady-state. The advantage of using
constant gains is that it is not necessary to invert up to
N matrices at any time step t, thus making it difficult
to implement for on-line applications, and these gains can
be computed off-line. Moreover, filters with constant gains
are necessarily suboptimal, therefore their error covariance
provide an upper bound for the error covariance of the
true optimal minimum error covariance filter given by
Equations (11)-(14). Therefore, in the next section we will
study minimum error covariance filters with constant gains
under stationary i.i.d. packet arrival processes.

IV. OPTIMAL FILTERING WITH CONSTANT GAINS

In this section we will study minimum error covariance
filters with constant gains under stationary i.i.d arrival
processes.
Assumption: The packet arrival process at the estimator
site is stationary and i.i.d. with the following probability
function:

P[τt ≤ h] = λh (20)

where t ≥ 0, and 0 ≤ λh ≤ 1 is a non-decreasing in
h = 0, 1, 2, . . ., and τt was defined in Equation (4).

Equation (20) corresponds to the probability that a
packet sampled h time steps ago has arrived at the es-
timator. Obviously, λh must be non-increasing since λh =
P[τt ≤ h − 1] + P[τt = h] = λh−1 + P[τt = h].

Also, we define the packet loss probability as follows:

λloss
Δ
= 1 − sup{λh|h ≥ 0} (21)

The arrival process defined by Equation (20) can be also
be defined with respect to the probability density of packet
delay. In fact, by definition we have P[τk = 0] = λ0,
P[τk = h] = λh − λh−1 for h ≥ 1, and P [τk = ∞] =
λloss.

Finally, we define the maximum delay of arrived packets
as follows:

τmax
Δ
=

{
min{H|λH = λH+1} if ∃H|λh = λH ,∀h ≥ H
∞ otherwise

(22)
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Fig. 4. Probability function of arrival process λh = P[τk ≤ h] for different scenarios: deterministic packet arrival with fixed delay (A); bounded
random packet delay with no packet loss (B); bounded random packet delay with packet loss (C); unbounded random packet delay with no packet
loss (D).

Fig. 4 shows some typical scenarios that can be modeled.
Scenario (A) corresponds to a deterministic process where
all packets are successfully delivered to the estimator with
a constant delay. This scenario is typical of wired systems.
Scenario (B) models a DCN that guarantees delivery of all
packets within a finite time window τmax, but the delay
is not deterministic. This is a common scenario in drive-
by-wire systems. Scenario (C) represents a DCN which
drops packets that are older than τmax and consequently
a fraction λloss > 0 of observations is lost. This sce-
nario is often encountered in wireless sensor networks.
Scenario (D) corresponds to a DCN with no packet loss
but with unbounded random packet delay. One example
of such a scenario is a DCN that continues to retransmit
a packet till it not delivered and the transmission channel
is such that the packet is not delivered correctly with a
probability ε. Simple calculations show that in this case
λh = 1 − εh.

In the rest of the paper we will use the following
definition of stability for an estimator.
Definition: Let x̃t|t = f(ỹt,γt) be an estimator, and ẽt|t =

xt − x̃t|t and P̃t|t = E[ẽt|tẽ
T
t|t|ỹt,γt] its error and error

covariance, respectively. We say that the estimator is mean-
square stable stable if and only if limt→∞ E[ẽt|t] = 0 and
E[P̃t|t] ≤ M for some M > 0 and for all t ≥ 1.

The previous definition can be rephrased in terms of the
moments of the estimator error. In fact the conditions above
are equivalent to limt→∞ E[||ẽt|t||] = 0 and E[ ||ẽt|t||2] ≤
trace(M).

Let us consider the following static-gain estimator x̃t|t =
x̃t

t|t with finite-buffer of dimension N , where x̃t
t|t is

computed as follows:

x̃
t

t−k|t−k =Ax̃
t

t−k−1|t−k−1+γ
t

t−kKk(ỹt

t−k−CAx̃
t

t−k−1|t−k−1)(23)

x̃
t

t−N|t−N = x̃
t−1

t−N|t−N
(24)

x̃
t

−k|−k = x̄0, γ
t

−k = 0, ỹ
t

−k = 0 (25)

where k = N −1, . . . , 0 and the last line include some
dummy variables necessary to initialize the estimator for
t = 1, . . . , N . Note that static-gain estimator structure
is very similar to the optimal estimator structure given
by Equation (11) as the estimate is corrected only if the
observation has arrived, i.e. γt

t−k = 1, otherwise the
open loop estimate is considered. However, differently
from Equation (11), the gains Kk, k = 0, . . . , N −1 are
constant and independent of t, and the computation of the
estimate x̃t|t does not require any on-line matrix inversion
differently from x̂t|t as it follows from Equations (11)-(12).

We also define the following variables that will be useful
in analyzing the performance of the estimator:

x̃t
k+1|k = Ax̃t

k|k (26)

ẽt
k+1|k = xk+1 − x̃t

k+1|k (27)

P̃ t
k+1|k = E[ẽt

k+1|kẽtT

k+1|k | ỹt,γt] (28)

P
t

k+1|k = E[ẽt
k+1|kẽtT

k+1|k] = E[P̃ t
k+1|k] (29)

where t ≥ k ≥ 1. From these definitions we get:

P
t

k+1|k = A(I − γ
t

kKt−kC)P t

k|k−1(I − γ
t

kKt−kC)T
A

T +

+Q + γ
t

kAKt−kRK
T

t−kA
T (30)

P
t

k+1|k = λt−kA(I−Kt−kC)P
t

k|k−1(I−Kt−kC)TA
T+

+(1−λt−k)AP
t

k|k−1A
T+Q+λt−kA

T
Kt−kRK

T

t−kA
T(31)

where we used independence of γt
k, vk, wk, and ẽt

k|k−1
,

and we also used the fact that vk and wk are zero mean.



For ease of notation let us define the following operator:

Lλ(K,P ) = λA(I−KC)P (I−KC)T AT+
(1−λ)APAT +Q+λAKRKT AT

(32)
If we substitute k = t − N into Equation (31) and

noting that from Equation (24) follows that P̃ t
t−N+1|t−N =

P̃ t−1

t−N+1|t−N and P
t

t−N+1|t−N = P
t−1

t−N+1|t−N , we ob-
tain:

P
t

t−N+2|t−N+1 = LλN−1
(KN−1, P

t−1

t−N+1|t−N )(33)

P
t

t−k+1|t−k = Lλk
(Kk, P

t

t−k|t−k−1) (34)

where k = N−2, . . . , 0. Note that Equation (33) and (34)
define a set of linear deterministic equations for fixed λk

and Kk. In particular, if we define St = P t−1

t−N+1|t−N , then
Equations (33) can be written as

St+1 = LλN−1
(KN−1, St) (35)

Since all matrices P
t

t−k+1|t−k, k = 0, . . . , N − 1 can be
obtained from St it follows that stability of estimator can
be inferred from the properties of the operator Lλ(K,P ).
The following theorem describes these properties:

Theorem 2: Consider the operator Lλ(K,P ) as defined
in Equation (32). Assume also that P ≥ 0, (A,C) is
observable, (A,Q1/2) is controllable, R > 0, and 0 ≤
λ ≤ 1. Also consider the following operator:

Φλ(P ) = APAT + Q − λ APCT (CPCT + R)−1CPAT

(36)
and the gain KP = PCT (CPCT + R)−1.

Then the following statements are true:

(a) Lλ(K,P ) = Φλ(P ) + λA(K − KP )(CPCT +
R)(K − KP )T AT .

(b) Lλ(K,P ) ≥ Φλ(P ) = Lλ(KP , P ), ∀K
(c) (P1 ≥ P2) =⇒ (

Φλ(P1) ≥ Φλ(P2)
)
.

(d) (λ1 ≥ λ2) =⇒ (
Φλ1

(P ) ≤ Φλ2
(P )

)
, ∀P .

(e) If there exists P ∗ such that P ∗ = Lλ(K,P ∗), then
P ∗ > 0 and it is unique. Consequently this is true
also for K = KP∗ , where P ∗ = Φλ(P ∗).

(f) If (λ1 ≥ λ2) and there exist P ∗
1 , P ∗

2 such that P ∗
1 =

Φλ1
(P ∗

1 ) and P ∗
2 = Φλ2

(P ∗
2 ), then P ∗

1 ≤ P ∗
2 .

(g) Let St+1 = Lλ(K,St) and S0 ≥ 0. If S∗ =
Lλ(K,S∗) has a solution, then limt→∞ St = S∗,
otherwise the sequence St is unbounded.

(h) If there exists S∗,K such that S∗ = Lλ(K,S∗),
then also P ∗ = Φλ(P ∗) exists and P ∗ ≤ S∗.

(i) If A is strictly stable, then P ∗ = Φλ(P ∗) has
always a solution. Otherwise, there exist λc such that
P ∗ = Φλ(P ∗) has a solution if and only if λ > λc.
Also λmin ≤ λc ≤ λmax, where λmin = 1− 1

i
|σu

i
|2 ,

λmax = 1 − 1

maxi |σu

i
|2 , and |σu

i | ≥ 1 are the
unstable eigenvalues of A. In particular λc = λmin

if rank(C) = 1, and λc = λmax if C is square and
invertible.

(j) The critical probability λc and the fixed point
P ∗ = Φλ(P ∗) for λ > λc can be obtained as

the solutions of the following semi-definite program-
ming (SDP) problems: λc = inf{λ |Ψλ(Y,Z), 0 ≤
Y ≤ I, for someZ, Y ∈ R

n×n}, and P ∗ =
argmax{trace(P ) |Θλ(P ) ≥ 0, P ≥ 0} where the
matrices Ψλ(Y,Z) and Θλ(P ) are given in Equations
(37) and (38):

(k) If there exist P ∗ > 0 and K such that P ∗ =
Lλ(K,P ∗), then the system Ac = A(I − λKC) is
strictly stable.
Proof: Most of these statements can be found in [5]

or can be derived along the same lines, therefore only a
brief sketch is reported here.

(a) This fact can be verified by direct substitution
(b) This statement follows from previous fact and

λA(K − KP )(CPCT + R)(K − KP )T AT ≥ 0.
(c) From previous fact Φλ(P1) = Lλ(KP1

, P1) ≥
Lλ(KP1

, P2) ≥ Lλ(KP2
, P2) = Φλ(P2).

(d) From Equation (36) we have Φλ1
(P ) − Φλ2

(P ) =
−(λ1 − λ2)APCT (CPCT + R)−1CPAT ≤ 0.

(e) Uniqueness and strictly positive definiteness of P ∗

follows from the assumption that (A,Q1/2) is controllable
[5].

(f) Consider Pt+1 = Φλ1
(Pt) and St+1 = Φλ2

(St)
where P0 = S0 = 0. From fact (c) and (e) it follows
that Pt ≤ St. Also Pt ≤ P ∗

1 and St ≤ P ∗
2 , therefore

limt→∞ Pt = P̄ , limt→∞ St = S̄, and P̄ ≤ S̄. From fact
(e) it follows that P̄ = P ∗

1 and S̄ = P ∗
2 , and thus P ∗

1 ≤ P ∗
2

(g-h) Let consider Pt+1 = Φλ(Pt) and St+1 =
Lλ(K,St) where P0 = S0 = 0. From fact (c) and
monotonicity of operator Lλ(K,P ) with respect to P we
have Pt+1 ≥ Pt, St+1 ≥ St, and Pt ≤ St ≤ S∗ for
all t. Since both sequences are monotonically increasing
and bounded, then limt→∞ Pt = P̄ , limt→∞ St = S̄, P̄ =
Φλ(P̄ ), S̄ = Lλ(K, S̄), and P̄ ≤ S̄. From fact (e) it
follows that P̄ = P ∗ and S̄ = S∗. A complete proof
for convergence from any initial condition can be obtained
along the lines of Theorem 1 in [5], thus it is not reported
here.

(i) The proof for existence of a critical probability λc

was given in [5] and it is based on observability of (A,C)
and monotonicity of Φλ(P ) with respect to λ. The proof
for λc = λmin when rank(C) = 1 can be found in [6][7]
although it was not explicitly derived for the operator Φλ.
The proof for λc = λmax when C is square and invertible
was first proved in [8].

(j) The proof can be found in [5].
(k) Let us consider the linear operator F(P ) = λA(I−

KC)P (I−KC)T AT+(1−λ)APAT . Clearly Lλ(K,P ) =
F(P ) + D, where D = Q+λAKRKT AT ≥ 0. Consider
the sequences St+1 = Lλ(KP∗ , St), Tt+1 = Lλ(KP∗ , Tt)
with initial condition S0 = 0, then T0 ≥ 0. Note that
St =

∑t−1

k=0
Fk(D) and Tt = F t(T0) +

∑t−1

k=0
Fk(D) for

t ≥ 1, where we define F0(D) = D and Fk+1(D) =
F ◦ Fk(D). Therefore F t(T0) = Tt − St. From fact
(g) it follows limt→∞ St = limt→∞ Tt = P ∗, therefore
limt→∞ F t(T0) = 0, for all T0 ≥ 0, i.e. the linear
operator F() is strictly stable. Now consider the system



Ψλ(Y,Z) =

⎡⎣ Y
√

λ(Y A + ZC)
√

1 − λY A√
λ(A′Y + C ′Z ′) Y 0√

1 − λA′Y 0 Y

⎤⎦ (37)

Θλ(P ) =

[
APA′ − P

√
λAPC ′√

λCPA′ CPC ′ + R

]
(38)

Ac = A(I − λKC). The system is strictly stable if and
only if limt→∞ At

cx0 = 0, for all x0. This is equivalent
to limt→∞ At

cx0x
T
0 (AT

c )t = Gt(X0) = 0, where X0 =
x0x

T
0 ≥ 0 and Gt(X0) = At

cX0(A
T
c )t. Note that G(X0) =

AX0A
T − 2λAX0(AKC)T + λ2AKCX0(AKC)T =

F(X0) + λ(λ − 1)AKCX0(AKC)T ≤ F(X0) since
λ(λ − 1)AKCX0(AKC)T ≤ 0. Since we just proved
that limt→∞ F t(X0) = 0 for all X0 ≥ 0, then also
limt→∞ Gt(X0) ≤ F t(X0) = 0 for X0 = x0x

T
0 , i.e. the

system Ac is strictly stable.
The previous theorem provides all tools necessary to

analyze and design the optimal estimator with static gains.
In particular, fact (g) indicates that the static gain K∗

that minimizes the steady state error covariance P ∗ can
be derived from the unique fixed point of the nonlinear
operator Φλ, where K∗ = KP∗ . If the optimal gain K∗ is
used, then the average error covariance converges to the P ∗

regardless of the initial conditions (P0, x̄0), as stated by
fact (f). Fact (i) shows that if the system A is unstable the
arrival probability λ needs to be sufficiently large to ensure
stability, and that the critical value λc is a function of the
unstable eigenvalues of A. Finally, although λc and the the
fixed point P ∗ = Φλ(P ∗) cannot be computed analytically,
from fact (j) follows that they can be computed efficiently
using numerical optimization tools. Finally fact (k) will be
used to show that if the error covariance is bounded then
the estimator is asymptotically strictly stable, therefore
estimator stability reduces to existence of steady state error
covariance.

The following theorem shows how compute the optimal
estimator with static gains.

Theorem 3: Let us consider the stochastic linear system
given in Equations (1)-(2), where (A,C) is observable,
(A,Q1/2) is controllable, and R > 0. Also consider the
arrival process defined by Equations (20)-(22), and the
set of estimators with constant gains {Kk}N

k=0 defined
in Equations (23)-(25). If A is not strictly stable and
λloss ≥ 1 − λc, where λc is defined in Theorem 2(j),
then there exist no stable estimator with constant gains.
Otherwise, let N such that λN > λc and consider the
optimal gains {KN

k }N
k=0 defined as follows:

KN
k = V N

k CT (CV N
k CT +R)−1, k = 0, .., N (39)

V N
N−1 = ΦλN−1

(V N
N−1) (40)

V N
k = Φλk

(V N
k+1), k = N − 1, . . . , 0 (41)

Also consider P
t

k+1|k as defined in Equation (29), then

limt→∞ P
t

t−k+1|t−k = V N
k , independently of initial con-

ditions (P0, x̄0). For any other choice of gains {Kk}N
k=0

for which the following equations exist:

TN
N = LλN

(KN , TN
N ) (42)

TN
k = Lλk

(Kk, TN
k+1), k = N − 1, . . . , 0 (43)

then limt→∞ P
t

t−k+1|t−k = TN
k , and V N

k ≤ TN
k for k =

0, . . . , N . Also V N+1
0 ≤ V N

0 . Finally, if τmax < ∞, then
V N

0 = V τmax

0 for all N ≥ τmax.
Proof: First we prove by contradiction that there

is no stable estimator with constant gains if A is not
strictly stable and λloss ≥ 1 − λc. Suppose one estimator
exists, i.e. there exist N and {Kk}N−1

k=0
such that P

t

t|t is

bounded for all t. Since P
t

t+1|t = AP
t

t|tA
T + Q also

P
t

t+1|t must be bounded for all t. From Equations (33)

and (34) it follows that P
t

t+1|t is bounded if and only if

P
t

t−k+1|t−k for k = 0, . . . , N − 1 are bounded for all t.

Therefore, since the bounded sequence St = P
t

t−N+1|t−N

needs to satisfy Equation (35), from Theorem 2(g) fol-
lows that S∗ = LλN−1

(KN−1, S
∗) has a solution. From

Theorem 2(h) follows that also P ∗ = ΦλN−1
(P ∗) has a

solution. However, by hypothesis λN−1 ≤ sup{λh |h ≥
0} = 1 − λloss ≤ λc. Consequently, according to Theo-
rem 2(i), P ∗ = ΦλN−1

(P ∗) cannot have a solution, which
contradicts the hypothesis that a stable estimator exists.

Consider now the case when N is such that λN > λc.
From Theorem 2(h) it follows that Equations (39)-(41) are
well defined and have a solution. From Theorem 2(g) it
follows that limt→∞ P

t

t−k+1|t−k = V N
k for the optimal

gains {KN
k }N−1

k=0
, and limt→∞ P

t

t−k+1|t−k = TN
k when

using generic gains {Kk}N−1

k=0
. From Theorem 2(h) it

follows that V N
N−1 ≤ TN

N−1. From Theorem 2(c) we
have V N

N−2 = ΦλN−2
(V N

N−1) ≤ LλN−2
(KN−2, V

N
N−1) ≤

LλN−2
(KN−2, T

N
N−1) = TN

N−2. Inductively, it is easy to
show that V N

k ≤ TN
k for all k = 0, . . . , N − 1.

Now we want to show that V N+1
0 ≤ V N

0 . From
Theorem 2(f) and the property λN+1 ≥ λN follow also
that V N+1

N+1
= ΦλN+1

(V N+1
N+1

) ≤ V N
N = ΦλN

(V N
N ).

Therefore V N+1
N = ΦλN

(V N+1
N+1

) ≤ ΦλN
(V N

N ) = V N
N

and inductively V N+1

k ≤ V N
k for all k = N, . . . , 0 which

proves the statement.
Finally, if τmax is finite, then λk = λτmax

for all
k ≥ τmax. Assume N > τmax, then V N

N = ΦλN
(V N

N ) =
ΦλN−1

(V N
N ) = V N

N−1 = ΦλN−1
(V N

N−1) = ΦλN−2
(V N

N−1) =
V N

N−2 = . . . = V N
τmax

= Φλτmax
(V N

τmax
). Since V τmax

τmax
=

Φλτmax
(V τmax

τmax
), then by Theorem 2(e) we have that

V τmax

τmax
= V N

τmax
. According to Equation (41) we also have



V τmax

k = V N
k for k = τmax, . . . , 0, which concludes the

theorem.
The previous theorems shows that the optimal gains

can be obtained by finding the fixed point of a modified
algebraic Ricatti Equation (40) and then iterating N time
an operator with the same structure but with different λk.
The theorem also demonstrates that a stable estimator with
static gains exists if and only if the optimal estimator with
static gains exists, therefore the optimal estimator design
implicitly solves the problem of finding stable estimators.
If the system to be estimated is unstable, then the estimator
is stable if and only if the packet loss probability λloss

is sufficiently small. This is a remarkable result since it
implies that stability of estimators does not depend on the
packet delay τmax as long as most most of the packets
eventually arrive. Another important result is that the
performance of the estimator, i.e. its steady state error co-
variance limt→∞ Pt+1|t = limt→∞ E[et+1|te

T
t+1|t] = V N

0 ,
improves as the buffer length N is increased. However,
if the maximum packet delay is finite τmax < ∞, then
the performance of the estimator does not improve for
N > τmax. This is consistent with Theorem 1(b) since
if a measurement packet has not arrived within τmax time
steps after it was sampled, then it will never arrive.

From a practical perspective, the designer can evaluate
the tradeoff between the estimator performance V N

0 and
buffer length N which is directly related to computational
requirements.

V. NUMERICAL EXAMPLES

In this sections we consider some dynamical systems
and we compute the estimator error covariances as shown
in the previous section. Let us consider the following
probability function of packet delay:

λh = 0.05h, h = 0, . . . , 15

= 0.75, h > 15

which is depicted in Figure 5.

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

h

λ h

λ
c

Fig. 5. Probability function of packet delay.

Let us consider the following discrete time system:

A =
1 0.1
0 0.8

, C =
1
0

T

, R = 1, Q =
0.2 0.1
0.1 1

(44)
which corresponds to the digitalization of a continuous

time system with one stable pole and a pole in the
origin. This is a dynamical model of an electric motor, for
example. The critical probability for this system is λc = 0.
Therefore, according to the previous analysis the estimator
is stable if and only if the size of the buffer of the estimator
is greater than one. The trace of the covariance of the
estimator error with constant gains V N

0 is shown in the
left panel of Figure 6.

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

22

N

tr
ac

e(
V

0N
)

Motor

V
0
N

P
ARE

0 5 10 15 20
0

5

10

15

20

25

30

35

40

45

50

N

tr
ac

e(
V

N 0
)

Pendulum

VN
0

P
ARE

Fig. 6. Trace of the steady state error covariance for the optimal estimator
with constant gains (V N

0
) for a discrete time electric motor model (left)

and a pendulum (right). The horizontal line PARE correspond to the
trace of the error covariance in the ideal scenario with no delay and no
packet loss, i.e. λh = 1 for all h.

Let us consider the following discrete time system:

A =
1.2 0.1
0 0.8

, C =
1
0

T

, R = 1, Q =
0.2 0.1
0.1 1

(45)
which corresponds to the digitalization of a continuous

time system with one stable pole and one unstable pole.
This is a dynamical model of an inverted pendulum,



for example. The critical probability for this system is
λc = 1 − 1/1.22 = 0.3056. According to Theorem 3
the estimator is stable if and only if N ≥ 7, in fact
λ6 = 0.3 < λc and λ7 = 0.35 > λc. The trace of the
covariance of the estimator error with constant gains, VN

is shown in the right panel of Figure 6.

VI. CONCLUSIONS

This numerical examples show how the tools developed
in this paper can be readily used to estimate performance
of estimator. In particular they can be used to evaluate
the tradeoff between performance (the error covariance)
and the estimator complexity ( the buffer length) and the
hardware complexity (the smart sensor). In particular the
knowledge of the packet arrival statics can be used to
find the optimal static gains {KN

k }N
k=0 and thus improving

performance. Very importantly, the ability to quantitatively
compute the estimator error covariance, can be used to
compare different communication protocols that can be
hard to compare otherwise. In fact, it would be rather
difficult to compare a communication protocol with a
small packet loss but overall larger packet delay relative
to another communication protocol with a larger packet
loss but a small average packet delay. This is particularly
important from a technological point of view since most
of today’s design principles for communication protocols
focus on guaranteeing a maximum delay for all packets,
while in this work we have shown that an unstable system
can be observed effectively even if a fraction of packet
is lost. Future work will focus on applying the tools
developed in this paper in current communication protocols
for control application such as real-time ethernet, CAN,
ATMs.
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