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Abstract— In this paper we provide some analytical perfor- obtained as the output of a linear filter which uses the
mance bounds for different distributed estimation schemedor | KF estimates as inputs. More recently Wolfe et al. [13]
stochastic discrete time linear systems where the commurgion  ghawed that the computational load of the central node can

between the sensors and the estimation center is subject to .
random packet loss. In particular, we analyze three differat be reduced even further by running on each sensor a local

strategies. The first, named measurement fusion (MF) optimiyy ~ filter which generates a partial estimate of the state so that
fuses the raw measurements received so far from all sensors. the central node just need to sum them together to recover
The second strategy, named infinite bandwidth filter (IBF), the CKF estimate. The main difference between [12] [8] and

gg?hp“rt]%z;h‘éagpgrgﬁé ”;ﬁa% jgsuui;emza??agggeﬁggmdzg tf)hai:s [13] is that in the latter approach all local sensors need to

current time in a single packet. The last strategy, named ope knc_>w _the whole system dynamics including the other sensors,
loop partial estimate fusion (OLPEF), simply sums local stee  While in the former approaches only the central node needs to
estimates received from each sensor and replace the lost ane know the whole system dynamics. There are also dedicated
with their open loop counterpart. In particular, we propose  distributed estimation algorithms such as the federattsidil

novel mathematical tools to derive analytical upper and lover proposed by Carlson [4], which require a specific structure
bounds for expected estimation error covariance the MF and . -
in the systems dynamics.

the IBF strategies in the scenario of identical sensors and av . . . .
compare their values with the empirical performance obtaired The other class of works is related to estimation subject

via simulations. to packet loss and variable delay between the sensor and the
estimation center. This problem is particularly relevamt i
moving target tracking applications based on radar and GPS
The rapid growth of large wireless sensor networks caneasurements [3]. For example in [2] and [14] the authors
pable of sensing and computation promises the design siiowed how to perform optimal estimation with time-varying
novel applications, but it is also posing several challengalelay and out-of-order packets without requiring the gjera
due to the unavoidable lossy nature of the wireless channek large memory buffers and the inversion of many matrices.
These challenges are particularly evident in control anilore recently, in [11] the authors provided lower and upper
estimation applications since packet loss and random delbpunds for the optimal mean square estimator subject to
degrade the overall system performance, thus motivatieg thandom measurement loss, and in [9] those results were
development of novel tools and algorithms, as illustrated iextended to multiple distributed sensors subject to simul-
the survey [7]. In this work we focus on the problem oftaneous packet loss and random delay. Finally, the recent
estimating a stochastic discrete time linear system okservpapers [10][1] analyze some tradeoffs between communica-
by a number of sensors which can preprocess sensor détm, computation and estimation performance in multi-hop
and communicate this information to a central node via @tee networks.
wireless lossy channel. However, there are only few scattered results concerned
There is a vast literature regarding distributed estimawith distributed estimation subject to packet loss in which
tion and sensor fusion with perfect communication linkssensors are provided with computation capabilities and can
In particular, there are two classes of problems that amreprocess data before transmitting it to the estimatiotece
relevant to this work. The first class addresses the problef recent result in this direction is given by Gupta et al.
of distributing computational burden from the central nodg6] who showed that when there is only one sensor, the
where the decision process takes place, to the distributegtimal strategy for the sensor in the presence of packet
sensor, under the assumption of perfect communication, iless is to send the local Kalman estimate rather than the
packets arrive with no delay or at worst with a constantaw measurement. This is because the local estimate irclude
delay. In this context, Willsky, Levy et al. [12] [8] showed the information about all previous measurements, theeefor
that it is possible to reconstruct the centralized Kalmdarfil as soon as the central node receives the local estimate it
(CKF) estimate from local Kalman filter (LKF) estimatescan reconstruct the optimal estimate even if some previous
generated by each sensor. In particular, the CKF can Ipackets were lost. Unfortunately, this result does not gene
alize to multiple sensors each provided with its own lossy
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be achieved using a limited bandwidth channel, unless packet dropping events through a binary random variable
very special scenarios where there is no process noise, sughe {0, 1} such that:

as in estimation of constant parameters. Therefore, in w . . .
P Bl { 0 if packet sent at time by node: is lost

proposed different suboptimal strategies with differemne  ~/ = 1 otherwise

2
putational and communication requirements and we studied @
their performance via simulations observing that no sgsate  Each sensor is provided with computational and memory
was superior to any other, since the performance dependegources to (possibly) preprocess information before-sen
on the packet loss probability and noise scenarios. Faig it to the central node. More formally, at each time instan
convenience, these results are briefly recalled in theviatig ¢ each sensoi sends the preprocessed informatigne R:
of this paper.

The contribution of this work resides on the derivation of 2t = fiyt, v,y = fiyhy) (3)
analytical expressions to compute upper and lower bounds . . )
of performance of these estimators assuming i.i.d. BetnoulVhere¢ is bounded angf;() are causal functions of the local
packet loss probabilities. Finding bounds on performand®@easurements. Natural choices afe= y;, i.e. the latest
turns out to be particularly challenging due to the fact thai'€asurement, or the output of a (time varying) linear filter:
the estimation error covariance of the different estimaitior g =Figi |+ Gyl
the central node depends nonlinearly on the specific packet z¢ = Higl + Diy!
loss sequence of all sensors, therefore computing expected )
error covariance a-priori given the packet loss statisticdS for example a local Kalman filter.
becomes a combinatorial problem that explodes with time. In The objective is to design a state estimator at the central
particular, we derive upper and lower bounds in the scenarf?de given the information arrived up to time More
where all sensors are identical for two specific stratedfes: formally, let us define the information set available at the
measurement fusion (MF) strategy and the infinite bandwidgentral node as

filter (IBF) strategy. The MF strategy is based on optimally N _ o
fusing the raw measurements received by the central station 7Z; = U I, I ={zi v =Lk=1,...,t} (4)
from the sensors, while the IBF strategy is based on the i=1

assumption that each nodes sends to the base station not qgied on this set, we want to design an estimator as follows
the current measurement but also all previous measurements

in a single packet. We also show through some simulations &), = gi(Th) %)

that some of these bounds are rather tight and can be used . g g B

to estimate in advance the expected error of the differefi'Cl that its error], = var(z, — L 1Ze) = ]E[_(xt -
strategies. We finally end this paper by discussing possibfé|) (z¢—7,)" | Z:] is small. Depending on the choice of the
future extensions. sensor preprocessing functioffsand the estimator functions
g, we get different strategies. Note that the estimator error

covarianceP{it is a function ofZ;, and therefore also on the

Il. PROBLEM FORMULATION

A. Modeling specific packet loss sequence, i.e. it is a random variable.
We consider a discrete time linear stochastic systenis the following of this section, we propose three different
observed byN sensors: strategies, based on natural choices for the functjrend
g:- Other choices are obviously possible, as discussed in [5].
xt+1. = Axt + wtl (1)
yp = Cixp+vwvy, i=1,...,N B. Infinite Bandwidth Filter

Here we propose the optimal filter in mean square sense
g?t we can obtain if we assume infinite bandwidth in the
communication channel when a packet is sent successfully,
for correlated measurement noise. More compactly, if whke- each sensor sends to the central node all measurements

define the compound measurement column noise vegter UP O current time: o

(vf,..., o) € R™m = Y, m;, we haveE[vp0!] = %t = Y1t

Ré(t—s), where the(i, j)-th block of the matrix? € R™*™  \whereyi , = (yi,yi_,,...,y!). The estimator at the central
is [R];; = R;; € R™>™. The initial conditionzy is again  node is given by

a zero-mean Gaussian random variable uncorrelated with

where 2 € R", y; € R™, w, and v! are uncorre-
lated, zero-mean, white Gaussian noises with covarianc
Elww!] = @, andE[vi(v])T] = R;;, i.e. we also allow

the noises and covarian@z,z{] = Py. We also assume &y’ = Eloe | T = Eloe [ Y1, g Y0 on]
that R > 0, the pair (A, Q'/?) is reachable andA4,C) i :
is observable, wher€” = [T CF ... C%], which are where 7} is the delay of the most recent received packet.

sufficient conditions for the existence of a stable estimatg M'S filter is optimal among all possible strategies sinds it

under ideal conditions with no packet loss. easy to see that
The sensors are not directly connected with each other and Ptl\tBF < pﬁt, Y1), Ve, Vg ()
can send messages to a common central node through a lossy
communication channel, i.e. there is a non zero probabilityhere P} B¥ = var(z, — 2/ 5F | Z;) is the error covariance
that the message is not delivered correctly. We model thaf the in#inite bandwidth filter. In other words, this filtertse



a bound on the achievable performance of any other filtecolumns corresponding to the lost packet with zeros. It was
Unfortunately, as shown in [5], there is no hope to find @ahown in [9] that the state estimate for the measurement
strategy which achieves the same performance with a mofigsion strategy is given by:

parsimonious use of the channel. This finding is formally

~MF  __ T ~MF T

stated in the next theorem: T = (L= LiC) ATy + Lege 6)

Theorem 1 ([5]): Let us consider the state estima?tgt PtlffF = Pyjy1 — Pypa CF (CoPyya CF+ Ry)ICL Py (7)
andgt;{‘JtBF defineq as above_. Then there o!o not exist (pqssibly L, = Pt\tflétT(C'tPt\tflétT + Rt)T 8)
nonlinear) functions! = f(y%,,) € R* with bounded size P _ APMF 4T ©)
¢ < oo such thatPf, = P/* for any possible packet loss ~ ~*+!I* — it +Q
sequence, i.e. where the symbof indicates the Moore-Penrose pseudoin-

1Fi0) | PY, = PI‘BF o~ verse. The previous equations correspond to a time-varying
t ‘ - ) t

The previous theorem states that there is no hope to fincgi?lman filter which depends on the packet loss sequence.
0

preprocessing with bounded message size which can achi v%te that only measurements_ th"i‘t,};a"_e arrived are used
the computation of the estlmatg{‘dt , i.e. the dummy

the error covariance®/5*" of the infinite bandwidth filter = )

(IBF) since it is not possible to know in advance what thgSro measurement iy, are not used as if they were real
packet loss event will be. We will therefore propose wgneasurements, but are <_j|scarded.

suboptimal estimation strategies which provide the optima The measurement fusion strategy_has th? advgntage to be
solution in the special case of perfect communication "nkcomputed recursively and_exactly with the inversion of one
i.e. when there is no packet loss. matrix of (at most) the size of the lumped measurement

vector ;. On the other hand, if a packet is lost, then the

C. Measurement Fusion information conveyed by the measurement in that packet
The first, referred as measurement fusion (MF), consistg lost forever, while sending filtered version of the output
in sending the raw measurements as in the open loop partial estimate fusion (OLPEF) this

information might be partially recovered.

% =y
, D. Open Loop Partial State Estimate Fusion
from each sensor node, and to find the best mean square P P

state estimator with the arrived measurements at the ¢entra 1 Nis strategy is suggested by the observation that, in the
node: absence of packet losses, one could compute the gains in a

I%F =E[z|Z,i=1,...,N] centralized manner and distribute the computations to each
sensor. To be more precise, assume all measurements were
where the information set in this case corresponds tgvailable to a common location, i.e. that there were no pgacke
Iy ={yp |7 =1, k=1,....t}. This strategy has been losses. We shall denote witt§ /" := E[z, |y} ,,i = 1,.., N]
shown to provide good performance in simulations undehe centralized Kalman filter (CKF). Its evolution is govedh
different noise regimes [5], however, intuitively, it sHdu py the equations:
provide almost optimal performance in a scenario with high

. . . ~CKF ~CKF
ratio between process noise and measurement noise. In fact, Ty = B+ Loy
if the process noise is large as compared to the measure- Fy = (I-L,C)A

ment noise only most recent measurements convey relevant _ . N .
information, therefore there is no much gain in filtering th?qq% ere t?.? gainL; = [L¢ ](:jt -+ Li'] is the centralized
past measurements at the sensors. Although this seems t an filter gain computed as

case in many simulations, there are choices for the systemp, |, = (4 — K,C)P(A - K,C)T + K;RKT +Q
dynamics for which the MF strategy is not optimal even 1, — pcT(CP,CT + R)™*
under perfect measurements, as stated in the next theorem: g, — Af,

Theorem 2 ([5]): Let us considerR = 0 and @ > 0. S _
Then there exist scenarios in terms of packet loss sequendéste now that, defining; to be the solution of
and systems dynamics parametersC' for which PM¥F > ; ; i
pIBF te zp = Bz + Ly, (10)
tit :
tis possible to explicitly compute the MF filter as follows. the ckF estimate:<< is given byigtffF =N i For
Let us first define the following variables:

this reason we shall call thei’s “partial estimates”. This

YiCy Yiyt strategy has been suggested in [13] for distributed estimat
C, = : 7 = : with the purpose of reducing the power consumption. Since
N T NN ’ z; correspond to a partial estimate, a naive strategy at the
_ Y On Ve Yt central node for compensating the packet loss is to use the
Ry = diag{~} R11,7¢ Raa, ... 7 Rnn'} open loop partial state estimate based on the latest receive

which can be obtained from the centralized matriceandz ~ Packet from each node, i.e.:

under the assumption of uncorrelated measurement nase, i. N

R;; = 0,7 # j, and from the lumped column measurement L OLPEF _ ZATZZZ' . (11)
1 2 NA\T . t\t t—r}

vectory, = (y;vy; ...y, )" by replacing the rows and P



where 7/ is the delay of the most recent packet received
from node; at time instant. Although this looks like a naive 1\t
solution, it was shown in [5] to provide optimal performance K = arg min; £(P, L, () = PC'" (CPCT + —R)

in the small process noise to measurement noise regime as ¢

formally stated in the following theorem: The achieved optimal prediction error is given by(13)
Theorem 3 ([5]):Let @ = 0 and assume uncor-
related measurement noise among sensors, Re.=
block diag{R, .., Ry }. Then (P L) = L(PK.JI)
IBF OLPEF MF = (I-KC)P(I-KC)"+ %1KRKT
Py =Py < Py = P-PCT(CPCT+3IR) CP
E. Simulations (14)

. o For future use we also define the prediction error variance
In Figure 1 we report the empirical performance of MFyhqate

IBF, and OLPEF for the system in (20), withw? = (Pl) = ADy(POAT +Q (15)
1l073, E(vj)” = 10 and the packet loss probability _
\ = 0.5. Lemma 1:The functions®,(P,¢) and ®(P,¢) are con-

As expected OLPEF and IBF are indistinguishalfier ~ cave as a function of” and convex as a function df
small po , i.e. for small process noise, while OLPEF  Proof: Let us first consider®(P,¢). Concavity in
becomes significantly worse ad, becomes large. Note also I’ follows rather easily from the fact thab;(P,() =
that for smallzi,, which gives a filter with “long” memory, minLL(P,L,6). _

IBF is better than MF while for largg,, and consequently a  AS far as convexity irv, the following argument can be
short memory filter, MF and IBF become indistinguishablet/sed: assumé is (positive) real variable and consider the

2
derivatives 20 gpg ¢ ‘I’jggp’g). It is easy to verify that
d®;(P,¢)

<0 and% > 0. The conclusion fo@(P, ¢)

follows from the fact thatb(P,¢) is an affine function of

| IBF ®;(P,¢) This completes the proof. [ |

10° | | TV MF In the following we shall also make extensive use of a
e OLPEE Iower_ bound of the Riccati operatcl)é(P, ¢) as follows.
Consider the convex s¢® .= {P =P' : P > P,,P <

Py} We would like to find a linear function o, say
Gy (P,¢) suchthaG,(P,¢) < ®,(P,¢) VP € P. This linear
lower bound can be constructed in this way. For &y P
one can takek p := argmin; £(P, L, ¢). Then

L(P,Kp,l) > ®(Pl) YP=P' >0

holds. Among all suchi' 5 we would like to find that which
minimizes the maximal difference

1 2 3

10 10 10
Ho S(Kp) ‘= max ﬁ(P, Kp,g) —(I)(P,é)
PeP
Fig. 1. Error Variance vsug. choosing
I1l. BOUNDS ONESTIMATION ERROR VARIANCE Kopt = ar%fm S(Kp)

Let us first introduce some notation. In order to simplify .
. . . . . = L(P,Kp,t)— PP Y1) .
the analysis we shall consider the case in whi€hdentical ar%(r;nn Pep (P Kp. {) (P.0)

and independent sensors measure the same staté; ida Itis obvi thatic.. is also th timal (Kal inf
not depend upon and R = block diag{ R11, ..., RN}, is obvious that . is also the optimal (Kalman) gain for a
Rii = Ry, Vi, j). specific value ofP € P. At this point, sinceC(P, Kopt,¢) —

Let us define: O(P, L) < S(Kopt), VP € P

LB .
Li(P,L,0) = (I — LC)P(I — LO)T + %LRLT (1) LI D0 = EP Ko (=5 (Kop) < @5 (B ) VP (igj'
i The matricesP,, and P,; define the setP over which
rt]he linear lower bounds holds. In the rest of the paper we
shall always usé’,, = ®(P,,, N), i.e. the lowest achievable
(steady state) prediction error variance when/lllsensors
are utilized, andP,; = APy AT + Q, i.e. the steady state
variance, which is the upper bound of the state prediction
1Small differences are due to the sample variability of Moate ~ €ITOr When no information is available. It is a standard fact
estimates. to show that, provided® € P, also®(P, () € P.

This is the state estimation (filtering) error using the ga
L when the initial state estimate has varianéeand mea-
surements fronf sensors are utilized. The optimal (Kalman)
gain K := L,,: can be obtained by minimizing (P, L, ()
with respect tol, obtaining



Remark 1: The problem of findingS(K 5) boils down to It has been shown that the steady state minimum
a convex optimization problem. In general one would like t@expected error covariance for this filter, i.e5 =
minimize S(K p) over K p. This however might happen to be ming lim .o E- [var(z:41 — @45,)] is given by the fixed
difficult. However, findingS(K ) for someK  is sufficient  point of the following operator:
to the purpose of finding a linear approximation which

_ T
bounds from below the Riccati update. Wh8K ) has UA(S) = ASAT +Q -
not been minimized ovek 5 a less accurate approximation — MSCTA\CSCT +(1 - )N)Sc + R)"'CcSAT
is found, sinceS(Kp) is the maximal difference between g, = diagC,SCT,...,CnSCE)

E(P, Kp,f) andtIJf(P,Z). )

We shall also need to consider a linear lower bounB. Lower Bound for Measurement Fusion

LB (P, ) for ®(P, (). It is immediate to see that The following proposition gives a lower bound on the
LB _ ApLB T expected (or average) state estimation error for the measur

LR = ALF(POA + Q. ment fusion approach.
Proposition 1: Let Py andP]{;  respectively the steady
state (w.r.t. the measure induced by the loss mechanism)
prediction and filtering state estimation errors. Then

E[Pyr) > P E[PJ\f4F] > ]5](4@3

where PLE is the unique stationary solution dPLZ =
LYB(PHE () and PP = CEP(PLE. EY).

Proof: The state estimation error (prediction) using the
measurement fusion approach satisfies the recursive eguati
Piy1 = O(P;, 4). From convexity ofd(P, ¢) in ¢, it follows
that

E[P,41|P] > ®(P;, El,)

where independence @f and P, has been used. Using the
lower bound® (P, ¢) > LB (P, ¢) it follows that

E[Pit1|P] > LB (P, ELy).

Since £ is linear in P, also

E[Piy1] > LXB(EP,, Ely) (18)

Fig. 2. Graphical representation of bounding functions doalar system . . .
with 4 :0,9'700: 175 —1,R=10,N = 6. 9 Y follows. Using the factCB(P,¢) is non-decreasing as a

The following lemma gives a very simple expressiorfunction ofP,i.e. LX5(Py, ¢) > LY5 (P, ) whenever?, >
of this lower bound for scalar state space systems. TH& and using stationarity dof, (implying E¢; = Ef), equation
corresponding functions are graphically portrayed in Rig. (18) can be iterated yielding

Lemma 2:For system with scalar state spaces, ie= 5LB SLB _ pLB/BLB
dim{z} = 1, the functionC£” (P, ¢) admits the very simple ElPyr] 2 Pair, Pair = £77(Parr, BO)
closed form expression The bound fc;r the filtering solution is easily obtained ob-
7 _ LB
EJQB(P f— & (P, 0) — B (P, 0) (PPt (P ) serving thatP; = ®(P;, £;) > L57 (P, ) so that
Prp — P, a7 EP/ > £}P(EP;, EL,)

Proof: The proof is just based on the observation,q therefore
that (17) is nothing but the line going through the points '
of coordinates(Py,, ® (P, ¢)) and (P, ®;(Par,£)). Of EP{, . > P{jp” == LE5(PLE EL).
course concavity ofd,(P,¢) guarantees that this line is
below @ (P, ¢) for all P € P. This is indeed the “optimal”
approximation from below, i.e. the linear functionfihwhich = | ower Bound for Infinite Bandwidth Filter

e : ; LB
minimizes the maximal difference (P, £) — L”(P, () The estimatorz/ " is characterized by the numbers

Per _ 7, ..., 7N, wherer/ is the numbers of steps elapsed since
A. Upper Bound for Measurement Fusion the last packet from nodé has been received. Under the

In [9] it is proposed a suboptimal filter for the measureassumption of identical sensors, these are in one to one
ment fusion where a constant gainis used rather than the correspondence with the numbeérg h,_1, hi_o, ... defined
optimal oneL; of Eqn. (6)-(9), which is time varying. This as:
suboptimal filter can be written as:

N
_ _ hi—i = Z&Tgﬂ' — 1)
g = (I = LC)A#MY | + Ly, =



whered(-) is the Kronecker delta. As mentioned above the Whenk = 2,
IBF can be though of as a measurement fusion filter where Prop(t+1,2,01,0,)
the equivalent numbers of packets arrived at timare 1BE b
defined, recursively by the relation

(I)((b(Pmagtfl)agt)
LMF((b(Pmagtfl)agt)

Vol

holds. Using linearity ofC“? and convexity of® in ¢, ;
b= M one obtains that (a.s.)
by = bp1+hp k=12 .. r
E[P, L+ 1,201, 0)|] > L (P, Eli_101), ¢
It is fairly easy to see that the joint probabil- Pror(t+1,2, b1, b)le] 2 (®( i-1l6e), 62)

ity density function of the variables variableg, , from which,
can be written in terms of the conditional densities Prpr(2)
Pl—p—1li—ps b—ty1, s b)) = p(l—k—1]¢i—), which
have the expression

= E[E[Pipr(t,2,0i—1, ) [¢:]]
> E [EMF(fl)(Pm,Eﬁt,lwt),&)]

The proofs fork > 2 and for P/, (k) follow the same lines
N—li \ Nt b=ty : IBE
p(li—f—1 = Ll—k) = . AN THL = N) Tk and are therefore omitted.
bk Remark 2:In practice one can comput®;;/;” (k) for

where \ is the packet loss probability. Based on this wdncreasing values o until convergence. For the example
shall now construct a sequence of lower bounds as followeonsidered (see figure 3) we stopped at 3. Only marginal
Let us assume at time— k all packets arrived. This meansimprovements could be noticed increasindurther.
that/;_, = N. Let PIjBF and P;pr be the (steady state)

state filtering and prediction error variance using the IBF x 107

Let us denote WiﬂPIfBF(t, k,li_r+1, .., £¢) the state filtering 35/

error variance at timeand withP;gp (t+1, &k, b k41, ., 4t) e pf’LB(s)

the state prediction error variance at tihe 1 conditioned o

on ¢{;_;, = N and with subsequent number of arrivals 3t | —* Py

b i1, Uy —7— MF I
It is clear that ..o |BF
s ; 2.5t pfUB e
Plp(k) = E [P,BF(t,k,et,kH, )bk = N} —— Pur
Prpr(k) = E[Pprt+ 1,k ki1, 0)|l—r = N] ol |

= APl (kAT +Q
@ | =W
are increasing functions éfand provide a sequence of lower 150 B |

bounds forE[PIfBF] andE[P;gr], i.e. ‘ ‘ ‘ ‘
f _ ; f 0 0.2 0.4 0.6 0.8
ElP/pp| = Pipp(0) = Pipp(k) (1) A
E[Prgr] = Prpr(o0) > Prer(k) (1) . _ . o
Fig. 3. Error Variance vs. packet loss probabiltyMontecarlo simulations
The following proposition holds. B (MF and IBF) vs. analytical bounds.
Proposition 2: The matrices];%F(k) and Prpr(k) in Remark 3:Note that the lower bound for the IBF provides

(19) admits the lower bounds &/, (k) > P/} (k) and also a lower bound for MF. Therefore, one can use, as a lower

= Pipp
> Prpr

Prpr(k) > PEP.(K) the inequalities: bound for MF whichever is larger amorigy;%” and P/, >,
Eféﬁf(n = ®p(Pn,Bl) =& (P, N(1 =) IV. SIMULATION RESULTS

lfiéii@) = E [Cg(@(ﬂmEL[%—HM)%)} In order to illustrate our results we consider a simple
Plpp (k)= E[Lf% o0 LM 0 ®(Pp,Elli—k+1lli-r+2])] - (scalar) example described by the equations:

and { It+1, = ngt + Wi (20)
pLB _ _ _ Y= xp+wv, 1=1,..,.N=25

PEB(1) =  ®(P,Ely) = B(Po, N(1 - \)) vi ¢+ vf .
pLB _ LB . . . .
Prgp(2) = E[LY2(®(Pr,Elli1]6:]), )] wherew, is white and Gaussian zero mean and variance
Plge(k)= E[L"Po---0L"P o ®(Py,E[l V4 ] 4 j ita i
IBFY) = mo Bt =kLF=RE2D] - 107% and thev}'s are white, independent of each other and

where E[f,_x|li_pi1] = lippr + (1 — N)(N — £,_p41) Of wi, Gaussian zero mean and variari¢e?. The packet

and P, is the solution ofP,, = ®(P,,, N), i.e. the optimal 0SS probability) is varied in the range < [0, 0.9].
(steady state) error variance when measurements f\om  The results of a simulation are reported in figure 3. The
sensors are received at all times. Similar equations hald f¥ariances for MF and IBF are computed by averaging over a

k> 3. Montecarlo run ofl000 experiments the (filtering) variance
Proof: Fork = 1, Pipp(t + 1,1,4,) = ®(Pp,ly). Py, which can be computed, in closed form, for a given
Then, using convexity of® in 4, it follows that packet loss sequence.

- In the specific example the performance of the MF algo-
Prpr(l) =EPgr(t+1,1,4;) > ®(Pp,, Ely). rithm are indistinguishable from the upper bound.



V. CONCLUSIONS

In this paper we derived some analytical upper and lower
bounds for different strategies addressing the the prololiem
distributed estimation subject to random packet loss batwe
the sensors and the central location where the best state
estimate is required. We proposed novel mathematical tools
to derive these bounds and we showed though numerical sim-
ulations the comparison with empirical performance based
on simulations. This is just a preliminary work and many
problems are still open such as the extension of our results
to multidimensional systems with different sensors and the
derivation of analytical bounds also for other strategigshs
as the open loop partial estimate fusion (OLPEF).
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