Remote estimation subject to packet loss and quantization noise
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Abstract— In this paper we consider the problem of designing
coding and decoding schemes to estimate the state of a scalar
stable stochastic linear system in the presence of a wireless
communication channel between the sensor and the estimator.
In particular, we consider a communication channel which is
prone to packet loss and includes quantization noise due to
its limited capacity. We study two scenarios: the first with
channel feedback and the second with no channel feedback.
More specifically, in the first scenario the transmitter is aware of
the quantization noise and the packet loss history of the channel,
while in the second scenario the transmitter is aware of the
quantization noise only. We show that in the first scenario, the
optimal strategy among all possible linear encoders corresponds
to the transmission of the Kalman filter innovation similarly to
the differential pulse-code modulation (DPCM). In the second
scenario, we show that there is a critical packet loss probability
above which it is better to transmit the state rather than
the innovation. We also propose a heuristic strategy based on
the transmission of a convex combination of the state and
the Kalman filter innovation which is shown to provide a
performance close to the one obtained with channel feedback.

I. INTRODUCTION

Wireless communication has become ubiquitous and wired
communication systems are increasingly being replaced with
wireless systems thanks to their many advantages such as
smaller installation costs, easier maintenance and fewer cum-
bersome cables. However, wireless communication comes at
the price of lower reliability due to packet loss and limited
channel capacity. This concern is particularly evident in
industrial applications such as remote sensing and real-time
automation, since a very high level of reliability is needed
in control systems and safety-critial scenarios. As a conse-
quence, it becomes of paramount importance to understand
the impact of realistic channel models in the context of esti-
mation and control. So far most of the works available in the
literature have concentrated on stability and control subject
to only one specific limitation of wireless communication.
For example, in [1], [2] the authors addressed the problem
of stabilization of an unstable plant through a rate-limited
erasure channel where no performance index is considered
besides stability. Other researchers have tried to tackle the
channel limitations by using analog models in order to
avoid the difficulties associated with explicit design of digital
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channel encoder/decoder and to optimize some performance
metrics among all possible stabilizing controllers subject to
packet loss [3], [4] or subject to a maximum signal-to-noise
(SNR) ratio [5], [6]. Finally, another well explored approach
is the analysis of control systems subject to random packet
loss [7], [8], [9], [10], [11] under LQG framework. All
these works have been concerned with stability in control
systems. However, there are many applications, such as
remote sensing and estimation, where the dynamical system
to be controlled is already stable, but adding communication
and feedback performance can be substantially improved.
In this work we are interested in exploring the problem of
remotely estimating the state of a stable stochastic scalar
linear system over a wireless channel. In particular, we want
to design coding and decoding strategies that allow good
estimation performance in the presence of both packet loss
and quantization noise. So far mainly packet loss has been
considered in the context of remote estimation [12], [13],
although there are recent attempts at considering both limita-
tions [14], [15]. In particular we explore two scenarios. In the
first scenario the transmitter has perfect channel feedback,
i.e. it is aware of possible packet losses and therefore it is
able to make a copy of the receiver filter. As a result, we
show that the optimal transmission strategy is to send the
innovation between the best estimate of the state at the filter
and the predicted estimate of the state at the receiver. This is
reminiscent of differential pulse-code modulation (DPCM)
[16] in which a differential signal is sent over a channel
with no packet loss. Differently, in the second scenario, we
consider the case when the transmitter is not aware of the
packet loss history. We propose three strategies: the first
named state forwarding (SF) in which the state is transmitted
over the channel, the second named innovation forwarding
(IF), in which it is sent the difference between the state and
the estimate that a receiver would have if no packet loss has
occurred, and the third, named soft innovation forwarding
(SIF), which includes SF and IF as special cases. For these
three strategies we compute their performance and observe
that in the low packet loss regime it is better to use strategies
that are similar to the IF, while for high packet loss regime
it better to use strategies that are similar to the SF.

II. CHANNEL MODELING AND PROBLEM FORMULATION

We consider the problem of remotely estimating the state
of a scalar linear stochastic dynamical system:
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Fig. 1. Equivalent communication model for remote estimation.

where wy ~ N (0,02), wy ~ N(0,02), and zg ~ N (Zg, 03)
are uncorrelated. More specifically, as graphically depicted
in Figure 1, the analogue measurement y, at the sensor can
be pre-processed by the filter g(-) into the analog signal
s¢ before transmission. The signal is then quantized into a
binary word s{, which is then coded and transmitted over a
digital noisy channel. At the receiver, the channel decoder
either perfectly decodes the word s or detect an erasure
which is modeled by the binary variable v, € {0,1} =
{erased, decoded}. 1If correctly decoded, the word si is
converted into the analog signal z;, which is then processed
by the receiver via the filter i (+) to provide the state estimate
Z¢. The transmission protocol might be provided with an
ACK-based system that notifies the transmitter whether the
packet has been successfully decoded at the receiver. We
refer to this senario as perfect channel feedback. We now
proceed to mathematically model such system.

In the following we will consider the simplified assump-
tion

la] <1 3)

i.e. Yy = x; is available at the transmitter. The transmitter
can send a signal through a digital noisy erasure channel
modelled as follows

20 = Y5f = Ye(s¢ +n4)

where ~; € {0,1} represents the erasure event, s{ € R is
the quantized transmitted signal, s; € R is the signal before
quantization, and n; is the uncorrelated additive noise which
models the quantization error under the fine quantization
assumption. The variables satisfy the following assumptions:

Phe=0l=¢, n~N (0’ iE[S?])

where A is the signal-to-quantization noise ratio (SQNR) of
the quantizer. This model for the SQNR noise assumes that
the quantizer is matched to the distribution of the incoming
signal s; so as to maintain a constant SQNR value for A.
The transmitter sends a signal according to its available
information set, i.e.

St = gt('ﬁ)

where g; is a measurable function of the information set 7;

which can take the following two forms:

CF
7; {yt7 < Yo, St—1y-+5 50, Nt—15 -+, 10, Vt—1, "770}
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NCF __
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The first set 7¢F corresponds to a scenario with perfect
channel feedback, i.e. the transmitter knows whether a packet
has been received successfully or not, while the second set
TNCF has no such information. The first scenario is realistic
in wireless communication where the receiver can transmit
back a signal with higher power and therefore very small
packet loss probability. Moreover, the information to send
back reliably is just an ACK packet.

The receiver needs to reconstruct the true state signal x;
based on its own information set R; given by:

Rt: {zta"'72077ta"'70}

ie.
Tif; = he(Re)

where h; is a measurable function. We are interested in
analyzing the performance of the overall system based on
the estimation prediction error variance at the receiver, i.e.

Pifap = Bl(@we — 47%,)7)

where the expectation has to be taken also with respect to
the packet drop process ~y; besides the noises wy, ny.

III. OPTIMAL ESTIMATION WITH PERFECT CHANNEL
FEEDBACK

We now consider the state estimation problem with perfect
channel feedback, i.e. also the transmitter is aware of the
packet loss sequence incurred across the digital channel. We
show that if we restrict our attention to functions g(7,°F)
and h(R;) which are linear in the information sets 7,“% and
R, then the optimal strategy is to send the state estimate
innovation, i.e. the difference between the current best state
estimate at the transmitter and the current best prediction of
the state at the receiver.

A. Optimal strategy derivation

We assume that the decoder has received the last packet
at time ¢t — d (i.e. d = 1 if no losses have occurred
after the last received message). Our purpose is to find the
“optimal” message s; to be sent through a lossy and SQNR
limited channel in order to minimize the state estimation



error variance at the receiver, under the assumption that
perfect channel feedback is available. We shall look for linear
encoders

St = ﬁt (yt»ytfla "7yt7d+lvz;_d+1;’yt7 °"7’YO) (4)

where L, (yt,yt,l,..,yt,d+17z;_d+1;'yt, ...,'yo) is a linear
operator of its arguments ¥y, Y¢—1, .., Yt—q+1 (the samples to
be encoded) and z,_, 1 (the past received signals) which
also depends on the packet loss sequence <, ...,7Yo. The
result of this section is summarized in the next proposition.
The remaining part of the section proves the result.

Theorem 1: Under the assumption that perfect channel
feedback is available (i.e. that 7, ...,y are known also at
the transmitter side), the optimal linear encoder (4) for the
linear system (1)-(2) is given by:

s 1= gy — 27 g = Elzilysa, Re—d] — Elze|Re—a]  (5)
Proof: The encoder has to find a linear function of all
available measurements which retains as much information
as possible regarding the state to be estimated.
Let us define v 4 == [y, Yt—1,-, Yt—d+1] ' the vector of
the last d measurements. We can define

€t,d ‘= Yt,d — E[yt,d“ztfd] (6)

as the innovation (i.e. the “new” information) of y; 4 W.I.t.
Ri—q. Note that, however, only part of this information is
necessary to estimated x;. As a matter of fact e; 4 can be
reduced so as to retain all and only the relevant information
on z; this reduction has sometimes been called Sufficient
Dimensionalty Reduction (SDR) [17]. Since x; is scalar, the
(linear) sufficient statistic in e; 4 for z; has dimension 1
(which is equal to the dimension of the projection of
onto the space spanned by the components of e; g).

Hence we seek for a signal s, = a'e; 4, o € R%, so that
the optimal estimation

i‘axt = E[$t|Rt]

where
2 =8t=s+mn

since by assumption v, = 1, and n; is a zero mean white
noise Gaussian process with variance VarT(S‘), has as small
variance as possible.

Note that the “noise” n; is known at the transmitter side
since the transmitter generates z; starting from s;. Since
S = aTet,d, and using the fact that both the noise ny
and e; 4 are uncorrelated from z,_; (see also (6)), also z;
is uncorrelated from z,_ ;. Therefore the estimator i‘;f; =
E[z:|R,] satisfies:

"%:ﬁ = E[l’t“et,d] + E[.’Et|2t]
— ATT Elztst
= $t|t—d+E[5%](1+%)2t

Ara

_ 1
= $t|t7d+71+%zt
Note now that, defining i;l’; =T — i‘:r; we have

Var{as} = VaT{fgﬁ_d}*E[(E[xﬂzt]f]

Since the choice of s; does not affect the first term on

the right hand side, minimizing Var{i{ﬁ } is equivalent to

maximizing
2] _Elzesd])®  _ (Eleis))?
]E{(IE[%\Z:&]) :| - E[s?](l—i—%) = (1+%)
where 5, := —2t—. Hence we are left with maximizing

VE[s7]
E[z5:], which is obtained choosing o € R¥*! 5o that s; =
aTet,d has maximal correlation with x;. This is achieved
when s; = E[$t|€t,d} = E[$t|yt,d7Rt—d] - E[ﬂft\Rt—d] =
jtz _gre

t]t t|t—d*

Hence, the optimal signal to be sent through the SQNR-

limited channel is
S¢ 1= »ﬁﬁ - f{ﬁ,d = E[$t|yt,d; Rtfd] - E[$t|Rt7d]
which concludes the proof. [ ]

B. Performance analysis

Based on the analysis in the previous subsection, the
optimal linear strategy for remote estimation in the presence
of channel feedback graphically represented as in Fig.2. At
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Fig. 2. Remote estimation scheme with perfect channel feedback

the transmitter the measurements are first preprocessed by a
standard Kalman filter to obtain the best estimate of the state
at the transmitter, that under the assumptions of Eqn. (3), this
is simply the state x, i.e.

ﬁlxt =Bl | T = Elwe | ye, . .- y0] = @

Since ’ECF D Ry, then the transmitter is able to replicate
the estimate at the receiver 77 = h(Rp). Based on the
results on the previous subsection, the optimal strategy at
the receiver is to construct the minimum mean squared error
(MMSE) estimator given its information set, i.e.

&t = Elay | Ry

Once again, based on the previous section, the optimal
strategy at the transmitter is to send the innovation s; =
ﬁlﬁ — f;ﬁ_l from which it follows that the signal received

at the remote estimator is
2t = ye(xe — @nﬁ,l +ny)
According to the standard MMSE theory for linear systems,
the optimal filter equation must be of the form:
Ty = arZy (®)

~rx ~ ~rx A
ajt\t—l_'_kt(zt - Zt\t—l) = -rt|t_1+m2t (9)

~rer  __
Ty =



where we used the result from Eqn. (7). From the expression
it follows that the optimal Kalman filter is given by:

A
At1

which is independent of time and of the packet loss sequence

If we define he estimation error as %{ﬁl =T — ‘ +iy, and its

corresponding variance as pyj = E[(Eglﬁ)Q] we get

ke =

Srx _ rx _ ~rx
Tyiq)p = ATy q + Wy A/takt(wtufl + )

and the corresponding variance:

1—e€

—( Ly 14+ A

where we used the fact that n;, wy, a:t‘ 1,7t are all uncor-
_ Pt\t 1

related and E[n?] = 1 E[27, Tyt = . Since |a|] < 1 the
previous linear equation has a steady state solution given by:

P = a’plfi_y + oy, a’plii_,  (10)

CF on
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p = hm pt+1|t 1 _ g2 lEeh
T+A

Y

which represents the steady state predictor error variance.

IV. STATE FORWARDING VS INNOVATION FORWARDING
WITH NO CHANNEL FEEDBACK

In this section we consider the challenging scenario where
no channel feedback is present. In this case the information
set at the transmitter 7,V ¥ does not include the information
set at the receiver Ry, i.e. Ry & 7;N CF As consequence, the
transmitter cannot produce a copy of the transmitter estimate
@"ﬁfl. The optimal strategy in this case is not obvious and
it is likely to be a non-linear function of the information
sets T,VCF R,. This situation is reminiscent of the loss of
separation principle in control systems where the estimator is
not aware if the control input has been successfully received
by the actuator or not [9].

As a consequence, we explore suboptimal linear strategies
for which is it possible to compute the performance. In
particular, there are two suboptimal naive strategies that can
be proposed. The first strategy, that we refer as state forward-
ing (SF) is to simply transmit the current transmitter best
estimate of the state x;, i.e. s; = ffzﬁ The second strategy,
that we refer as innovation forwarding (IF), is to send the
innovation between the best estimate at the transmitter Z¢ t‘ p
and the predlctlon based on the past quantized transmitted
signals s{ = s; +ny, ie. 54 = xt‘t Eﬁﬁ_l where fﬁﬁ_l =

Elx¢|s{_q,...,sg]. In practice, in this second scenario the
transmitter is sending the innovation based on the (incorrect)
assumption that all sent packets are received correctly, i.e.
assuming ; = 1,Vt. The rationale behind this strategy is
that in a lossless channel, i.e. if € = 0, it provides the
optimal strategy. For both transmitter strategies, the receiver
will compute the MMSE estimator, i.e Zij; = E[z:[R4].
As just mentioned, in general xtl Y # ffi‘””t and E:ﬁ * Eiﬁ
These two strategies can be graphically represented as in
Fig 3, where the SF strategy corresponds to v = 1 and the
IF strategy to v = 0.
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Remote estimation scheme with no channel feedback

A. State forwarding strategy (v = 1)

In this strategy, and under the simplifying assumption of
Eqgn. (3), we have that

~tx
St = :ct‘t = Tt

and E[n?] = {E[z?] = {15, where we assumed that
x; has reached its steady state distribution. In fact, since
E[z? ] = a®E[z}] + 02, then lim;_, E[z7] = 17%;

this expression it is clear that if |a| > 1 the state forwarding
strategy cannot be used since the quantization noise variance
will diverge. The message received at the remote estimator

is then

Zt = ’}/t(l’t + Tlt)

which can be interpreted as a noisy measurement of the state,
where n; is the measurement noise, subject to intermittent
observation. This problem has already been solved in [12]
and the solution is given by the following time-varying
Kalman filter:

f:ft 1= aftrfutﬂ (12)
Tyy = Ty tke(z - TE0) (13)
by = Pij—1 (14)
, = ——dl
ﬁ:ﬁ—l +r
(pt\t )?
Py = AP ta-mm—— (19
tr1t tit—1 ﬁ:ﬁ tr
2
where ¢ = op, r = {174, and Piji El(z: —
A:ﬁ )?|R¢_1]. The optimal estimator could be compu-

tationally expensive since it needs to keep track of the
conditional estimation error covariance ffgﬁfl which is a
function of the packet loss history {v;}:_{. As shown in
[18], the previous filter can be replaced with the following
constant gain filter:

f:ﬁ 1 af:fl\t—l (16)
Ty = Ty tvek(ze — Ti_) (17)
pSF
ko= STy (18)
a2 SF\2
P = @ g (1 >p§;+3 , 07> 0 (19)

which has the property that its error covariance converge to a
steady state which is also an upper bound for the asymptotic

error covariance of the optimal estimator 27 tl 1, 1€

limsuppyj;_; < lim E[(zy fffﬁ_l)z] = p3F
t—o0 t—o0



It has been shown in [18] that the previous inequality is
quite tight, i.e. the performance degradation incurred using
a constant gain rather the the optimal time-varying gain, is
small.

B. Innovation forwarding strategy (v = 0)

In this section we consider the innovation forwarding
scheme, that under the simplifying assumption of Eqn. (3)
is equivalent of sending

~t —t —t
St = mt\zt—l - xt\xt—1 =Tt — xtﬁ—l
where Ty, | = Efz [s{ ;... 50] and s{ = s; + ng. The
MMSE estimator at the receiver Z77 |, = E[x;41 | R¢] must
have the following expression:

f+1|f

A’I‘I

az’ +aki(ze — 2) = axt‘t | +akz

Ty ti—1
e = m(stt+m)=n (wt —fﬂt,l + ny
(20)
where z; := E[z|R¢_1] = 0 since x; — f’;ﬁfl and n; are

uncorrelated and white. The optimal gain k; is to be selected,
at each step, to minimize the conditional receiver state pre-
diction error covariance p7,, := E[(z¢41 — Eﬁln)Q | Ry].

This is easily achieved writing the equation for the pre-
diction error and differentiating w.r.t k;. Let us first derive
the dynamical equation for = xtlt 1= T — E{ﬁ_l, which is
obtained by subtracting the state prediction update Eqn. (20)
from the state equation Eqn. (1), obtaining

~re ~rx _

Ty = ATy akizy + wy

— ~re _ _ itz

= azy_4 Yeaky (mt Tip—1 + nt> + wy

— ~rT ~re =tx

= a(l_%kt)xt|t—1_'Ytakt(xt|t—1_xt\t—1+”t)+wt
—tx —
T Ty =
- mtlt—l' This implies

For future use let us define AZ; := Z7

ti—1
ffﬁ 1 - %irt_l where %Zrt—l =
that T3, = AZy + %ﬁﬁfl. Since AZ, is a function of the
past data and %ﬁ;_l is the error of the optimal estimator

using past data, E {Afc\t%ﬁ_ﬂRt_l} = 0 so that

E[a (SR ] = E[(A% 43 0) Tl alRio
= E ;irt 15%& 1IRe— 1] =: py
B[ AulRir] = E[E (3, - 5 [Re
= ﬁ:lt 1Pt
E[AZAZ(Ri-1] = E[(3j5_, — 1) AZIRi-1]
= E[@)_ ATIRe | =B, — B}

where pY = E[(xt

—fﬁﬁ_l)ﬂRt,l] Using these condi-
tions one obtains:

23

Pity= (a=yake) Bifi_toy, +a*y k2(pt|t1 pt"’pft)-i-

+2a? Yeke (1 — veky) (ﬁ,’gﬁ,l - pt)
21
Taking the derivative w.r.t. k; we obtain:

)

8ﬁrm
Pebie — oy (Lo )it 2022k (B B0+ 5 ) +

+2a27,(1 - 2k) B, — 7))
which, equated to zero has the unique solution

A
T+ A

Inserting k; back into (21) we obtain:

ke = (22)

A

2-0
— a4 Py 1+ A
from which it follows that the expected error covariance
—E [(55

pt+1|t a pt|t 1"‘0

X T 21 3 :
Prie Pape) } is given by

Piiye = a°piiy + o — (L —ea’pl—F  (23)
where pY := E [ﬁﬂ It is interesting to observe that the gain
k; in (22) is time invariant and does not depend on the packet
loss probability. In fact k; is also the Kalman optimal gain
for € = 0. Finally, since pY is the prediction error covariance
with no packet loss, which is given by Eqn. (11) by setting
€ = 0, then
T
2

a
1- 1+A

lim =
t—>oopt

from which it follows that the steady state prediction error
covariance is given by:

(A +1)(1 — a®) + ea®A
T—a)(1—a?+ A)

C. Performance comparison

p'F = thg) P = (24)

We now want to compare the performance of the two
strategies in terms of the steady state prediction error covari-
ance, which are given by Eqn. (19) for the state forwarding
and by Eqn. (24) for the innovation forwarding, as a function
of the systems parameters a,A,e. In particular, we are
interested in finding the set ® := {(a, A, ¢) |p°F < p!F},
i.e. the set of parameters where the SF strategy has a better
performance than the IF strategy.

Theorem 2: Consider the set ® := {(a,A,¢)|p°F <
p!¥}. Then for A >0, 0 < |a] < 1, and € < 1 we have:

D :={(a,A\€)]|e>e.la,N)}
—a? _1> (25)

(1—a®)(A+2) m 4a?A
2a2A (A+2)2(1
Moreover, the critical probability €.(A,a) is monotonically

decreasing in A and |a|, and

i el =

where

e.(A,a) =

lim €. (A,a)=0

la]—1—
and
€ < =
Proof: See Appendix A. [ ]



The previous theorem implies that the IF strategy per-
forms better then the SF strategy only for small packet
loss probabilities, and more specifically for € < €.. Such
critical probability decreases to zero as the system dynamics
becomes less stable, i.e. |a| increases, and as the quantization
becomes finer, i.e. A increases. In particular, the previous
theorem shows that it is always better to use the SF strategy
if the packet loss probability is greater than one half.
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Fig. 4. Critical probability €. as a function of |a| for different values of
the SQNR A.

Figure 4 pictures the critical probability €. as a function
of |a| for different values of the SQNR A, which shows that
such probability is almost equal to ALH up to |a| = 0.8 and
then rapidly decays to zero.

V. SOFT INNOVATION FORWARDING WITH NO CHANNEL
FEEDBACK

In this section, we propose an alternative strategy under
the no channel feedback scenario, that include the IF strategy
and the SF strategy as special cases. More precisely, we
propose a hybrid strategy, where the transmitter sends a
convex combination of its best estimate of the state Eﬁﬁ =
E[z; | T,N¢F] and the innovation between its best estimate
and the best estimate of the state given the past quantised
transmitted signals, i.e. AZ; = Ei‘ﬁ —Tiﬁ_l where fiﬁ—l =
Elz:|sf_q,...,s8] . We call this scheme the soft innovation
forwarding (SIF) scheme. In this case, the transmitted signal
is thus given by

S = Vﬁ:‘\iﬁ +(1—-v)Az, = fﬁt -—(1- V)iiﬁ_l (26)

where 0 < v < 1 is fixed at the transmitter. This scheme
is graphically illustrated in Fig. 3. Under the simplifying
hypotheses of Eqn. (3), then the previous equation reduces
to sy =z — (1 — V)fi'ﬁfl.

A. Transmitter filter design: g(ﬁN CF)

In this section, we explicitly compute the transmitter filter
function g(7,;V“F') based on the SIF strategy. Basically, it
reduces to the problem of computing the equation for the
internal estimator fﬁrﬁr Since the dynamical systems is

linear with additive gaussian noise, then the optimal MMSE
estimator is linear in the quantized transmitted signals s{ and
it is given by the Kalman Filter. However, the equations are
somewhat non-standard since the variance of the quantization
noise n; is not constant but depends on the variance of the
transmitted signal. We start by defining the internal estimator
. ~t ~t
error covariance as pyj, = E[(ftrh)Q], where Ttrh =x —Tilzh.
Based on this definition, we can compute the power of the
transmitted signal s; as follows:
2 =tz o
Els;] = El(vz:+ 1 —v)zy, )7
2712 2
= (1/ E[zi] + (1 = v)™Dye—q +
_— ~tx ~tx
+2v(1 — V)E[(xtﬁt—l + $t|t—1)xt|t—1])
2 O .

= vy _wag + (1 - V2)15t\t71

where we used the fact that fﬁﬁfl and ftth are uncor-
related, and that z; is assumed to be in its steady state
distribution. The equation of the filter are given by:

T, aTyl g+ ki (2 — Zye-1)
Ziji—1 = Elz|s{_q,...,50] = Vfﬁi_l
K= aPyjt—1 . aPyjt—1 _
Pje—1 + E[n] (1+ %)ﬁm,l + ﬁ

Such filter will reach a steady state, therefore, as standards,
it is possible to substitute it with its steady state implemen-
tation, since it will reach the same steady state performance.
The steady state filter is given by:

T = o= oR)al T
— aﬁ
k= 12— 252 (27)
(14 37)P + x=en
, , a2p>
p = apto,— T e p>0 (28)
(1+57)P+ iy

where the last equation represents a Riccati-like equation
which has a unique stabilizing positive solution p.

B. Receiver filter design: h(R;)

In this section we explicitly compute the optimal state
estimator at the filter, i.e. 777, = E[zi11 [ Ri]. We assume
that the transmitter filter architecture, and in particular the
value of v, are known at the receiver, therefore it is possible
to write the received message z; as the output of the

following dynamical system:

Tt4+1 a 0 Ty Wy
e =5 =tz || 29)
|:x§+1|t:| [k (@_k)Hxilt—l} [k”t] (
—_——— —— e — N~
§t41 A &t Mt
x
o= n[1 —(1-v)] |:xt;ct ] + vene (30)
—_— tjt—1
c
As a consequence the estimator Zy7,, = E[zii1[Ri]

corresponds of the first component of the optimal estimator
§e41)¢ = E[&41|R¢] which turns out to be the optimal



Kalman filter with intermittent observations studied in [12].
Such a filter is time-varying since the Kalman gain depends
on the packet loss sequence, however, as discussed in Sec-
tion IV-A, it can be replaced with a constant gain filter
with limited performance degradation [18]. The (suboptimal)
receiver filter design is then given by:

= (A—nKC)Ey i + 1Kz (31

fgﬁ*l: h(Ri-1) = [ 10 }gtufl (32)
H

K = (APCT+S)(CPCT+R)™! (33)

P =APA™Q—(1—-¢)K(CPCT+R)K™ = U(P) (34)

1 2
R = Eidl= g (12 0= 0)
20
Q = E[Uﬂ?tT |= {Uow EZ R}

The steady state Kalman gain K can therefore be obtained by
finding the unique positive definite solution P > 0 that solves
the Riccati-like equation (34) and the steady state prediction
error has the following upper bound:

lim sup E[(z; — ﬁc\gﬁ_l)ﬂ <pF = gpPHT (35)

t— o0
The expression for the covariance matrix P can be com-
puted from three paired nonlinear equations. Let us denote
€ € C
pi(€)  pra )d], where we have explicitly indicated

:i p12(€)  paz(e)
that P is symmetric and its elements depend on e. Although

we will be primarily interested in the behaviour of p;1(€) =
p31F with respect to v, the properties of p12(€), paa(e) will
also be useful. In the case when ¢ = 0 (i.e, there is no
packet loss), it is easy to check that p;1(0) satisfies the same
equation as the steady-state transmitter Kalman predictor
error covariance given by p, and is clearly minimum when
v=0. AISO, p12(0) = P22 (0) =0.

It can be shown after some algebraic manipulation that the
elements of P satisfy the following equations:

O = -1l
Pl = () -

a(l —e) Loo(v)

m (p11(€) = (1 = v)p12(e)) Mo (v)
72 J— —
p2a(e) = 1_(5_k)2P11(6)+ IQ—REZ::))ZPIQ(E)
B (-9 LW

1—(a—k)2 1—(a—Fk)2 Mx(v) 36)
where
Myo(v) = pui(e) = 2pia(e)(1 — v) + pas(e)(1 — v)* + R,

and

Loo(v) = kpi(e)+ (a—k(2—v)) pia(e) —
—(a—k)(1 — v)paa(e) + kR

C. Optimal soft innovation forward strategy

The transmitter and receiver filter design proposed in
the previous two section still leave a certain degree of
freedom for optimizing the performance p°’f" = py;(e) =
p31F (v, €), where we explicitly indicate its dependence on
the parameters v, e. If the packet loss probability € is known,
then one might optimize for the mixing coefficient v. More
specifically we define:

v*(e) = arg min p*F(v,¢) 37
ve(0,1]
PO = e (38)
where pPSTF(¢) is the optimal soft innovation forward

(OSIF) strategy for a given packet loss probability e. A
shown in the next section, the numerical computation of
v*(e) via exhaustive search, appears to be a monotonically
increasing function of €, which implies that as the packet loss
probability increases, it is better to place more weight on the
state and less on the innovation. Moreover, it shows that the
SF strategy is the optimal strategy for very large packet loss
probability. This is consistent with the next theorem states
that for a fixed e there is v € (0, 1) that performs better than
the SF strategy (v = 1) and the IF strategy (v = 0).

Theorem 3: For any arbitrary € € (0, 1), then pS7¥ (v, ¢)
is a decreasing function of v at ¥ = 0 and an increasing
function of v at v = 1. This implies that p>/¥ (v, €) has at
least one minimum at some 0 < v* < 1.

Proof: See Appendix B. [ ]

Remark 1: 1t is possible to check numerically via suitable
examples that p°/F (v, €) may not be a convex function of v
for a fixed e. Therefore we do not, at this stage, attempt to
prove that p>/¥' (v, ¢) has a unique minimum with respect to
v € (0, 1). Instead, the above theorem simply states that there
is at least one minimum for p*¥ (v, ¢) at some 0 < v* < 1.
This is not to say that the minimum is not unique (in fact
the extensive numerical results indeed suggest uniqueness),
but a proof of uniqueness has proved to be elusive so far.
It is also possible to formally prove that as the packet loss
probability approaches one, then the optimal v* approaches
one as well, i.e. the SF strategy becomes optimal for large
packet loss probabilities, as stated in the following theorem:

Theorem 4: The optimal mixing parameter v*(e) has the
following properties:

lim v*(e) =1

v*(0) =0, I
e—1—
Proof: See Appendix C. [ ]

VI. NUMERICAL RESULTS

Figure 5 depicts the performance of the filters derived
so far and the critical probability €. defined in Eqn. (25).
As expected, the performance degrades as the packet loss



probability increases for all estimators, but the estimator
with channel feedback outperforms all estimators with no
channel feedback. The figure also shows that by optimizing
v, the OSIF performs considerably better than the SF and
IF strategies, which are just two special cases in the class of
the SIF strategies.

1----pF  Eqn.(24) s
_ o SF .-
p Eqn.(19) g
pOSF Eqn.(35) LT -
08| —p%  Eqn.(11) L7

prediction error covariance p

'
'
'
'
Eqn.(2!
: Ec qn.(25)
'
7

/ I I I I I L L |
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Fig. 5. Prediction error covariance of proposed strategies against packet
loss probability € for a = 0.95,A = 1,02 = 1.

In Figure 6 below, we plot the optimal mixing coefficient
v = v* which has been obtained numerically. The curve
appears to be monotonically increasing from zero to unity,
thus confirming that as the packet loss increases, the optimal
soft innovation forwarding strategy transits from the IF to
the SF strategy.
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0.3 4
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€

Fig. 6. Optimal mixing coefficient v* as a function of the packet loss
probability € for the OSTF strategy for a = 0.95,A = 1,02, = 1.

VII. CONCLUSIONS AND FUTURE WORK

In this work we studied the problem of remotely estimating
the state of a dynamical stable system over a noisy channel
subject to packet loss. We showed that with perfect channel
feedback it is possible to derive the optimal linear transmitter
and receiver filters to minimize the estimation error variance
using a strategy that it is reminiscent of DPCM. We also
studied the scenario with no channel feedback and we
propose few heuristic strategies for which we were able to
characterize performance and trade-offs.

Future work will include formal proofs about the proper-
ties of the OSIF strategy, and the extension to multivariable
systems. Also, another important feature is to consider a
lossy channel feedback which is more realistic then the two
scenarios presented in this work.
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APPENDIX
A. Proof of Theorem 2

Without loss of generality we can set o2 = 1, since it sim-
ply scales the error covariance and therefore it does not affect
the set ®. Let us define Ap(a, A, e) = p°F — p'F', where
we also make explicit the dependence of the performance in
terms of the parameters. Since p>% is a convex function of
e for fixed a and A, as shown in [12], and since pSF is an
affine function of e, then aslo Ap(a, A, €) is convex in e. It
is straightforward to observe that for Ap(a,A,1) = 0 and



Ap(a,A,0) > 0, therefore if we can show that there exist

€ (0,1) such that Ap(a, A, €.) = 0, then this implies that
pSF < p'F for € > €.. We now show that this is the case.
If Ap(a,A,e.) = 0, then p°F = p!F' = p. The points p
that satisfy this equality must also satisfy the Eqn. (19) and
Eqn. (24), therefore, if we take the difference and recalling
that a # 0 and € # 1 we have:

S
p+r 143
from which it follows:
9 A 1 B
r - 2 p— 2 2 =0
1—a?2+A (1—-a?)(1—a?+A)

Substituting Eqn. (24) into the previous expression and after
some manipulations, which are valid for € # 0, a # 0 and
A #0, we get:
a’A? + (1 —a®)(A+2)e— (1 —a*)=0

from which it follows that the only positive feasible solution
for €. is given by Eqn. (25).

We can now study the dependence of ¢. in terms of the
parameters A and a. By rearranging the different terms, we
have

1
(a*e+1—a*)e+ —(1—a?)(2e—1) =0

7
from which it follows via root-locus analysis that for fixed a,
€.(A,a) is a monotonically decreasing function of A where

1
lim e.(A,a) = 3

Jlim, lim e.(A,a) =0
5

A—4o0

Similarly, by defining n = 1512 which is a strictly mono-
tonically increasing function of a? where 1 € (0, +00), and
by rearranging terms we get:

Aé® + = ((A+2)6—1) 0
n
from which it follows via root-locus analysis that, for fixed A,
€(A, a) is a monotonically decreasing function of a? where

lim e.(A,a) =

la]—0+

lim e.(A,a)=0

la]—1—

1
24+ A’
From this analysis, it follows that

ec(Aa) < V]al € (0,1),A € (0, +0)

1
2 b
which concludes the proof.

B. Proof of Theorem 3
Recall that pq(€) = po1F(
to indicate p1F(
divided into two parts: (i) showing that
(11) 81’11(6)

v, €). Hence we will use p11(¢)
v,€) in the following proof. The proof is

3p“(£)| > 0 and
v=1

< 0.
ly=0
@) For simplicity, we will drop the dependence on the
argument € in this part, and make the observation that

all values of pq1,p12 etc. are evaluated at v = 1 in the

expression of the partial derivative Op 5 (©) . We also use

[v=1

Iy = % 17— in order to simplify notations.
Usmg the equation for p;; from (36), and taking partial
derivatives, we have (after some algebra):
’nﬂ
2(12 p11l2
= 1 —
17a2( e)A(pll +48)

Op11(e)
o | {1 * (

It is easy to check that the expression in the square brackets
on the left had side of the previous equation is positive. All
that remains to show therefore is that p1o < p11(1 — —) To
this end, note that from the equation for pio from (36) it
follows that (recall that all values are evaluated at v = 1),
P12 < 7@])11 It can be shown that for all 0 < v < 1
(see Proof of Theorem 4 below)

ak a?P., _

1—ala—k) Pu+Jw)(1—a?) = (-

a®(1—e)pn __pu
1 —a?)(p11 + %2) (p11 +

[pll(l - %) —Plz}

where P, = £. Hence it follows that p12 < p11(1—

ﬂ
> l2
p11(1 — £). This implies that 8”11,(6) o >0

(i) The proof of this part relies on using a state trans-
. . z$
formation technique. Denote a new state vector [ xi“ =
t+1
Ti+1 1 0
T .
[ tf—l|t I —(1-v

checked that 2¢ = z; and 2 = s;. Using this transformation,
we can write a new state space system as

] = Al

] , where T' = [ ) } . It can be easily

z = mCh { ﬁ: ] + ey (39)
where Ay = TAT™! = @ 0_ and C; =
B L | vk (a—k) v
CT~! = [01]. It is straightforward to show that for this

transformed state space system, one can derive a similar
suboptimal constant gain Kalman filter which has a steady

state stabilizing solution P= ’311(6) ]312(6) where the
pi2(€)  Paa(e)
individual elements satisfy the following equations:
. _ o _d(1—¢) e
pll(E) T 1—a? B 1—a? ﬁzg(E)—f—R
1 _
pi2(e) = T—aa—h [avkpri(e) + o
(1 —e)aprz(€) }
B A
P22(e) + R ®)
~ o 1 252 .
) = g VF
+2uk(a — )p12( )+ 0121,
- FL(v)
1- )’ R—(1—e—2"_| (40
HL- ) BR- (-0 T=0 ] o)
where we have used V(v) = vkpia(e) + (a — k)paa(e) —

(1 — v)kR for notational simplicity.



First, it is useful to observe a few facts regarding the
steady state stabilizing solution P and its relationship with
P. One can easily verify that p11(e) = p11(e), pia(e) =
p11(e) = (1—v)p12(€) and paa(€) = p11(e) —2(1—v)p1a(e) +
(1—v)%paa(e). Also, when v = 0, the state space description
(39) implies that the receiver only receives the transmitter
innovation sequence in the presence of white Gaussian noise
ny when a packet is received. However, since the transmitter
innovation sequence is also a zero mean i.i.d. Gaussian
sequence, whether a packet is received or not, the minimum
mean square estimate of the state s; is simply its mean,
which is zero. Therefore, the corresponding estimation error
P22(€)),—0 = Poo(0), Where poo(0) is the variance of the
transmitter innovation sequence when v = 0, which can
be obtained from (28) by substituting v = 0, as T a"g2

Indeed, this can be also verified by solving the correspon?ﬁrrig

quadratic equation for poo(€) after substituting v = 0.
Similarly, it can be checked that pia(€),_q = Poc(0) as
well.

In what follows, we will be dropping the dependence on
e of the relevant quatities to keep things simple. Also, all
values of the relevant quantities are computed at ¥ = 0 unless
otherwise specifically indicated. Using the equations in (40),
one can show the following facts:

aﬁll _ CL2(17€) 1 1 ap12

o ey 1-—a? (1+ 1) 2(1+A) W 1o
Opo22
) )

One can also easily show the following rather simple but

useful result which states that ap 22 Vo = 0 regardless of the
value of e. Therfore, we only need to show that %I 70 >0

Ve > 0. Note that at ¢ = 0, we have p11(0) = p11(0) =
Poo(0) and therefore ag;‘ =0 and hence %‘ ,=0
also at ¢ = 0. Using the above facts, from (40), one can

evaluate (after some algebra) that for € > 0,

14 a?(1—e)A 0p12 _
(1- A+1)(A+ 02| v |-

which is clearly positive for ¢ > 0. Hence we have

%u:o < 0 for € > 0. Therefore pi1(e) = p11(e) =

p1F (v, €) is a decreasing function of v at v = 0 for € > 0.

a?epoo(0)
1+ %

(42)

C. Proof of Theorem 4

The proof of the first part of the theorem that v*(0) = 0
is obvious.

In order to prove the second part, we first obtain an O(9)
approximation of p;;(1 — d), where 6 = 1 — ¢ ~ 0 and
then show that this approximation is minimized at v* = 1.
Using the expression for pi1(e) from (36), one can (after
some elementary analysis) show that an O(d) approximation
for p11(1 — J) can be obtained as

2 2
o a
w 757 1 _
1—a? 1—a? (P (1)
1

(1) = 2pi2()(1 = ») + p2()(1 — V)2 + R

pii(l—9) = (1- V)p12(1))2

(43)

One can easily obtain the values of pii(€),p12(€) and
2
paa(e) at € = Loor 6 = 0 as p1i(l) = 125 = lo,
_ ak
plg(l) = 12 T_a?iak and
EQ
1) = —(1+J
paa(1) o (o)
2E2a(afE)

0@k (1-a® 1 ak)

where J(v) = % = 1?4+ (1 —v?)L). Substituting these

expresswns into (43), one can then sflow that the task of

minimizing the O(J) approximation of p11(€) is equivalent
— — 2

to maximizing a function U (v) of v given by U(v) = 2((””)) ,

(1—v)ak

where F(v) =1 — Qa2 rak) and
2ak
Glv) = 1- m(l —v)
1- Z/)QEZ y
e LER(0)

(1—v)22k’a(a — k)
TR tab)

J(v)

and Numerical examples seem to indicate that U(v) is an

increasing function of v for 0 < v < 1. However, it seems to
be rather tedious to prove this. We use a different technique
by bounding U(v) from above and showing that this upper
bound is an increasing function for 0 < v < 1, and finally
show that the upper bound is tight at v = 1. Notlng that
the expressions for F'(v) and G(v) in U(v) = g((;')),
completing a square in G(v), it can be easily shown that
Ul) < ﬁ, where

F2(v)

and

_ (1-a?)(1 - )%

R = = 7
¥ = AR (—ea—h)
—2
(1-v)%k
+ {1+ —"1J
( 1—(a—k)? )
Denoting P,, = % and noting that p < I, = (1 az) for

0<wv<l1forall 0<e< 1, wehave P, < 1. After a little
algebra, it can be also shown that P, satisfies the quadratic
equation

_ a’P,
Po+Jv)(1—a?) = —2—.
Fin.ally, using the expression for k = %, one can
derive that
k 2P, _
- S = (1— Py).

1—ala—k) P+ J)(1—-a2)

Substituting the above equality in the expression for

R(v), one can immediately derive that ﬁ((”y) > 1«“]258)

since (1 —v)2 > 0 for all 0 < v < 1. Recall that
this also implies that U(v) < ﬁ We will now

. . F20) .
show that this upper bound is an increasing function




of v by showing that };IQ(E'V) is a decreasing function

of v. Here we will omit the details, but will provide

the key ingredients. We will need to use the fact that
1B [P (14152 (1-a?) + (1-a?) (B - (1+ 1]
2 (1 — a?)(1 — Px)?. Using this one can show that FJZ(EB)
is a decreasing function of v by dividing the range of P,
into two intervals: 0 < P, < HL» and HLV <Py <1 and
proving the derivative of 1;]2(8) with respect to v is negative
separately for both intervals. )

The next step is to verify that S(1) = T = ﬁ,
F2(1)

that is the bound is tight for v = 1. Therefore we have
Uv) < —tor < =L = U1) for 0 < v < 1.
142

— i — 1_,’_%
This implies cha(lt) an O(1 — ¢) approximation of pi1(e) =
p31F (v, €) is minimized at v* = 1 when € — 1 from below.
Since p°T¥ (v, €) is a continuous function of ¢, we can say
that for e sufficiently close to but less than 1, pS/¥ (v, €) is
minimized at v* = 1. Hence the proof of Theorem 4 follows.




