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Abstract— In this paper we explore controllability in flapping
flight for Micro Aerial Vehicles (MAVs), inch-size robots capable
of autonomous flight. Differently from previous work, we focus on
a MAV with very limited wing kinematics and simple input con-
trol schemes. In particular, in the first part we show how an MAV
provided with a pair of wings, each with a single degree of free-
dom and passive rotation, can still ensure controllability. This is
obtained by combining two ideas. The first idea is to parameter-
ize wing trajectory based on biomimetic principles, i.e. principles
that are directly inspired by observation of real insect flight. The
second idea is to treat flapping flight within the framework of high
frequency control and to apply averaging theory arguments in or-
der to establish controllability. The results obtained set flapping
flight as a compelling example of high frequency control present
in nature, and shed light on some of reasons of superior maneu-
verability observed in flapping flight. Then, in the second part we
show that controllability is still guaranteed even when the wing-
thorax dynamics is included and the electromechanical structure is
driven by a pulse width modulation (PWM) scheme where only its
amplitude, period and duty cycle are controllable on a wingbeat-
by-wingbeat basis. However, in this case our modeling clearly
shows some tradeoffs between controllability and lift generation
efficiency, which seem consistent with observations in real insect
flight.

I. I NTRODUCTION

Unmanned air vehicles, (UAV), have been a very active area
of research for both civil and military applications. Despite re-
cent remarkable achievements obtained with fixed and rotary
aircrafts [1], their use in many tasks is still limited by their
maneuverability and size. In order to overcome these limita-
tions, the extraordinary flight capabilities of insects have in-
spired the design of small micro aerial vehicles (MAVs) [2],
in particular inch size robots with flapping wings mimicking
real flying insects [3]. Their unmatched maneuverability, low
fabrication cost and small size make them very attractive for
cost-critical missions in environments which are impenetrable
for larger size UAVs such as helicopters or airplanes. More-
over, the latest progress in insect flight aerodynamics [4] and in
micro-technology [5] seem to provide sufficient tools to fabri-
cate flying insect micro-robots.

Despite the aerodynamic mechanisms present during insect
flight have been clearly identified [4], little is still know about
how insects actually exploit these mechanisms to achieve com-
plex maneuvers such as saccades or hovering. Besides, elec-
tromechanical considerations limit the set of feasible wing kine-
matics configurations and the input control schemes available.

The goal of this paper is to unveil some of the most important
features of insect flight from a control point of view, placing
particular emphasis on the electromechanical constraints.

Similar to aerial vehicles based on rotary wings, such as heli-
copter, flying insects control their flight by controlling their atti-
tude and the magnitude of the vertical thrust [6]. This is accom-
plished by the controlling the aerodynamic forces and torques

generated by the wings during flapping. However, unlike in he-
licopters, aerodynamic forces on insect wings are highly non-
linear and time-varying along a wingbeat, and the periodic mo-
tion of the wings cannot be ignored. As a result, the system
dynamics cannot be approximated by a linear time-invariant
model, widely adopted in helicopter theory based on quasi-
static assumption on the rotary blades. The motion of the in-
sect is a nonlinear systems with forced periodic inputs. On the
other hand, the wingbeat frequency is much higher than the dy-
namics of the insect itself, since flying insects requires several
wingbeat periods to complete a complex maneuvers such as a
saccade. Moreover, the wing pattern motion in real insect does
not change dramatically from one wingbeat to another wing-
beat, even during fast maneuvers. These two facts lie at the
core of the control approach for flapping MAVs proposed in
[6] [7], which is based on averaging the system with respect
to the wingbeat period, and on parameterizing the wing mo-
tion according to biomimetically inspired parameters that can
be changed on a wingbeat-by-wingbeat basis.

A similar approach based on averaging has been proposed for
the control of fish-like locomotion [8] [9], which analogously to
flapping flight, is generated by the interaction of oscillatory ap-
pendices with a viscous fluid. However, our approach based on
wing motion parametrization, which mimics real insect wing
motions, leads naturally to a time invariant system where artifi-
cial virtual control inputs appear naturally as a simple function
of the wing parameters, thus facilitating the synthesis of feed-
back control design.

Differently from previous work [7], where we considered
wings with two degrees of freedom and analog control input
to the the thorax-wing actuators, here we focus on a model with
very limited wing kinematics and with simple PWM input to the
wings actuators. This is motivated by the necessity of simple
electromechanical fabrication and highly efficient power trans-
fer from the power supply to the actuators.

This paper is organized as follows. The next section presents
a model for the insect flight dynamics, wing aerodynamics and
wing motion parametrization. Then it applies averaging theory
arguments to reduce the controllability of the nonlinear time-
varying system to the controllability of a nonlinear affine time-
invariant system. In Section III we propose a simplified model
for the wing-thorax electromechanical structure and a simple
PWM control input based on electromechanical considerations,
and we study their effect on controllability. In the final sec-
tion we summarize our findings and we suggest future research
directions.

II. FLAPPING FLIGHT MODELING

Flight dynamics of flapping insects is still an open area of
research [10] [11]. This is primarily due to the difficulties in
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Fig. 1. Definition of wing kinematic parameters: (left) 3D view of left wing, (center) side view of wing perpendicular to wing axis of rotation
~r, (right) top view of insect stroke plane

measuring aerodynamic forces on real flying insects, and in
experimentally validating proposed theoretical models. In this
work we model the dynamics of a flying insect as a rigid body
subject to external forces. Albeit wings do move relative to the
insect body, their mass is within1−5% of total insect mass and
hence their effect on the insect dynamics is relatively small and
can be neglected. Besides, nonholonomic effects are unlikely,
since wings move with an almost symmetrical motion. There-
fore, we assume that the insect body motion evolves according
to the rigid body motion equations subject to external forces
relative to its center of mass [12]. The external forces acting on
an insect are the aerodynamic forces generated by the wings,
the gravity force, and the body viscous drag. Angular viscous
torques are not included since they are negligible with respect
to the torques generated by aerodynamic forces. Summing up,
the dynamics of the attitude of a flapping insect are modeled as
follows:

ṗf = vf

v̇f = 1
mRf b − cvf − g

Ṙ = Rω̂b

ω̇b = J−1
b (τ b − ωb × Jbωb)

ω̂b =




0 ωz
b −ωy

b

−ωz
b 0 ωx

b

ωy
b −ωx

b 0




(1)

wherem is the insect body mass,pf ∈ R3 andvf ∈ R3

are the position and velocity of the insect center of mass rela-
tive to the fixed frame, respectively,f b is the aerodynamic force
relative to the body frameB, c ∈ R is the viscous damping
coefficient,g is the gravity vector,ωb = [ωx

b ωy
b ωz

b]T is the
angular velocity of the insect body relative to the body frameB,
τ b ∈ R3 is the aerodynamic torque relative to the body frameB
attached to the center of mass of the insect body, andJb ∈ R3×3

is the moment of inertia of the insect body relative to the body
frameB. The matrixR ∈ SO(3) = {R ∈ R3×3 : RT R =
I, detR = +1} is the rotation matrix representing the orienta-
tion of the insect body frameB relative to the fixed frameA. In
particular, letvb = [xb yb zb]T andva = [xa ya za]T the coor-
dinates of a vectorv ∈ R3 relative to the body frameB and the
fixed frameA, respectively. Then, these coordinates satisfy the
transformationsva = Rvb andvb = RT va.

The aerodynamic force and torque,f b andτ b, are generated
by the motion of the two wings. In insects each wing is quite
stiff and can be modeled as a rigid body rotating about its wing
base. Let us define a wing frame coordinate system(~t, ~n,~r)
(see Figure 1). The vector~t is parallel to the wing chord ori-
ented from the trailing to the leading edge. The vector~n is

perpendicular to the wing profile oriented form dorsal to ven-
tral. The vector~r is oriented from wing base to wing tip. Its
position can be defined by three Euler’s angles: the stroke an-
gle,φ, i.e. a rotation about the~t axis, the deviation angle from
stroke plane,θ, i.e. a rotation about the~n axis, and the rotation
angle,ψ, i.e. a rotation about the~r axis. The plane swept by
the rotation axis~r when setting the deviation angleθ to zero,
is called mean stroke plane. Recent work done by Dickinson
and his group [4] unveiled three major mechanisms involved in
flapping flight: the delayed stall, the rotational lift, and wake
capture. Delayed stall provides most of the aerodynamic force
production, while rotational lift and wake capture are present
only during wing rotation. In this work, we will consider only
the modeling for the delayed stall because the rotational lift
and wake capture, besides being mathematically less amenable,
have a smaller contribution in aerodynamic force generation,
therefore they are unlikely to change thequalitative analysis
developed in this work. Indeed, there is evidence that these
mechanisms act synergistically with the delayed stall in aug-
menting force and torque generation while preserving the same
“sign” [10]. Experimental results [4] have shown that the de-
layed stall can be modeled quite accurately by a quasi-steady
state equation of instantaneous wing kinematic position and ve-
locity. Its effect is equivalent to apply a vector force perpendic-
ular to the wing profile and on the opposite direction of wing
velocity, vw, at wing center of pressure which is placed at a
quarter-chord distance from the leading edge and at a distance
of approximately0.6− 0.7 wing-length from the wing base de-
pending on the exact wing shape (see Figure 1). The magnitude
of this force is given by:

|fw| = 1
2
ρaCD(α)Aw|vw|2 (2)

whereCD = C sin α andC = 3.5 is the delayed stall force
coefficient empirically derived in [4],α = cos−1(~t · vw

|vw| ) is the
angle of attack,Aw is the total wing area,ρa is the air density
(see Figure 1). Therefore, given the trajectory(φ(t), θ(t), ψ(t))
for both wings it is possible to compute the total aerodynamic
force and torque vectors acting on the center of mass of the
insect body as follows:

f b(t) = fw
l (t) + fw

r (t)
τ b(t) = pw

l (t)× fw
l (t) + pw

r (t)× fw
r (t) (3)

where the subscriptsl, r stand for left and right wing, respec-
tively, andpw(t) = L~r(t) is the position of the center of pres-
sure of the wing. Note thaṫpw(t) = vw(t).
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Fig. 2. Wing kinematic during two wingbeat periods: (top) stroke
angle, (bottom) rotation angle

Flying insects show a rich set of wing trajectories by vary-
ing the stroke angle oscillation from sinusoidal to saw-tooth,
by modulating the mean angle of attack during the upstroke and
downstroke, by changing the timing of rotation, and by exhibit-
ing out of stroke plane wing motions such as figure-eight and
banana-like trajectories [4].

However, in this work we restrict the wings to move on the
mean stroke plane, i.e.θ(t) = 0 for both wings, and we assume
that wing rotation is instantaneous at the wings inversion of mo-
tion maintaining the same angle of attack during upstroke and
downstroke, i.e.α(t) = 45o. Also we assume that the wings
move at constant angular velocity during the upstroke and the
downstroke, i.e. the stroke angleφ(t) moves according to a
sawtooth-like motion as shown in Figure 2. Mathematically,
each wing trajectory within a single wingbeat is described by
the following equations:

φ(t) =





A0(1 + κ)
(
1− 2t

ρT

)
+ γA0 0 ≤ t ≤ ρT

A0(1 + κ)
(
2 t−ρT

(1−ρ)T
− 1

)
+ γA0 ρT < t ≤ T

ψ(t) = 45o sign(ρT − t) 0 ≤ t ≤ T
θ(t) = 0

(4)
where sign(x) = x

|x| , T is the wingbeat period,A0 is the
stroke amplitude range,κ is a tunable parameter that controls
the stroke amplitude,ρ is the ratio of downstroke duration to
total wingbeat period,γ is the relative stroke angle offset. We
assume that the wingbeat period, T, and the stroke amplitude
range,φ, are fixed, while the three dimensionless parameters
(κ, ρ, γ) can be changed on a wingbeat-by-wingbeat basis. The
angle of attack is fixed at45o, because it is the angle that gen-
erates maximum vertical thrust.

Our simplified wing trajectory parametrization is dictated by
the necessity of finding feasible wing trajectories for the elec-
tromechanical structure, and yet this parametrization should
still capture the essence of controllability of real insect flight.

In practice, this particular wing trajectory parametrization
based on(κ, ρ, γ) is equivalent to reduce the3-degree of free-
dom wing to a single-degree of freedom wing with a passive
rotation, i.e. the only degree of freedom that is really control-
lable is the stroke angle.

In order to simplify analytical derivations of these two vec-

tors, we also assume that the two insect wing bases coin-
cide with the insect center of mass, that thexb − yb plane of
the body frame is parallel to the mean stroke plane as shown
in Figure 1. Therefore, the position of the center of pres-
sure of the wings can be written in cartesian coordinate rela-
tive to body frame aspw

l (t) = L(sinφl(t),− cos φl(t), 0) and
pw

r (t) = L(sinφr(t), cosφr(t), 0)
Substituting Equations (4) into Equation (2), the delayed stall

force acting on a wing can be written in cartesian coordinate
relative to body frame as follows:

fw
l (t) = F



− φ̇l(t) |φ̇l(t)| cos[φl(t)]

φ̇l(t) |φ̇l(t)| sin[φl(t)]
φ̇2

l (t)


 (5)

whereF = 1
4ρaCAwL2 is a constant, and we used the fact that

vw(t) = ṗw andα(t) = 45o. An analogous equation can be
written for fw

r (t), only the sign in they-component is flipped.
Substituting Equation (5) and its analogous for the right wing
into Equations (3) we obtain the total wrench:

f b(t) = F



−|φ̇l|φ̇l cos φl − |φ̇r|φ̇r cos φl

|φ̇l|φ̇l sin φl − |φ̇r|φ̇r sin φl

φ̇2
l + φ̇2

r




τ b(t) = FL




φ̇2
l cos φl − φ̇2

r cos φr

−φ̇2
l sin φl − φ̇2

r sin φr

|φ̇l|φ̇l − |φ̇r|φ̇r


 (6)

If we substitute Equations (6), into Equations (1), we find that
the insect dynamics is a twelve-dimensional nonlinear time-
varying dynamical system. However, one could notice that the
aerodynamic forces and torques are quasi-periodic and that in-
sect requires several wingbeat periods for completing a full ma-
neuver. This means that the insect dynamics is relatively slow
with respect to the frequency of aerodynamic forces. At this
point we can use averaging theory which shows, loosely speak-
ing, that the trajectory of the averaged dynamics is a good ap-
proximation of the true solution as long as the wingbeat fre-
quency is sufficiently large [13] [14]. More precisely, the ap-
proximation bounds are stated in following theorem:

Theorem 1. Let us consider the following systems:




ẋ = f(x, u)
u = u(v, t)
v = v(x)
u(v, t) = u(v, t + T )

(7)





˙̄x = f̄(x̄, v)
f̄(x, v) = 1

T

∫ T

0
f(x, u(v, t))dt

v = v(x̄)
(8)

wherex, x̄ ∈ Rn, u ∈ Rm, v ∈ Rp,, and all functions and their
partial derivatives are continuous up to second order.
• If x̄(0) − x(0) = O(T ), then there exists aT ∗ such that

for all 0 < T < T ∗, x(t)− x̄(t) = O(T ) over a timescale
of orderO(1).

• If x̄ = 0 is also an exponentially stable equilibrium point
for the averaged system (8), thenx(t)− x̄(t) = O(T ) for
all t ∈ [0,∞). Moreover the original system (7) has a
unique, exponentially stable, T-periodic limit cyclexT (t)
with the property||xT (t)|| < kT .

Proof: This theorem is an extension of Theorem 10.4
in [14] to systems with input. The closed loop system (7)
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ẋ = fcl(x, t) ∆= f(x, u(v(x), t)) is T-periodic in its sec-
ond argument, and it is easy to see that the averaged closed
loop system (8) is˙̄x = f̄cl(x̄) = 1

T

∫ T

0
fcl(x, t)dt. Via the

change of time-scalet = Tτ the two systems can be written
as dx

dτ = Tfcl(x, Tτ), which is now1-periodic in its second
argument, anddx̄

dτ = Tfcl(x̄). These two systems satisfy the
conditions of Theorem 10.4 in [14] with the simple substitution
of ε with T . Therefore the rest of the proof of this theorem
follows.

This theorem shows that T-periodic feedback laws can expo-
nentially stabilize a system about a T-periodic limit cycle. At
first it might be not clear the advantage of using periodic con-
trol feedback laws since one has to find a ”good” parametriza-
tion for the inputu = u(v, t) and the averaged system is still
nonlinear, in general. Besides, these feedback laws do not guar-
antee the convergence to the desired statex = 0, but only to a
limit cycle that that isO(T ) close to the origin. The advantage
of high frequency T-periodic feedback laws resides in the fact
that the number of independent virtual inputv ∈ Rp can be
larger than the original number of independent inputu ∈ Rm,
i.e. p > m. In fact, high frequency control can in principle
increase the number of virtual input, as shown by Sussmann
and Liu in [15] for nonholonomic affine systems. In the case
of flapping flight, however, the increased number of virtual in-
puts arise from the nonaffine nature of the system. In fact, the
stroke angles(φr, φr) of Equations (6), which play the role of
the inputu defined in the previous Theorem, appear nonlinearly
in the entry of the wrench. The goal of the parametrization in
Equation 4 is to move the wings in order to affect independently
as many entry of the wrench as possible.

Another advantage of high frequency control is that the ori-
gin x = 0 might not be an equilibrium point for the original
system, i.e. there is no inputu∗ such thatf(0, u∗) = 0. There-
fore, this type of feedback can stabilize the system closed to
the desired state, which is otherwise unfeasible. The distance
from the desired state depends on the frequencyT of the in-
put. Therefore, ifT is a controllable parameter, the error can be
made arbitrarily small by reducing the periodT . In the rest of
this paragraph we show that these two advantages are actually
present in insect flapping flight. In particular, we will show that
we are able to generate5 independent virtual input for the aver-
aged system by controlling actively only2 input, which are the
right and left stroke angles(φr, φl). Moreover, both the hov-
ering configuration and the cruise flight with constant velocity
are not feasible for the original systems, but they can be ap-
proximated with feasible trajectories that areO(T ) closed and
are exponentially stabilizable. The closeness depends on the
periodT , and it has been shown elsewhere [7] that the error
of the approximation is practically undetectable for inch-size
insects or smaller. This is consistent with observations of real
insects during free flight which do not seem to oscillate about
their trajectories. Therefore, it seems that insect flapping flight
represent a very compelling example of high frequency control
present in nature.

Instead of considering the time-varying system, we study its
dynamics averaged over a single wingbeat period, which re-
quires the computation of the mean aerodynamic force,f̄ b =

1
T

∫ T

0
f b(t)dt, and torque,̄τ b = 1

T

∫ T

0
τ b(t)dt:

f̄ b =
4FA2

0

T 2




sinc(
A0
4 ) cos(γlA0)(1+κl)

2(1−2ρl)

ρl(1−ρl)

− sinc(
A0
4 ) sin(γlA0)(1+κl)

2(1−2ρl)

ρl(1−ρl)
(1+κl)

2

ρl(1−ρl)

+
sinc(

A0
4 ) cos(γrA0)(1+κr)2(1−2ρr)

ρr(1−ρr)

+
sinc(

A0
4 ) sin(γrA0)(1+κr)2(1−2ρr)

ρr(1−ρr)

+ (1+κr)2

ρr(1−ρr)


 (9)

τ̄ b =
4FLA3

0

T 2




− sinc(
A0
4 ) cos(γlA0)(1+κl)

2

ρl(1−ρl)

− 2sinc(
A0
4 ) sin(γlA0)(1+κl)

2

A0ρl(1−ρl)

− (1+κl)
2(1−2ρl)

ρl(1−ρl)

+
sinc(

A0
4 ) cos(γrA0)(1+κr)2

ρr(1−ρr)

− 2sinc(
A0
4 ) sin(γrA0)(1+κr)2

A0ρr(1−ρr)

+ (1+κr)2(1−2ρr)
ρr(1−ρr)


 (10)

where sinc(x) = sin x
x . The equations above can be linearized

about the symmetric wing motions corresponding toρl = ρr =
1
2 , γl = γr = κl = κr = 0. To further simplify results, let
define the following input parameter:

w1 = −sinc(A0
4 )[(ρl − 1

2 ) + (ρr − 1
2 )]

w2 = κl + κr

w3 = −sinc(A0
4 )[κl − κr]

w4 = −sinc(A0
4 )[γl + γr]

w5 = (ρl − 1
2 )− (ρr − 1

2 )

(11)

to obtain:

f̄ b = f0

[ 0
0
1

]
+ f0

[
w1

0
w2

]
, τ̄ b = τ0

[
w3

w4

w5

]
(12)

wheref0 = 32FA2
0

T 2 and τ0 = 32FLA3
0

T 2 . Note that the mean
stroke amplitudeA0 and wingbeat periodT can be chosen to
exactly balance the gravity forcemg, i.e. f0 = mg. The lin-
earized wrench clearly show how the kinematic parameters can
be combined to controlindependentlyall the forces and torques
about the insect center of mass, except for the force component
along they-direction of the body frame. In particular, a differ-
ence in amplitude in the two wings would result in a net roll
torque, the increase in amplitude of both wing would results in
a larger vertical thrust. A difference in speed between down-
stroke and upstroke on both wing leads to a net forward thrust,
while a difference in speed between the two wings leads in a net
yaw torque. Finally, an analogous change in the offset of stroke
motion on both wings gives rise to a net pitch torque. Equation
(11) can be thought as a linear mapB ∈ R5×6 from the wing
kinematic parameters,ν = (ρl, κl, γl, ρr, κr, γr), to the virtual
control inputsw = (w1, w2, w3, w4, w5), i.e. w = Bν. Al-
though the mapB is not invertible since it is not a square matrix,
it is always possible to find a linear mapB† ∈ R6×5 such that,
for any vectorw the vectorν = B†w, satisfiesw = BB†w, i.e.
BB† = I5×5. One natural choice is to use the pseudoinverse
of the matrixB, i.e. B† = (BT B)−1BT . It is clear that the
wing kinematic parametrization chosen in Equations (4) is suf-
ficient to move the insect in any direction, since it is possible to
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synthesize feedback laws based on the input control vectorw,
and then use the static mapB† to find the corresponding wing
kinematic parametersν. Moreover, Equations (4) shed light on
some of the reasons for the superior maneuverability of insect
flight. In fact, differently from helicopter-like vehicles, flapping
insects can generate forward or backward thrust forces without
necessarily pitch the body orientation, thus resulting more re-
sponsive during hovering mode and in initiating forward flight
from rest.

We can summarize our results in the following theorem:

Theorem 2. Define the systeṁx = f(x, u) given by Equations
(1) and (6), wherex = (pf ,vf , R, ωb) andu = (φl, φr). Let
the control inputu = u(v, t) be parameterized as in Equations
(4) andT -periodic, wherev = (ρl, κl, γl, ρr, κr, γr) are the
wing kinematic parameters. The corresponding averaged sys-
tem ˙̄x = f̄(x̄, v) = 1

T

∫ T

0
f(x̄, u(v, t))dt is given by Equations

(1), (9) and (10).
1) The averaged system,˙̄x = f̄(x̄, v), is locally accessible
2) The hovering configurationq = (pf ,vf , R, ωb) =

(P0, 0, I3×3, 0), whereP0 ∈ R3 is an arbitrary point in
space, is an equilibrium point for the averaged system
˙̄x = f̄(x̄, ν), and its linearization is controllable.

3) The motion of the center of mass along a straight line with
constant velocity, i.e.vf (t) = v∗ wherev∗ ∈ R3 is con-
stant, is a feasible trajectory for the the averaged system
˙̄x = f̄(x̄, ν) and it is controllable about this trajectory.

4) The original systeṁx = f(x, u) can be exponentially
stabilized about a T-periodic limit cyclexT (t). In par-
ticular there are limit cycles with the property||xT (t) −
x∗(t)|| < kT wherex∗(t) can be the hovering configu-
ration or the motion along a straight line with constant
velocity.

Proof: Given the limited space of this paper, the proofs
are just sketched, and they will be presented in a forthcoming
technical paper.

(1) Local accessibility is obtained by algebraically checking
the rank condition of the Lie algebra for the control system de-
scribed by Equations (1) and (12) for all possible state configu-
rations. This is a tedious but straightforward step.

(2) If we chooseT, A0 such thatf0 = mg, the hov-
ering configurationq is an equilibrium point for the aver-
aged system with input controlvq = (ρl, κl, γl, ρr, κr, γr) =
(0.5, 0, 0, 0.5, 0, 0). This can be easily verified by substitution
into Equations (1), (9) and (10). Controllability can be checked
by linearizing the averaged systems about the equilibrium con-
figurationq and input controlvq. After some algebraic manip-
ulation, the linearized averaged systems can be rewritten as:




p̈f
x

p̈f
y

p̈f
z


 = g




ϑf

−ηf

0


 + c

m




ṗf
x

ṗf
y

ṗf
z


− g

[
w1

0
w2

]




η̈f

ϑ̈f

ϕ̈f


 = τ0J

−1
b

[
w3

w4

w5

]

(13)
where (wi) have been defined in Equation (12), and

(ηf , ϑf , ϕf ) are the roll,pitch and yaw Euler’s angles relative to
the fixed frame used to represent the rotation matrixR. Control-
lability can be checked by rewriting this system in state-space
representatioṅx = Ax + Bu and show that the controllability
matrixM = [B AB . . . An−1B] is full row-rank.

(3) There are multiple orientation configurations that guar-
antee feasibility of constant velocity motion along a straight

trajectory with constant velocity as long as the trajectory to
lie on the x-z plane relative to the insect body frame. With-
out loss of generality we consider the x-z plane of the fixed
frame parallel to the x-z plane of the body frame, so that the
required velocity can be written asv∗ = (v∗x, 0, v∗z). One nat-
ural choice for the orientation is stillR = I. If we consider
the reduced system with statex = (vf , R, ωb) the desired
trajectory correspond to the configurationq = (v∗, I3×3, 0).
Let f0 = mg, then the control input that makes this con-
figuration feasible is given byvq = (ρl, κl, γl, ρr, κr, γr) =

(ρ∗, κ∗, 0, ρ∗, κ∗, 0) where ρ∗ = 1
2 −

cv∗y
2sinc(

A0
4 )(mg+cv∗z )

and

κ∗ =
√

4ρ∗(1− ρ∗)(1− cv∗z
mg ) − 1. The linearized averaged

system about this configuration leads to a system equivalent to

Equation (13) with the substitutions ofδ̇v
f → p̈f , δvf → ṗf ,

andδw → w, whereδvf ∆= vf−v∗ andδw
∆= w−w∗. The input

w∗ is given by substitutingvq defined above into Equation 11.
Therefore controllability follows analogously as part (2).

(4) Since the linearized averaged systems about the hovering
configuration or about a trajectory with constant linear velocity
are controllable from part (2) and (3), then there exist (distinct)
feedback lawsv = v(x̄) such that averaged system is locally
exponentially stable. From Theorem 1 follows that the original
system will converge exponentially to a T-periodic limit cycle
xT (t) with the property||xT (t) − x∗(t)|| < kT wherex∗(t)
can be chosen to be the hovering configuration of the motion
with constant linear velocity.

In other words, this theorem states that the averaged dynam-
ics is a good approximation for sufficiently high wingbeat fre-
quency, therefore designing exponentially stabilizing control
laws for the averaged dynamics would result in stable dynamics
for the true system. The fact that the system is globally acces-
sible is quite intuitive since it is possible to control altitude by
modulating the vertical thrust generation, andx− y position by
steering the body orientation similarly to helicopters. In prac-
tice, accessibility is a necessary condition to be able to find a
control input that can steer the insect from any initial configu-
ration to any final configuration. This is very important when
designing complex maneuvers such as saccades, take off and
landing. Finally, stabilizing control laws for hovering and cruis-
ing flight modes, two fundamental building blocks for high per-
formance flight, can be readily synthesized from the linearized
averaged wrench described by Equations (12). In particular,
linear feedback laws, i.e.v = Kx, can be designed to (locally)
stabilize flight, which is critical to MFIs because of their limited
computational capabilities.

III. T HORAX TOY MODEL

A simplified model of the actuator-thorax-wing system is de-
rived here. As shown in [16], the piezoelectric actuator can be
seen as a pure force generator with a parallel stiffness, where
the output force is proportional to the input voltagev(t). The
thorax, basically consisting of a 4-bar mechanism, is deployed
to transform the force/linear displacement at the tip of the ac-
tuator into torque/angular displacement at the base of the wing.
The wing will contribute to the dynamics with its rotary inertia
and its aerodynamic damping. In order to underline the prin-
cipal features of flapping flight, a simplified electromechanical
model will be used. A detailed model for a 2 degrees of free-
dom (d.o.f.) thorax-wing can be found in [17], while here only
1 d.o.f. will be considered, as the one sketched in Figure 3,
where the rotation along the wing axis is passive, i.e. the trail-
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ing edge of the wing simply follows the leading edge (see Fig-
ure 1). With reference to Figure 3, the thorax transmission will
be modelled as a static linear relation, i.e. nonlinearities at high
fields will be neglected, and the aerodynamic damping will be
considered as a linear function of the wing speed, although a
more faithful model would consider a quadratic dependence on
the wing speed as suggested by Equation (2).

4-bar
(rigid links)

wing

actuator
φ

+
-v(t)

Fig. 3. Actuator, 4-bar, wing system.

In [16] is shown how to relate geometrical and physical char-
acteristics of actuator-thorax-wing system to the parameters
that characterize a second order systems, i.e. DC gainKDC ,
resonant frequencyωn and quality factorQ. The actual values
for these parameters have been choosen based on those exper-
imentally observed on blowflies, our target size MFI. In fact,
the actuator stiffness is tuned with wing inertia and the thorax
transmission ratio ([17], [16]) in order to resonate at150Hz,
i.e. ωn = 2π150 rad/sec, while the quality factor is typically
Q = 3, as shown in [16].

Let v(t), φ(t) andφ̇(t) be respectively the input voltage, the
output wing displacement and the output wing speed andV , Φ
andΦ̇ be their Laplace transforms. The dynamics of the second
order system in the time domain are determined by:

[
φ̇(t)
φ̈(t)

]
=

[
0 1

−ω2
n −ωn

Q

] [
φ(t)
φ̇(t)

]
+

[
0

KDC

]
v(t)

(14)
while in the Laplace domain it can be expressed as:
[

Φ
Φ̇

]
=

KDC ω2
n

s2 + ωn

Q s + ω2
n

[
1
s

]
V =

[
F (s)
Ḟ (s)

]
V (15)

A. Controllability via Pulse Width Modulation

In this section the case of symmetric wing kinematics will
be considered in order to highlight the key aspects of control-
lability by means of simplified calculations. Since the wings
move with symmetric motion, the force along the y-axis and
the roll and yaw torques generated by the left wing are exactly
balanced by the right wing, therefore the dynamics of the insect
is constrained to the x-z plane. Formally, the simplified system
is described by the equations:



mp̈f
x

m(p̈f
z + g)

Jb
y ϑ̈


 =

[ cos(ϑ) − sin(ϑ) 0
sin(ϑ) cos(ϑ) 0

0 0 1

] 


f b
x

f b
z

τ b
z


 (16)

wherem is the insect mass,Jb
y is its inertia relative to they-axis

(see Figure 1),ϑ is pitch angle, andg is the gravity.
In a previous section, forces and torque were derived after pa-

rameterizing wing kinematics with input parameters(κ, ρ, γ).
Here the motion of the wings is determined by the wing-thorax
electromechanical system driven by a piezoelectric actuator. A

piezoelectric actuator is capable of transforming an input volt-
age into an output mechanical displacement. Its parasitic ca-
pacitance mainly affects the efficiency of such a conversion
[18]. Due to energy/size constraints [16], a binary input voltage
(±V0), i.e. a switching stage, will be employed. It is important
to limit the number of switches per cycle because each switch
lead to unavoidable losses [18] and for this reason only square
waves with variable duty cycle will be considered. Therefore a
PWM will be employed and the input parameters will be related
to the input voltagev(t), i.e. its amplitudeV0, its frequencyω0

and its duty cycled, as follows:

v(t) = V0 sign(dT − t) 0 ≤ t ≤ T (17)

whereT = 2π
ω0

.
In order to control the system (16), we should be able to vary

input parameters(V0, ω0, d) so that the wrench[f b
x f b

z τ b
z ]T

might assume any value (within an open ball around the ori-
gin). From Equation (14),φ̇(t) depends linearly onV0 and
then the forces will depend linearly onV 2

0 which can be used
to modulate the wrench modulus. What is left to be shown is
how ω0 andd can modulate the wrench direction. When only
steady state is of interest,v(t), φ(t) andφ̇(t) can be expanded
as Fourier series. For a generic functionw(t):

w(t) = WDC +
∞∑

n=1

|Wn| cos(nω0t + Θ(Wn)) (18)

whereω0 is the input frequency, usually centered aroundωn,
WDC is the DC component ofw(t), Wn is the (generally a
complex number) Fourier coefficient, and|Wn| and Θ(Wn)
represent respectively its modulus and phase.

v(t) φ(t) φ̇(t)
2V0(d− 1

2 ) KDC 2V0(d− 1
2 ) 0

2 sin(πdn)
πn 2 sin(πdn)

πn F (n jω0) 2 sin(πdn)
πn Ḟ (n jω0)

TABLE I
FOURIER COEFFICIENTS FORv(t), φ(t), AND φ̇(t).

Consideringv(t) as a (periodic) square wave of amplitude
±V0 and duty cycled, steady state solutions of (15) can derived
at once by simply posings = jω as shown in Table I where
the first row refers to the DC component while the second row
refers ton-th coefficient of the Fourier series, i.e.s = n jω0.

Since the purpose is driving with square-waves, next it will
be shown how, starting with a nominal square-wave of fre-
quencyω0 = 2π150rad/sec and duty cycled = 0.5, varia-
tions of the input frequency and duty cycle can provide enough
degrees of freedom to adjust the mean wrench:




f
b

z

f
b

x

τ b
y


 =

F

T

∫ T

0




φ̇2

−φ̇|φ̇| cos φ

φ̇2 sin φ


 dt (19)

whereT = 2π/ω0 andF has been defined in the previous sec-
tion.

Considering the state spaceφ − φ̇, periodic trajectories will
determine closed loops. Integrals in Equation (19), after a
change of variables (dφ = φ̇ dt), will solely depend upon the
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Fig. 4. Mean force in the x direction (body frame) versus input frequency
(nominal150Hz) and duty cycle (nominal0.5).
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Fig. 5. Mean torque versus input frequency (nominal150Hz) and duty cycle
(nominal0.5).
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Fig. 6. Mean force in the z direction (body frame) versus input frequency
(nominal150Hz) and duty cycle (nominal0.5).

trajectory in the state space. For instance,τ b
y will correspond to

the area enclosed by a trajectory divided byT .
Consider the plane of input parameters (ω0 andd) centered

around their nominal values (150Hz and0.5). From Figure (4)
and Figure (5) it is clear that, given any two desired values for

f
b

x andτ b
y in a (small) neighborhood of zero, it is always pos-

sible to find an input frequency and duty cycle that will provide
those outputs. It is in fact possible to distinguish 4 quadrants
where mean torque and mean force along x-axis assume arbi-
trary sign:

input quadrant f
b

x τ b
y

ω0 > 2π150, d > 0.5 − +
ω0 < 2π150, d > 0.5 + +
ω0 < 2π150, d < 0.5 − −
ω0 > 2π150, d < 0.5 + −
Note how, although mean torque and mean x-axis force

change sign at each quadrant, z-axis mean force does not
change significantly since the nominal values of input fre-

quency and duty cycle correspond to a maximum off
b

z, as
shown in Figure (6).

During hovering, the z-axis of the body frame and the z-axis
of the fix frame are almost aligned. Because of gravity, only
positively directed z-axis components of the force are of in-
terest. A simple way to obtain a negative z-axis force is by
decreasing power to the wings, i.e. lowering|φ̇|2. This can eas-
ily be accomplished in the stage (generally a DC-DC converter
[18]) that is used to generate the high driving voltage (±V0)
for the piezoelectric actuators. The analysis in this section can
be summarized by saying that there exists a nonlinearlocally
invertiblemapΠ : (V0, d, ω0) → (w1, w2, w3) such that:




f
b

z

f
b

x

τ b
y


 =

[
mg
0
0

]
+

[
w1

w2

w3

]
(20)

Equation (20) is analogous to Equation (12) and the mapΠ in
analogous to the linear mapB of Equation (11), therefore sim-
ilar considerations about controllability and synthesis of feed-
back control laws can be derived.

B. Input-Output Delay

Whatever the control law will be, input frequency and duty
cycle shall certainly vary much “slowly” with respect to the
wing beat periodT = 2π/ω0. It is important to determine
what “slowly” means in this case. For this reason an estimate
will be derived of the time delay occurring between the setting
of input (frequency and/or duty cycle) and the generation of a
steady output (the desired mean forces or mean torque).

Suppose the control law decides to switch at timet = 0
from an initial steady state space trajectory[φ(t) φ̇(t)]T rel-
ative to input variables(V0, ω0, d) to a new one relative to
(V ′

0 , ω′0, d
′). Accordingly to linear systems theory, the trajec-

tory after timet = 0 can be thought of the superposition of the
steady state trajectory[φ′(t) φ̇′(t)]T and a transient trajectory
[∆φ(t) ∆φ̇(t)]T .

Both initial and final steady state trajectories can easily be de-
termined by Fourier coefficients in Table I. The transient is de-
termined by the evolution of the system with initial conditions
(at timet = 0) [φ(0)−φ′(0) φ̇(0)−φ̇′(0)]T = [∆φ(0) ∆φ̇(0)]T
and zero input voltage.

In Figure (7), steady state trajectories relative to different
duty cycles and different frequencies are shown. Although plot-
ted in different graphs for clarity, they belong to the same state
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Fig. 7. Steady state space trajectories relative to duty cycled = 0.2 . . . 0.8
and to input frequency150Hz (above) and165Hz (below). For each periodic
trajectory[φ(t) φ̇(t)]T , a circle marks the initial condition[φ(0) φ̇(0)]T .

space and should be imagined as superimposed. For each tra-
jectory[φ(t) φ̇(t)]T , a circle is drawn to represent[φ(0) φ̇(0)]T .

Two steady state trajectories, corresponding to inputs
(V0, ω0, d) and (V ′

0 , ω′0, d
′), are used to evaluate integrals in

Equation (19). The time it takes for such integrals to stabi-
lize around the final value is exactly the time it takes for the
transient[∆φ(t) ∆φ̇(t)]T to fade away. Such a decay simply
depends on[∆φ(0) ∆φ̇(0)]T and the eigenvalues of the second
order system in Equation (15), i.e. in the state space variables:

d

dt

[
∆φ(t)
∆φ̇(t)

]
=

[
0 1

−ω2
n −ωn

Q

] [
∆φ(t)
∆φ̇(t)

]
(21)

with eigenvalues:

λ = ωn
−1±

√
1− 4Q2

2Q
≈ −ωn

2Q
± jωn (22)

approximation clearly holds forQ = 3. The purely imaginary
term represents the oscillatory nature of the filter while the real
one represents its damping. The inverse of the real term is the
time constant, i.e.2Q/ωn = TQ/π < T whenQ = 3 < π.
The time constant is less than a period (the period of the input
voltage is close to the period of the resonant frequency of the
filter). In Figure (8), average forces and torque settle to steady
values within a cycle. Steady values can be derived also from
maps in Figure (4), (5) and (6) for input frequencies equal to
140, 150, 165Hz and duty cycles equal to0.4, 0.5 and0.6. For
smoother transitions, the oscillations can be greatly reduced.

As a final remark, it is important to notice how the choice of
Q, in the design of the electromechanical system, affects con-
trollability. Previous calculations show how a lowerQ implies
a quicker decay of transients, i.e. for a given input transition
the delay between initial and final values of average forces and
torque is lower.

On the other hand, a highQ system would be capable of
generating higher forces, including the mean liftf0, defined in
Equation (12), which can be shown to be inversely proportional
to the square ofQ. Since at present no quantitative analysis
for this trade off is available,Q = 3 has been chosen based on
values observed in most insect species [16].

0  T  2T  3T  4T  5T  
1

1.2

1.4

1.6

1.8
x 10

6

F
z

data1
data2
data3

0  T  2T  3T  4T  5T  
−1

−0.5

0

0.5

1
x 10

5

F
x

0  T  2T  3T  4T  5T  
−1

−0.5

0

0.5

1
x 10

5

number of cycles T=2π/ω
n

τ 150Hz
165Hz
140Hz

d=0.4 d=0.5 d=0.6 

Fig. 8. Averages forces and torque transient due to variation of duty cycle at
different frequencies.

IV. CONCLUSIONS

In this paper, we presented a detailed controllability analy-
sis of flapping flight for an MAV with limited kinematics and
PWM control of wing-thorax electromechanical structure.

In particular, we show that a pair of wings with a single de-
gree of freedom and passive rotation are sufficient to ensure
controllability of insect flight for hovering and forward mo-
tions. This has been shown using high frequency control the-
ory applied to nonaffine control systems. Besides, the wing
parametrization adopted can be readily mapped to the mean
torque and forces relative to the body frame, thus posing the
basis for simple linear feedback laws. This is extremely valu-
able given the limited computational power available on board
on the MAV. Even in the more realistic scenario when the elec-
tromechanical model of the wing-thorax is introduced and a
simple PWM control of the actuators is assumed, controlla-
bility is still ensured. However, in this case, the wing-thorax
electromechanical structure must be designed to have a fast
transient decay when control input changes at the beginning of
every wingbeat. Interestingly, this condition sets a trade off
between controllability and efficiency in lift generation, and it
seems to be present also in most flight insects, since the quality
factorQ, which regulate this tradeoff, is approximately1 − 5
for most species.

This work sets the basis for interesting future research di-
rections. One direction is to introduce a more realistic model
for the wing-thorax structure, including a nonlinear term in the
restoring force and a quadratic dependence on the velocity in
the damping term, and study their consequences. Another in-
teresting topic is to model the transient decay in the mean forces
arising from the dynamics of the wing-thorax structure. Also,
we would like to quantify analytically the performance loss in
terms of controllability and power efficiency when a single de-
gree of freedom wing with PWM control of actuators is com-
pared to a two-degree of freedom wing with analog control of
actuators. Finally, we would like to set up a general framework
for designing optimal control input parametrizations given the
constraints on the electromechanical structure, and to compare
them with those based on biomimetic principles, i.e. those ob-
served in real insects.
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