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Abstract 1

We extend a multi-agent convex-optimization algorithm named Newton-Raphson consensus to a network scenario that 2

involves directed, asynchronous and lossy communications. We theoretically analyze the stability and performance of the 3

algorithm and, in particular, provide sufficient conditions that guarantee local exponential convergence of the node-states to 4

the global centralized minimizer even in presence of packet losses. Finally, we complement the theoretical analysis with 5

numerical simulations that compare the performance of the Newton-Raphson consensus against asynchronous implementations 6

of distributed subgradient methods on real datasets extracted from open-source databases. 7

I. INTRODUCTION 8

Distributed optimization algorithms are important building blocks in several estimation and control problems arising in peer- 9

to-peer networks. To cope with real-world requirements, these algorithms need to be designed to work under asynchronous, 10

directed, faulty and time-varying communications. Unfortunately, despite being the literature on distributed optimization 11

already rich, most of the existing contributions have been proved to work in networks whose communication schemes follow 12

synchronous, undirected, and often time-invariant information exchange mechanisms. 13

Early references on distributed optimization algorithms involve primal subgradient iterations [1]. Sub-gradient based 14

algorithms have the advantage of being simple to implement and suitable for non-differentiable cost functions. Moreover, 15

they recently have been extended to directed and time-varying communication [2], [3]. However, these algorithms exhibit 16

sub-linear convergence rates. 17

More recently, primal subgradient strategies have been proposed with guaranteed convergence in directed communication 18

graphs [4] and in time-varying event-triggered communication schemes [5]. However, these schemes require weight-balanced 19

graphs, an assumption that is difficult to be satisfied in the presence of lossy communication. 20

A second set of contributions is based on dual decomposition schemes. The related literature is very large and we refer to [6] 21

for a comprehensive tutorial on network optimization via dual decomposition. A very popular dual distributed optimization 22

algorithm that have improved robustness in the computation and convergence rate in the case of non-strictly convex functions 23

is the so called Alternating Direction Method of Multipliers (ADMM). A first distributed ADMM implementation was initially 24

proposed in [7], and since then several works have appeared as accounted by the survey [8]. Recently, contributions have 25

been dedicated to increase the convergence speed of this technique by means of accelerated consensus schemes [9], [10]. 26

All these algorithms have been proved to converge to the global optimum under the assumption of fixed and undirected 27

topologies. 28

Another class of distributed optimization algorithms exploits the exchange of active constraints among the network nodes. 29

A constraints consensus algorithm has been proposed in [11] to solve linear, convex and general abstract programs. These 30

were the first distributed optimization algorithms working under asynchronous and direct communication. Recently the 31

constraint exchange idea has been combined with dual decomposition and cutting-plane methods to solve distributed robust 32

convex optimization problems via polyhedral approximations [12]. Although well-suited for asynchronous and directed 33

communications, these algorithms mainly solve constrained optimization problems in which the number of constraints is 34

much smaller than the number of decision variables (or vice-versa). 35

Other optimization methods include algorithms that try to exploit second-order derivatives, i.e., the Hessians of the cost 36

functions as in [13], [14], where the distributed optimization is applied to general time-varying directed graphs. Another 37

approach, based on Newton-Raphson directions combined with consensus algorithms, has been proposed in [15]: this 38

technique works under synchronous communication, and has recently been extended to asynchronous symmetric gossip 39

frameworks [16]. 40

Importantly, all the works mentioned above require reliable communication; and, to the best of our knowledge, there is no 41

distributed optimization algorithm that has been proved to be guaranteed to converge in the presence of lossy communication. 42

Aiming at filling this gap, we here extend the aforementioned Newton-Raphson consensus approach in [15], [16] to an 43
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asynchronous, directed and unreliable network set-up. Specifically, we design a distributed algorithm which works under an1

asynchronous broadcast protocol over a directed graph and that is robust with respect to packet losses.2

The first main contributions of this paper is to endow the Newton-Raphson algorithm in [15] with two additional strategies:3

first, a push-sum consensus method, proposed in [17] to achieve average consensus in directed networks; second, a robust4

consensus method, proposed in [18] to achieve average consensus in presence of packet losses through keeping memory5

of the total mass of the internal states of the algorithm, so that nodes can recognize if they missed some information at a6

certain point, and reconstruct it.7

The rationale under the combination of the push-sum and robustification protocols with the Newton-Raphson consensus8

is the following. In the Newton-Raphson consensus, nodes continuously update estimates of a Newton descent direction by9

means of an average consensus, that forces the nodes to share a common descent direction. Thus, if this averaging property10

is maintained under asynchronous, directed and lossy communication, the convergence properties of the descent updates can11

be preserved.12

The second main contribution of this paper is to show that, under suitable assumptions on the initial conditions and on the13

step-size parameter, the Newton-Raphson consensus is locally exponentially stable around the global optimum as soon as the14

local costs are C2 and strongly convex with second derivative bounded from below. The exponential convergence is achieved15

even in the presence of lossy and broadcast communication, as long as the communication graph is strongly connected and16

the number of consecutive packet losses is bounded. The proof relies on a time-scale separation of the Newton descent17

dynamics and the average consensus one. This result thus extends the findings of [19], where the convergence was proved18

for the quadratic local costs case.19

The third main contribution of this paper is to complement the theoretical results with numerical simulations based on real20

datasets extracted from an open-source database. Findings then confirm the local exponential stability and the exponential21

rate of convergence on a problem where the local cost functions are smooth and convex.22

The paper is organized as follows: Section II formulates our problem and working assumptions. Section III then introduces23

the proposed algorithm and gives some intuitions on the convergence properties of the scheme, which are then summarized24

in Section V. Finally, Section VI collects some numerical experiments corroborating the theoretical results.25

II. PROBLEM FORMULATION AND ASSUMPTIONS26

Problem formulation: we consider the separable optimization problem27

x∗ := min
x

N∑

i=1

fi(x) (1)28

under the assumptions that each fi is known only to node i and is C2, and strongly convex with second derivative bounded29

from below, i.e., f ′′i (x) > c for all x (so that fi is coercive). For notational convenience and w.l.o.g. we deal with the scalar30

case, i.e., x ∈ R.31

We then aim at designing an algorithm solving (1) with the following features:32

(i) being distributed: each node has limited computational and memory resources and it is allowed to communicate directly33

only with its in- and out-neighbors;34

(ii) being asynchronous: nodes do not share a common reference time, but rather perform actions according to local clocks35

independent of each other;36

(iii) being robust w.r.t. packet losses: packets broadcast by a node may sometimes be not received by its out-neighbors due37

to, e.g., collisions or fading effects.38

Assumptions: formally, we consider a network representable through a given, fixed, directed and strongly connected39

graph G = (V, E) with nodes V = {1, . . . , N} and edges E ⊆ V × V so that (i, j) ∈ E iff node j can directly receive40

information from node i. WithN out
i we denote the set of out-neighbors of node i, i.e.,N out

i := {j ∈ V | (i, j) ∈ E} is the set of41

nodes receiving messages from i. Similarly, with N in
i we denote the set of in-neighbors of i, i.e., N in

i := {j ∈ V | (j, i) ∈ E}.42

As for the concept of time, we assume that each node has its own clock that locally and independently triggers when43

to transmit. With σ(t) ∈ {1, . . . , N}, t = 1, 2, . . . be the sequence identifying the generic triggered node at time t, i.e.,44

σ(1) is the first triggered node, σ(2) the second, etc., so that σ(t) is a process on the alphabet {1, . . . , N}. When a node is45

triggered, it performs some local computation and then broadcasts some information to its out-neighbors. Due to unreliable46

communication links, this information can be potentially lost.47

We assume that to solve (1) each node i stores in its memory a local copy, say xi (also called local estimate or local48

decision variable), of the global decision variable x. With this new notation (1) reads as49

min
x1,...,xN

N∑

i=1

fi(xi) s.t. xi = xj for all (i, j) ∈ E . (2)50

Notice that the strong connectivity of graph G ensures then that the optimal solution of (2) is given by x1 = . . . = xN = x∗,51

i.e., ensures that problems (1) and (2) are equivalent.52



III. THE ROBUST ASYNCHRONOUS NEWTON-RAPHSON CONSENSUS ALGORITHM 1

We now introduce an algorithm suitable for solving problem (1) under the asynchronous and lossy communication 2

assumptions posed in Section II. The procedure, called robust asynchronous Newton-Raphson Consensus (ra-NRC) and 3

reported in Algorithm 1, has been initially presented in [19] but is reported here for completeness and ease of reference. In 4

the pseudo-code we assume w.l.o.g. σ(t) = i, i.e., that the node that triggers at iteration t is the node i. 5

We assume that every node i stores in its memory the variables xi, gi, hi, yi, zi, bi,y , bi,z , and r(j)
i,y , r(j)

i,z for every j ∈ N in
i , 6

with the following meanings: 7

• xi represents the current local estimate at node i of the global minimizer x∗; 8

• gi and hi represent some specific function of the first and second derivatives of the local cost fi(xi) computed at the 9

current value of xi. gold
i and hold

i represent the old values of gi and hi at the previous local step; 10

• yi and zi represent respectively the local estimate at node i of the global sums
∑

i gi and
∑

i hi; 11

• bi,y and bi,z represent respectively quantities that are used by node i to locally keep track of the total mass of the internal 12

states yi and zi. Notice that bi,y and bi,z are the only local variables that are broadcast by node i to its out-neighbors; 13

• r(i)
j,y and r

(i)
j,z represent respectively quantities that are used by node j to locally keep track of the total mass of the 14

internal states yi and zi of i, that are in general inaccessible by j. In other words, with r(i)
j,y and r(i)

j,z node j tracks the 15

status of node i: when the communication link from i to j does not fail, then node j updates r(i)
j,y and r

(i)
j,z with the 16

received bi,y and bi,z . Otherwise, when the communication link from i to j fails, then r
(i)
j,y and r

(i)
j,z remain equal to 17

the previous total mass received. 18

Thus the ra-NRC algorithm builds on top of broadcast-like average consensus protocols [17] (i.e., the structure of the updates 19

of the variables yi and zi) and of strategies for handling packets losses in consensus schemes [18] (i.e., the way of using 20

the variables bi,y , bi,z , r(i)
j,y and r(i)

j,z to prevent information losses through mass-tracking robust strategies). 21

We also notice that the algorithm exploits the thresholding operator

[z]c :=

{
z if z ≥ c
c otherwise.

where c is a positive scalar to be properly chosen to avoid division-by-zero in the algorithm. 22

Initialization of the ra-NRC algorithm: we assume that every agents perform the following initialization step of the
local variables: let xo be a common initial estimate of the global minimizer (may be chosen equal to zero for convenience).
Then

xi = xo

yi = gold
i = gi = f ′′i (xo)xo − f ′i(xo) =: yoi

zi = hold
i = hi = f ′′i (xo) =: zoi .

IV. INFORMAL DESCRIPTION OF THE CONVERGENCE PROPERTIES OF THE ALGORITHM 23

We now provide an intuitive verbal description of the main features and intuitions behind the proposed algorithm, before 24

presenting a mathematical characterization in the following Section V. 25

We start by noticing that the only free parameter of the algorithm is given by the scalar ε ∈ (0, 1]. This parameter is 26

fundamental since it regulates the trade-off between the stability of the algorithm and its speed of convergence. Indeed the 27

algorithm is characterizable through two distinct dynamics: a fast one, which distributedly computes averages of the yi’s and 28

zi’s based on a robust consensus algorithm, and a slow dynamics, that estimates the minimizer of the global cost function 29

using the ratio of the averaged yi’s and zi’s as a Newton direction. More specifically, the variables xi are associated to the 30

slow dynamics, while all the other variables yi, zi, gi, hi, bi,z, bi,y, r
(i)
i,y, r

(i)
i,z are associated to the fast dynamics. 31

The parameter ε regulates then the separation of these two time scales: the smaller ε is, the larger this separation is, so 32

that small ε’s imply slow distributed averaging of the yi’s and zi’s. On the other hand, the rate of convergence of the slow 33

dynamics, i.e., of the Newton-Raphson on the xi’s, can be shown to be locally given by (1− ε); therefore small ε’s imply 34

also slower convergence towards the global optimum. 35

In the following we use the symbol → to indicate the behavior of a certain variable as the number of iterations of 36

Algorithm 1 goes to infinity, while we reserve ← for denoting values assignment operations (e.g., xi ← xo reads as 37

“variable xi assumes the value xo”). 38



Algorithm 1 robust asynchronous Newton-Raphson Consensus (ra-NRC)
1: on wake-up, and before transmission, node i updates its local variables as

yi ←
1

|N out
i |+ 1

[
yi + gi − gold

i

]

zi ←
1

|N out
i |+ 1

[
zi + hi − hold

i

]

gold
i ← gi

hold
i ← hi

xi ← (1− ε)xi + ε
yi

[zi]c
gi ← f ′′i (xi)xi − f ′i(xi)
hi ← f ′′i (xi)

bi,y ← bi,y + yi

bi,z ← bi,z + zi

2: node i then broadcasts bi,y and bi,z to its neighbors;
3: every out-neighbor j ∈ N out

i updates (if receiving the packet, otherwise it does nothing) its local variables as

yj ← bi,y − r(i)
j,y + yj + gj − gold

j

zj ← bi,z − r(i)
j,z + zj + hj − hold

j

gold
j ← gj

hold
j ← hj

xj ← (1− ε)xj + ε
yj

[zj ]c
gj ← f ′′i (xj)xi − f ′i(xj)
hj ← f ′′i (xj)

r
(i)
j,y ← bi,y

r
(i)
j,z ← bi,z

A. Intuitions behind the fast dynamics: the case ε = 01

As ε approaches zeros, xi changes very little from one iteration to the other, i.e., xi ≈ cost.. Indeed if we assume ε = 0,
then the local estimate update rule becomes xi ← xi, so that gi ← gold

i and hi ← hold
i , i.e., constant values. Therefore in this

case the dynamics of yi only depends on its initial value f ′′i (xi)xi − f ′i(xi) and on the communication sequence. Similar
considerations hold for zi’s. Thus in this case the variables yi and zi evolve as the robust ratio consensus described in [18],
i.e.,

yi → ρi

(
1

N

N∑

i=1

(
f ′′i (xi)xi − f ′i(xi)

))

zi → ρi

(
1

N

N∑

i=1

f ′′i (xi)

)

where 0 < ρi ≤ 1 is some scalar that depends on the packet loss sequence. Thus, regardless of the specific communications
and packet losses sequence,

yi
zi
→
∑

i f
′′
i (xi)xi − f ′i(xi)∑

i f
′′
i (xi)

=: φ(x1, . . . , xN )

i.e., all the local ratios
yi
zi

converge to the same value φ.2



B. Intuitions behind the slow dynamics: the case
yi
zi

= φ(x1, . . . , xN ) 1

The slow dynamics can be obtained by assuming that the fast dynamics has converged to steady-state value considering

ε = 0. The idea is that if ε ≈ 0, then also
yi(k)

zi(k)
≈ φ(x1, . . . , xN ). In this scenario, the dynamics of each local variable xi

can then be written as
xi ← (1− ε)xi + εφ(x1, . . . , xN ), i = 1, . . . , N.

This implies that all the various agents update the local values with the same identical rule; thus nodes behave in this case
as N identical systems that are driven by the same forcing term. This implies that any difference in the initial value of xi
will vanish, eventually leading to

xi → x, ∀i = 1, . . . , N.

In this case, moreover,

φ(x1, . . . , xN )→
∑

i f
′′
i (x)x− f ′i(x)∑

i f
′′
i (x)

= x− f
′
(x)

f
′′
(x)

where f(x) :=
∑

i fi(x). Thus the dynamics of the local variables are of the form

x← (1− ε)x+ ε

(
x− f

′
(x)

f
′′
(x)

)
= x− ε f

′
(x)

f
′′
(x)

,

i.e., a Newton-Raphson algorithm that, under the posed smoothness assumptions on the local fi’s, converges to the solution
of (1). Thus,

xi → x∗ ∀i = 1, . . . , N, ∀xo ∈ R.

C. Intuitions behind the local rate of convergence 1− ε 2

The previous analysis allows to estimate the rate of convergence around the global minimum x∗. In fact, if we assume
a sufficiently large separation of time scales (i.e., the average consensus on the yi’s and zi’s to be much faster than the
Newton-Raphson dynamics), then the rate of convergence of the whole algorithm is dominated by the slow dynamics. If
then one further assumes the fi(x) to be C3 then the Newton-Raphson dynamics can be linearized so to obtain

d

dx

f
′
(x)

f
′′
(x)

∣∣∣∣∣
x=x∗

=
f
′′
(x)

f
′′
(x)
− f

′
(x)f

′′′
(x)

(f
′′
(x))2

∣∣∣∣∣
x=x∗

= 1

where we used the fact that f
′
(x∗) = 0. Therefore, the dynamics of the Newton-Raphson component of the algorithm around

the equilibrium point x∗ can be written as

x+ ≈ x− ε(x− x∗)⇒ (x− x∗)+ ≈ (1− ε)(x− x∗),
which clearly shows that locally the rate of convergence is exponential with a rate given by (1 − ε). This confirms the 3

previous intuition that smaller ε’s lead to slower convergence rates. 4

D. Intuitions behind the stability properties of the ra-NRC algorithm 5

As discussed above, ε dictates the relative speed of the fast dynamics (driving the variables yi and zi to a consensus), 6

and the slow dynamics for the Newton-Raphson-like evolution of the local estimates xi. The parameter ε, moreover, dictates 7

how much each node i trusts
yi
zi

as a valid Newton direction. During the transient, indeed, this ratio is not the Newton 8

direction of neither the local nor the global cost computed at the current xi. 9

Clearly, if the consensus on the yi’s and zi’s is much faster than the evolution of the xi’s (i.e., if ε is “small enough”) 10

then one can expect that the aforementioned separation of time scales holds, so that all the quantities converge to their 11

equilibria and the overall algorithm converges. But if ε is not sufficiently small then the stability of the overall system is 12

not guaranteed: indeed, in the following section we prove that there always exists a suitable critical value εc such that for 13

all 0 < ε < εc the algorithm is locally exponential stable, while nothing can be said for ε > εc. 14

Notice that estimating (even offline) such εc is a very difficult task, and that explicit bounds are often very conservative. 15

Unfortunately, moreover, the difficulty of finding conservative bounds on εc conflicts with the practical necessity of having 16

high ε’s (the higher ε, the faster the algorithm converges – if converging – to the optimum). 17



V. THEORETICAL ANALYSIS OF THE ROBUST ASYNCHRONOUS NEWTON-RAPHSON CONSENSUS1

We now provide a theoretical analysis of the proposed algorithm under asynchronous and lossy communication scenarios.2

In particular we provide some sufficient conditions that guarantee local exponential stability under the assumptions posed in3

Section II. We thus extend our previous work [19], dedicated to the quadratic local costs case, to more generic local convex4

costs.5

Informally, we assume that each node updates its local variables and communicates with its neighbors infinitely often,6

and that the number of consecutive packet losses is bounded. Formally, we assume that:7

Assumption V.1 (Communications are persistent) For any iteration t ∈ N there exists a positive integer number τ such8

that each node performs at least one broadcast transmission within the interval [t, t+ τ ], i.e., for each i ∈ {1, . . . , N} there9

exists ti ∈ [t, t+ τ ] such that σ(ti) = i.10

Assumption V.2 (Packet losses are bounded) There exists a positive integer L such that the number of consecutive com-11

munication failures over every directed edge in the communication graph is smaller than L.12

The following result summarizes our characterization of the convergence properties of the ra-NRC algorithm:13

Theorem V.3 Under Assumptions V.1, V.2 and the assumptions posed in Section II there exist some positive scalars εc and14

δ s.t. if the initial conditions xo ∈ R satisfy |xo − x∗| < δ and if ε satisfies 0 < ε < εc then the local variables xi in15

Algorithm 1 are exponentially stable w.r.t. the global minimizer x∗.16

Proof: The proof of this theorem is quite involved and relies on many intermediate results. In the interest of space we17

refer the interested reader to a longer version of this work, [20], including all the technical details in a dedicated Appendix.18

19

Introducing the notation xi(t) to indicate the value xi after the t-th broadcast event in the whole network, Theorem V.3
reads as follows: if the hypotheses are satisfied then there exist positive scalars C and λ < 1, possibly function of δ and ε,
s.t.

|xi(t)− x∗| ≤ Cλt, t = 1, 2, . . .

Remark V.4 Algorithm 1 assumes the initial conditions of the local variable xi to be all identical to xo. Although being20

not a very stringent requirement, this assumption can be relaxed. I.e., slightly modified versions of Theorem V.3 would hold21

even in the case xi = xoi as soon as all the initial conditions are sufficiently close to the global minimizer x∗, i.e., as soon22

as |xoi − x∗| < δ for all i = 1, . . . , N .23

Remark V.5 The initial conditions on the local variables yi = gold
i = gi = f ′′i (xo)xo−f ′i(xo) and zi = hold

i = hi = f ′′i (xo)24

are instead more critical for the convergence of the local variables xi to the true minimizer x∗. As shown in [15], any small25

perturbation of these initial conditions can affect the equilibrium point of the algorithm, even if it does not affect the stability26

of the algorithm. In other words, if these perturbations are small then xi → x with x ≈ x∗. This implies that possible small27

numerical errors due to the computation and data quantization do not disrupt the convergence properties of the algorithm.28

Remark V.6 Although the previous theorem guarantees only local exponential convergence, numerical simulations on real29

datasets seem to indicate that the basin of attraction is rather large and stability is mostly dictated by the choice of the30

parameter ε.31

VI. NUMERICAL EXPERIMENTS32

First, we empirically study the sensitivity of the convergence speed of the proposed ra-NRC algorithm on ε and on the33

packet loss probability in Sections VI-A and VI-B, respectively. Then, we compare in Section VI-C the convergence speed34

of the ra-NRC against the speed of asynchronous subgradient schemes.35

We consider the network depicted in Figure 1 and apply our algorithm in the context of robust regression using real-world36

data. Specifically we consider a database D containing financial information on various houses. To each house j there37

is associated an output variable yj ∈ R, which indicates its monetary value, and a vector χj ∈ Rn, which represents n38

numerical attributes of the j-th house (e.g., per capita crime rate by town, index of accessibility to radial highways, etc.). The39

database is distributed, i.e., the set D comes from N different sellers that do not want to disclose their private information.40

More specifically, each seller i owns a subset Di of the global dataset D so that ∪iDi = D. Nonetheless sellers want to41

collectively build an estimator of the prices of new houses that is based on all the information possessed by the peers. An42



approach to solve this distributed regression problem is to solve an optimization problem where the local costs are given by 1

the smooth Huber costs 2

fi (x) :=
∑

j∈Di

(
yj − χT

j x− x0

)2
∣∣yj − χT

j x− x0

∣∣+ β
+ γ ‖x‖22 (3) 3

where γ is a global regularization parameter that is, for our purposes, considered to be known to all agents. We then consider 4

a dataset D with |D| = 500 elements from the Housing UCI repository1, randomly assigned to N = 15 different users 5

communicating as in graph of Figure 1. For each element we consider n = 9 features (the first 9 ones in the database), 6

so that the corresponding optimization problem is 10-dimensional. The centralized optimum x∗ for this problem has been 7

computed using a centralized Newton-Raphson (NR) scheme with Newton step chosen with backtracking, and terminating 8

when the Newton decrement was < 10−9. 9

Fig. 1. A random geometric graph with connectivity radius 0.35.

A. Empirical analysis of the effects of ε on the convergence speed of the ra-NRC algorithm 10

We consider a probability of packet losses fixed to 0.1, and a ε that ranges in {10−4, 10−3, 10−2, 10−1}, and compare 11

in Figure 2 the evolution of the average errors for different values of ε. We notice how the results agree with the intuitions 12

developed in the previous sections, and that, importantly, ε = 10−1 leads to non converging behaviors. 13
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Fig. 2. Comparison of the evolutions of the trajectories of the average errors for different values of ε and a packets loss probability p = 0.1.

B. Empirical analysis of the effects of packet losses on the convergence speed of the ra-NRC algorithm 14

We consider a parameter ε fixed to 0.01, and a probability of packet losses that ranges in {0, 0.2, 0.4, 0.6}, so to compare 15

in Figure 3 the evolution of the average errors for different packets unreliability levels. We notice that, as expected, the 16

severity of the packet losses negatively affects the convergence speed. Nonetheless the overall slowing effect is not disruptive, 17

in the sense that even severe packet loss probabilities (namely, 0.6) do not lead to meaningless estimates. 18

C. Convergence speeds comparisons 19

We consider the asynchronous subgradient scheme reported in Algorithm 2, and numerically compare its convergence 20

properties against the proposed ra-NRC scheme under a packet losses probability equal to 0.1. 21

For both algorithms we compute, through gridding, that parameter (ε for the ra-NRC, α for the subgradient) that leads 22

to the best performance in terms of convergence speed of the average guess over the various agents. We then report the 23

evolution of the average guess over time in Figure 4, and notice how the higher order information used by the ra-NRC 24

scheme over the subgradient one positively affects the asymptotic convergence speed of the procedure. 25

1http://archive.ics.uci.edu/ml/datasets/Housing
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Fig. 3. Comparison of the evolutions of the trajectories of the average errors for the ra-NRC algorithm for different values of the packet loss probabilities
and ε = 0.01.

Algorithm 2 Distributed Subgradient
1: on initialization, each node i initializes xi as xoi and ti (the local counter of the number of updates) to 1;
2: on wake up, node i broadcasts xi and fi (xi) to all its neighbors;
3: every out-neighbor j ∈ N out

i updates (if receiving the packet, otherwise it does nothing) its local variables as

xj ←
1

2
(xi + xj) +

α

tj

(
fi(xi) + fj(xj)

)

tj ← tj + 1
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Fig. 4. Comparison of the evolutions of the trajectories of the average errors for the algorithms tuned with their best parameters and a packet loss
probability p = 0.1.

VII. CONCLUSIONS1

Implementations of distributed optimization methods in real-world scenarios require strategies that are both able to cope2

with real-world problematics (like unreliable, asynchronous and directed communications), and converge sufficiently fast so3

to produce usable results in meaningful times. Here we worked towards this direction, and improved an already existing4

distributed optimization strategy, previously shown to have fast convergence properties, so to make it tolerate the previously5

mentioned real-world problematics.6

More specifically, we considered a robustified version of the Newton-Raphson consensus algorithm originally proposed7

in [15] and proved its convergence properties under some general mild assumptions on the local costs. From technical8

perspectives we shown that under suitable assumptions on the initial conditions, on the step-size parameter, on the connectivity9

of the communication graph and on the boundedness of the number of consecutive packet losses, the considered optimization10

strategy is locally exponentially stable around the global optimum as soon as the local costs are C2 and strongly convex11

with second derivative bounded from below.12

We also shown how the strategy can be applied to real world scenarios and datasets, and be used to successfully compute13

optima in a distributed way.14

We then notice that the results offered in this manuscript do not deplete the set of open questions and plausible extensions15

of the Newton Raphson consensus strategy. We indeed devise that the algorithm is potentially usable as a building block for16

distributed interior point methods, but that some lacking features prevent this development. Indeed it is still not clear how17

to tune the parameter ε online so that the convergence speed is dynamically adjusted (and maximized), how to account for18

equality constraints of the form Ax = b, and how to update the local variables xi using partition-based approaches so that19



each agent keeps and updates only a subset of the components of x. 1
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APPENDIX 42

The proof of Theorem V.3 relies on general results for nonlinear systems that we next present. 43

General results on nonlinea systems. 44

Consider the system 45{
x(k + 1) = x(k) + εφ(k;x(k), ξ(k))
ξ(k + 1) = ϕ(k; ξ(k), x(k))

(4) 46

For a given k̄ ∈ N consider also the system 47

ξ̃(k + 1;x(k̄)) = ϕ
(
k; ξ̃(k;x(k̄)), x(k̄)

)
(5) 48

for k ≥ k̄. Assume that there exist ξ∗
(
k;x(k̄)

)
such that the quantity 49

ξ̃′(k;x(k̄)) := ξ̃(k;x(k̄))− ξ∗
(
k;x(k̄)

)
(6) 50

satisfies the property 51

‖ξ̃′(k;x(k̄))‖ ≤ Cρk−k̄ ‖ξ̃′(k̄;x(k̄))‖. (7) 52

We have the following proposition. 53

Proposition .1 Given x(k̄), consider the evolution of system (5) for k ≥ k̄. Assume property (7) holds true. Then there 54

exists a function W with the following properties: 55

(i) there exist positive constants a1 and a2, a1 ≤ a2, such that 56

a1‖ξ̃′(k;x(k̄))‖2 ≤W (k; ξ̃′(k;x(k̄)), x(k̄)) ≤ a2‖ξ̃′(k;x(k̄))‖2; (8) 57



(ii) there exists a constant a3 such that1

W (k + 1; ξ̃′(k + 1;x(k̄)), x(k̄))−W (k; ξ̃′(k;x(k̄)), x(k̄)) ≤ a3‖ξ̃′(k;x(k̄))‖2; (9)2

(iii) there exists a constant a4 such that3

|W (k; ξ̃′1, x)−W (k; ξ̃′2, x)| ≤ a4‖ξ̃′1 − ξ̃′2‖
(
‖ξ̃′1‖+ ‖ξ̃′2‖

)
; (10)4

(iv) there exists a constant a5 such that5

|W (k; ξ̃′, x1)−W (k; ξ̃′, x2)| ≤ a5‖ξ̃′‖2‖x1 − x2‖. (11)6

Proof: The proof follows from standard Lyapunov arguments.7

Now let ξ′(k) be defined as
ξ′(k) := ξ(k)− ξ∗(k;x(k))

Observe that ξ′(k) = ξ̃′(k;x(k)).8

We can write that

ξ′(k + 1) = ξ(k + 1)− ξ∗(k + 1;x(k + 1))

= ϕ(k; ξ(k), x(k))− ξ∗(k + 1;x(k + 1))

= ϕ(k; ξ(k), x(k))− ξ∗ (k + 1;x(k) + εφ(k;x(k), ξ(k)))

= ϕ (k; ξ′(k) + ξ∗(k;x(k)), x(k))− ξ∗ (x(k) + εφ(k;x(k), ξ′(k) + ξ∗(k;x(k))))

Now we analyze the system9

{
x(k + 1) = x(k) + εφ(k;x(k), ξ′(k) + ξ∗(k;x(k)))
ξ′(k + 1) = ϕ (k; ξ′(k) + ξ∗(k;x(k)), x(k))− ξ∗ (x(k) + εφ(k;x(k), ξ′(k) + ξ∗(k;x(k))))

(12)10

The following Proposition characterize the convergence properties of system 4.11

Proposition .2 Consider 4. Assume that properties 6 and 7 hold true. Assume system

x(t+ 1) = x(t) + εφ (k;x(k), ξ∗(k;x(k)))

satisfies assumptions of Proposition .3 and let r > 0 be such that for x ∈ Bn
r , there exists a Lyapunov function as stated in12

Corollary .4. Assume function φ(k; ·, ·) and ξ∗(k; ·) are Lipschitz with the respect to x ∈ Bn
r uniformly in k.13

Then, there exists ε∗ such that for all ε ∈ (0, ε∗] the trajectory x(t) converges exponentially to 0, i.e., there exist C > 0
and 0 < λ < 1 such that

‖x(t)‖ ≤ Cλt‖x(0)‖
if x(0) ∈ Bn

r .14

Proof: Let15

χ(k + 1) = x(k) + εφ (k;x(k), ξ∗(k;x(k))) (13)16

so that χ(k + 1) = x(k + 1) as soon as ξ′(k) = 0.17

The following basic bounds follow immediately from the Lipschitz and vanishing properties of the various functions

‖φ (k;x(k), ξ∗(k;x(k))) ‖ ≤ `1‖x(k)‖ (14)
‖φ (k;x(k), ξ′(k) + ξ∗(k;x(k))) ‖ ≤ `2 (‖x(k)‖+ ‖ξ′(k)‖) (15)

‖x(k + 1)− x(k)‖ ≤ ε`2 (‖x(k)‖+ ‖ξ′(k)‖) (16)
‖φ (k;x(k), ξ′(k) + ξ∗(k;x(k)))− φ (k;x(k), ξ∗(k;x(k))) ‖ ≤ `3‖ξ′(k)‖ (17)

‖x(k + 1)− χ(k + 1)‖ ≤ ε`3‖ξ′(k)‖ (18)
‖ϕ(k;x(k), ξ′(k) + ξ∗(k;x(k)))− ξ∗(k;x(k))‖ ≤ `4‖ξ′(k)‖ (19)

‖ξ∗(k + 1;x(k + 1)))− ξ∗(k;x(k)))‖ ≤ ε`5 (‖x(k)‖+ ‖ξ′(k)‖) (20)
‖x(k + 1)‖ ≤ `6 (‖x(k)‖+ ‖ξ′(k)‖) (21)
‖χ(k + 1)‖ ≤ `7 (‖x(k)‖+ ‖ξ′(k)‖) (22)
‖ξ∗(k;x(k))‖ ≤ `8‖x(k)‖ (23)

for some positive constants `1, . . . , `8.18



Observe now that there exist a Lyapunov function V such that 1

(i) There exist positive constants c1 and c2 such that 2

c1‖x‖2 ≤ V (k;x(k)) ≤ c2‖x‖2 (24) 3

(ii) There exist positive constants c3 and ε such that 4

V (k + 1;χ(k + 1))− V (k;x(k)) ≤ −εc3‖x(k)‖2 (25) 5

(iii) There exists a positive constant c4 such that 6

|V (k;x1)− V (k;x2)| ≤ c4‖x1 − x2‖(‖x1‖+ ‖x2‖) (26) 7

As for the temporal evolution of V (k;x), exploiting the definition (13) and properties (25) and (26) it follows that

∆V (k;x(k)) := V (k + 1;x(k + 1))− V (k;x(k))

= V (k + 1;x(k + 1))− V (k + 1;χ(k + 1)) + V (k + 1;χ(k + 1))− V (k;x)

≤ c4‖x(k + 1)− χ(k + 1)‖ (‖x(k + 1)‖+ ‖χ(k + 1)‖)− εc3‖x(k)‖2

and, thus using properties (18), (21) and (22),

∆V (k, x(k)) ≤ εc4`3‖ξ′‖ (`6(‖x(k)‖+ ‖ξ′(k)‖) + `7‖ξ′(k)‖)− εc3‖x(k)‖2

Letting then `9 = c4`3`6, `10 = c4`3(`6 + `7) we obtain the quadratic bound 8

∆V (k, x(k)) ≤ −εc3‖x(k)‖2 + ε2`9‖x(k)‖‖ξ′(k)‖+ ε`10‖ξ′(k)‖2 (27) 9

Observe thatthere is a Lypapunov function W (k;x(k), ξ′(k)) such that

b1‖ξ′(k)‖2 ≤W (k; ξ′(k), x(k)) ≤ b2‖ξ′(k)‖2 (28)
W (k + 1;φ (k; ξ′(k) + ξ∗(k, x(k)), x(k))− ξ∗(k, x(k)), x(k))−W (k; ξ′(k), x(k))

≤ −b3‖ξ′(k)‖2 (29)
|W (k; ξ′1, x)−W (k; ξ′2, x)| ≤ b4‖ξ′1 − ξ′2‖ (‖ξ′1‖+ ‖ξ′2‖) (30)

|W (k; ξ′, x1)−W (k; ξ′, x2)| ≤ b5 ‖ξ′‖2 ‖x1 − x2‖ (31)

Now let us compute

∆W (k; ξ′(k), x(k))

= W (k + 1; ξ′(k + 1), x(k + 1))−W (k; ξ′(k), x(k))

= W (k + 1;ϕ (k; ξ′(k) + ξ∗ (k;x(k)) , x(k))− ξ∗ (k;x(k) + εφ (k;x(k), ξ(k))) , x(k + 1))−W (k; ξ′(k), x(k))

= W (k + 1;ϕ (k; ξ′(k) + ξ∗ (k;x(k)) , x(k))− ξ∗ (k;x(k) + εφ (k;x(k), ξ(k))) , x(k + 1))

−W (k + 1;ϕ (k; ξ′(k) + ξ∗ (k;x(k)) , x(k))− ξ∗ (k;x(k)) , x(k + 1))

+W (k + 1;ϕ (k; ξ′(k) + ξ∗ (k;x(k)) , x(k))− ξ∗ (k;x(k)) , x(k + 1))

−W (k + 1;ϕ (k; ξ′(k) + ξ∗ (k;x(k)) , x(k))− ξ∗ (k;x(k)) , x(k))

+W (k + 1;ϕ (k; ξ′(k) + ξ∗ (k;x(k)) , x(k))− ξ∗ (k;x(k)) , x(k))

−W (k; ξ′(k), x(k))

We then exploit: (30) to bound the first two rows of the last right hand side; (31) to bound the third and the fourth rows;
(28) to bound the last two rows. This implies that ∆W (k; ξ′(k), x(k)) ≤ β1 + β2 + β3, where the last three symbols are
the following shorthands:

β1 = b4‖ξ∗ (k + 1;x(k + 1))− ξ∗ (k;x(k)) ‖ (‖ϕ (k; ξ′(k) + ξ∗ (k;x(k)) , x(k))− ξ∗ (k + 1;x(k + 1)) ‖+
+‖ϕ (k; ξ′(k) + ξ∗ (k;x(k)) , x(k))− ξ∗ (k;x(k)) ‖)

β2 = b5‖ϕ (k; ξ′(k) + ξ∗ (k;x(k)) , x(k))− ξ∗ (k;x(k)) ‖2‖x(k + 1)− x(k)‖
β3 = −b3‖ξ′(k)‖2

To bound β1 we apply the triangular inequality so that

β1 ≤ b4‖ξ∗ (k + 1;x(k + 1))− ξ∗ (k;x(k)) ‖ (‖ϕ (k; ξ′(k) + ξ∗ (k;x(k)) , x(k))− ξ∗ (k;x(k)) ‖+
+ ‖ξ∗ (k + 1;x(k + 1))− ξ∗ (k;x(k)) ‖
+‖ϕ (k; ξ′(k) + ξ∗ (k;x(k)) , x(k))− ξ∗ (k;x(k)) ‖)



and thus, exploiting (19) and (20), that

β1 ≤ εb4`5 (‖x(k)‖+ ‖ξ′(k)‖) (2`4‖ξ′(k)‖+ ε`5 (‖x(k)‖+ ‖ξ′(k)‖))
≤ 2εb4`5(`4 + ε`5)‖x(k)‖‖ξ′(k)‖+ ε2b4`

2
5‖x(k)‖2 + εb4`5(2`4 + ε`5)‖ξ′(k)‖2

Concerning β2, consider that from ‖x(k)‖ ≤ r′, and ‖ξ(k)‖ ≤ r0 for a suitable r′ and r0, we obtain

β2 ≤ εb5`2`5‖ξ′(k)‖2 (‖x(k)‖+ ‖ξ′(k)‖)
≤ 2εb5`2`5(r0 + `8r

′)‖ξ′(k)‖2.
Given the previous, we can thus write1

∆W (k;x(k), ξ′(k)) ≤ (ε`11 − b3)‖ξ′(k)‖2 + ε2`12‖x(k)‖‖ξ′(k)‖+ ε2`13‖x(k)‖2 (32)

for suitable constants `11, `12, `13.2

Now we propose a Lyapunov function for the whole system. Let the candidate be

U(k;x(k), ξ′(k)) = V (k;x(k)) +W (k;x(k), ξ′(k))

We must check whether, for all plausible trajectories, the condition (x(k), ξ′(k)) 6= (0, 0) implies

∆U(k;x(k), ξ′(k)) = U(k + 1;x(k + 1), ξ′(k + 1))− U(k;x(k); ξ′(k)) < 0.

Consider that inequalities (27) and (32) form a quadratic form that can be rewritten as

∆U(k;x(k), ξ′(k)) ≤ [‖x(k)‖ ‖ξ′(k)‖]A
[
‖x(k)‖
‖ξ′(k)‖

]
(33)

where

A =

[
εc3 − ε2`13 −ε(`9 + `12)
−ε(`9 + `12) b3 − ε(`10 + `11)

]

Consider now that the leading principal minors of A are, in Landau notation anf for ε→ 0,

εc3 +O(ε2), εc3b3 +O(ε2).

Thus there must exists a sufficiently small ε∗ such that for every ε ∈ (0, ε∗], A is positive definite, i.e.,

A ≥ ε`14I

for a suitable positive scalar `14.3

It follows that

∆U(k;x(k), ξ′(k)) ≤ −ε`14

(
‖x(k)‖2 + ‖ξ′(k)‖2

)

≤ −ε`14

(
1

c2
V (x(k)) +

1

b2
W (k;x(k), ξ′(k))

)

≤ −εγU(k;x(k), ξ′(k))

where γ = `14 min
{

1
b2
, 1
c2

}
. This eventually implies that

[
‖x(k)‖
‖ξ′(k)‖

]
≤ ` (1− εγ)

k
2

[
‖x(0)‖
‖ξ′(0)‖

]
(34)

where ` is an appropriate constant. This concludes the proof.4

Proposition .3 Let x = 0 be an equilibrium point for the nonlinear system5

x(t+ 1) = f(t;x(t)) (35)6

where f is continuosly differentiable on D = {x ∈ Rn | ‖x‖ < r} and the Jacobian matrix [∂f/∂x] is bounded and Lipschitz
on D, uniformly in t. Let

A(t) =
∂f

∂x
(t;x)|x=0.



Then, the origin is an exponentially stable equilibrium point for the nonlinear system if it is exponentially stable equilibrium
point for the linear system

x(t+ 1) = A(t)x(t).

The following result follows from the above proposition. 1

Corollary .4 Consider system (35) and assume assumptions of Proposition .3 hold true. Then there exist a suitable Lyapunov 2

function V and a n-th dimensional ball Bn
r with the following properties 3

(i) There exist positive constants a1 and a2 such that 4

a1‖x‖2 ≤ V (k;x) ≤ a2‖x‖2 (36) 5

for all k and for all x ∈ Bn
r ; 6

(ii) There exist positive constants a3 and ε such that 7

V (k + 1;x(k + 1))− V (k;x(k)) ≤ −εa3‖x(k)‖2 (37) 8

for all x(k) ∈ Bn
r ; 9

(iii) There exists a positive constant a4 such that 10

|V (k;x1)− V (k;x2)| ≤ a4‖x1 − x2‖(‖x1‖+ ‖x2‖) (38) 11

for all x1 and x2 in Br
n. 12

Proof of Theorem V.3. 13

To prove Theorem V.3, we show that the dynamics of the ra-NRC algorithm can be rewritten as (4). Without loss of 14

generality let us assume that x∗ = 0. 15

Specifically let the variables xi, i ∈ {1, . . . , N} of ra-NRC be associated to variable x of (4) and let variables yi, zi, gi, hi, bi,z, bi,y, r
(i)
i,y, r

(i)
i,z ,16

i ∈ {1, . . . , N}, be associated to variable ξ. 17

From [18] we have that Properties in (5), (6) and (7) hold true for the ra-NRC algorithm. 18

In addition thanks to the particular structure of the update of variables yi, zi, gi, hi, bi,z, bi,y, r
(i)
i,y, r

(i)
i,z and xi in the ra-NRC 19

also the other assumptions in Proposition .2 are satisfied and so we have the existence of ε∗ such that, if ε < ε∗ then the 20

trajectory of each variable xi of the ra-NRC exponentially converges to the optimal solution. 21


