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Abstract— We consider the problem of reconstructing the
topology of a portion of the power distribution network, given
a dataset of voltage measurements. By using an approximate
model for the grid voltage magnitudes, we show that these
signals exhibit some specific correlation properties, that can be
described via a sparse Markov random field. By specializing
the tools available for the identification of graphical models, we
propose an algorithm for the reconstruction of the grid topology.
Via simulations, we show how the algorithm performs well also
when an exact nonlinear model of the grid voltages is adopted,
when realistic power demand profiles are considered, and when
the voltage measurements are affected by measurement noise.

I. INTRODUCTION

Among the many R&D processes that are part of the
development of a smart power grid [1], special attention is
being recently paid to the deployment of information and
communication technology (ICT) in the low and medium
voltage power distribution network. The power distribution
network, which corresponds to the portion of the power
grid that delivers power from the high voltage transmission
network to the users, has been excluded in the past from
the deployment of communication infrastructures, automa-
tion, monitoring, and control. One notable exception is the
capillary installation of smart metering devices, i.e. devices
that can measure real time or aggregated power consumption
at the level of the single user, can provide some basic grid
monitoring and fault detection features, and could possibly
convey real time energy prices to the users.

Different challenges are now emerging in the power
distribution network, and are motivating a much deeper
integration of information, communication, and control tech-
nology in this realm. For example, the large-scale penetration
of distributed generation is posing both new opportunities
and new issues. The possibility of generating power inside
the power distribution grid (for example from solar panels,
micro-wind installations, combined heat-and-power plants,
microturbines) has the great advantage of exploiting cheaper
and more sustainable energy sources, and to reduce power
distribution losses because of the shortest path from the
producer to the final consumer. However, distributed power
generation, especially inside the highly resistive, radial, low
voltage networks, can cause local overvoltage and power line
congestions issues [2]. At the same time, a new generation
of dispatchable loads are expected to appear very soon in the
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power distribution network, e.g. hybrid electric vehicles, and
today’s power distribution grid will face major congestion
issues if proper scheduling and coordination protocols will
not be enforced to these consumers [3], [4].

Two main solutions are being currently investigated for
these problems:

• real time grid reconfiguration - the topology of the
power distribution grid can be partially reconfigured in
order to avoid power line congestion, excessive voltage
drops, and to reduce power losses; this option is well
known in the power system operation practice [5], but
its real-time automated implementation in the presence
of the aforementioned new loads and new generation
technologies is the subject of recent investigation [6];

• real-time dispatchment, scheduling, and curtailment
- microgenerators, dispatchable loads, and storage de-
vices can be commanded in order to minimize power
distribution losses, avoid congestion, and ensure a safe
and reliable operation of the power distribution grid; this
optimal dispatchment can be enforced, or can emerge
from a carefully designed energy market mechanism; in
both cases, a distributed architecture for measurement,
data processing, and actuation is needed [7], [8], [9];
this optimization process can also be applied to reactive
power flows, as proposed for example in [10], [11], [12].

All these solutions require and assume that the topology of
the power grid is known. While this is generally true in
the high voltage grid, this is not always the case in power
distribution networks. In many cases, the deployment of ICT
in the power distribution grid will necessarily consist in
the process of retro-fitting an existing infrastructure via the
installation of new devices. Motivated by this scenario, plug-
and-play approaches are often considered and may constitute
in some cases the only viable solution. In plug-and-play
approaches, the devices must identify the physical system
in which they operate, discover their neighbor agents, and
reconfigure the communication and control infrastructure in
order to being able to perform the assigned tasks. Notice
that, when the installed agents rely on some already available
communication infrastructure (e.g. the Internet), the abstract
communication layer provided by such infrastructure is in
general of little help to identify the agent’s neighborhood
in the physical systems, and even to recognize the agents
that belong to the same portion of the power distribution
network, because this kind of information is lost in the
protocols that are used in general purpose communication. In
the special case in which ad hoc communication architectures



are adopted (power line communication), the communication
channel could instead be used to identify the grid topology,
if some quite restrictive assumptions on the available band-
width are satisfied [13].

We focus here on the specific problem of how the power
distribution grid topology can be reconstructed from voltage
measurements. We assume therefore that the agents (which
could be, for example, the smart power meters) have no
a priori information about how they are connected via the
power lines, but they can measure the voltage magnitude at
their point of connection. These measurements are collected
over a period of time, processed, and finally an estimate
of the network topology is inferred. Previous efforts in the
estimation of the the power distribution grid topology have
almost uniquely focused on the problem of estimating the
effective impedance of the grid at the point of connection of
the agents [14], [15]. Notice however that the result of such
estimation procedures does not provide enough information
to reconstruct what is the topology of the grid, which is the
goal of the algorithm proposed in this paper.

The algorithm proposed in this paper is derived from
the methodologies derived for the identification of Markov
random fields (graphical models) [16], and is based on some
conditional correlation properties that characterize voltage
measurements in a radial grid. The use of these methods in
the scenario of power networks has been explored recently
with different goals: either the detection and localization of
faults [17], or the detection of unmonitored switching of cir-
cuit breakers in the reconfiguration of the power distribution
grid [18]. With respect to these works, it is also important
to notice that, via an approximate solution for grid state
adopted from [19], we do not rely on the hypothesis of purely
inductive lines and we do not requite synchronous voltage
measurements via phasor measurement units (PMUs), which
are seldom available in the power distribution grid.

The paper is organized in the following way. In Section
II, the main notations are introduced. In Section III, a model
for the power distribution grid is presented. In Section IV,
the proposed identification algorithm is derived. Finally, in
Section V, the algorithm is tested via simulations on a
standard testbed, in order to check its performance and its
robustness.

II. MATHEMATICAL PRELIMINARIES AND NOTATION

Let G = (V, E , σ, τ) be a directed graph, where V is the
set of nodes, E is the set of edges, and σ, τ : E → V are two
functions such that edge e ∈ E goes from the source node
σ(e) to the terminal node τ(e). With the notation h ∼ k, we
express the fact that an edge connects the two nodes h and
k, regardless of the edge direction. We also define the set of
neighbors of the node h as N (h) = {k ∈ V | h ∼ k}.

In the next section we will introduce complex-valued
functions defined on the nodes and on the edges. These
functions will also be intended as vectors in Cn (where
n = |V|) and C|E|. Given a vector u, we denote by ū
its element-wise complex conjugate, by |u| its element-wise
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Fig. 1. Schematic representation of a portion of the power distribution
network (lower panel) and of the corresponding graph model adopted in the
paper (upper panel).

magnitude, and by uT its transpose. We denote by <(u) and
by =(u) the real and the imaginary part of u, respectively.

Let moreover A ∈ {0,±1}|E|×n be the incidence matrix
of the graph G, defined via its elements

[A]ev =

 −1 if v = σ(e)
1 if v = τ(e)
0 otherwise.

If the graph G is connected then 1 is the only vector in
the null space kerA, 1 being the column vector of all ones.
We define by 1v the vector whose value is 1 in position v,
and 0 everywhere else.

III. GRID MODEL

For the purpose of this paper, we model the power
distribution network as a directed graph G, in which edges
represent the power lines, and nodes represent the devices
that are connected to the grid (see Figure 1). These include
the buses of the power distribution grid and also the point
of connection to the transmission grid (the substation, also
called point of common coupling, or PCC, and indexed as
node 0).

We limit our study to the steady state behavior of the sys-
tem, when all voltages and currents are sinusoidal signals at
the same frequency. Each signal can therefore be represented
via a complex number y = |y|ej∠y whose absolute value |y|
corresponds to the signal root-mean-square value, and whose
phase ∠y corresponds to the phase of the signal with respect
to an arbitrary global reference.

In this notation, the steady state of the grid is described by
the following system variables (see Figure 1, lower panel):
• u ∈ Cn, where uv is the grid voltage at node v;
• i ∈ Cn, where iv is the current injected by node v;
• ξ ∈ C|E|, where ξe is the current on the edge e.



For every edge e of the graph, we define by ze the
impedance of the corresponding power line. We assume the
following.

Assumption 1: All power lines in the grid have the same
inductance/resistance ratio, i.e.

ze = ejθ|ze|

for any e in E and for a fixed θ.
This assumption is satisfied when the grid is relatively

homogeneous, and is reasonable in most practical cases (see
for example the IEEE standard testbeds [20]).

The following physical constraints are satisfied by the
complex quantities u, i and ξ

AT ξ + i = 0, (1)

Au+ ejθZξ = 0, (2)

where A is the incidence matrix of G, and Z = diag(|ze|, e ∈
E) is the diagonal matrix of line impedances. Equation (1)
corresponds to Kirchhoff’s current law (KCL) at the nodes,
while (2) describes the voltage drop on the edges of the
graph. From (1) and (2) we can also obtain

i = e−jθLu (3)

where L ∈ Rn×n is the weighted Laplacian of the graph

L := ATZ−1A.

Each node v of the grid is also characterized by a law
relating its injected current iv with its voltage uv . We model
the PCC as an ideal sinusoidal voltage generator at the
nominal voltage UN (an infinite bus) with arbitrary, but fixed,
angle φ

u0 = UNe
jφ. (4)

In the power system analysis terminology, node 0 is then a
slack bus with fixed voltage magnitude and angle.

We model all the other nodes v ∈ V\{0}, except the PCC,
as constant power or P-Q buses. Their voltage uv and their
current iv must then satisfy

uv īv = sv, ∀v ∈ V\{0}, (5)

where sv is the injected complex power.
The nonlinear equations (3), (4), and (5) implicitly define

the power grid state. In the following, we present a conve-
nient espression for the voltage magnitudes |uv|, v ∈ V that
will be useful for the analysis of the correlation properties
of these signals. To do so, we need the following results,
adopted from [19].

Lemma 2 (Lemma 1 in [19]): Let L be the weighted
Laplacian of G. There exists a unique symmetric, positive
semidefinite matrix X ∈ Rn×n such that{

XL = I − 11T0
X10 = 0.

(6)

Lemma 3 (Proposition 1 in [19]): Consider the physical
model described by the set of nonlinear equations (3), (4),
and (5). Node voltages then satisfy

u = ejφ
(
UN1 +

ejθ

UN
Xs̄+

c(UN )

U2
N

)
, (7)

where the complex valued function c(UN ) is bounded for
UN →∞, and where s is the complex vector containing the
nominal powers sv, v ∈ V\{0}, together with s0 = 0.

The term c(UN )
U2

N
is negligible if the grid is operated at large

nominal voltage UN and relatively small currents supplied
to the loads. This assumption is verified in practice, and
corresponds to correct design and operation of power distri-
bution networks, where indeed the nominal voltage is chosen
sufficiently large (subject to other functional constraints) in
order to deliver electric power to the loads with relatively
small power losses on the power lines. In [19], a brief
discussion about how this approximation extends the DC
power flow model [21, Chapter 3] to the lossy case, has
been provided.

Based on this approximation, we have the following ex-
pression for the voltage magnitudes that can be measured
at every bus. The proof is omitted due to space constraints,
and can be found in the online extended version of the paper
[22].

Lemma 4: Consider the physical model described by the
set of nonlinear equations (3), (4), and (5). The vector |u| of
voltage magnitudes |uv|, v ∈ V , then satisfies

|u| = UN1 +
1

UN
<
(
ejθXs̄

)
+
d(UN )

U2
N

,

where the real valued function d(UN ) is bounded for UN →
∞, and where s is the complex vector containing the nominal
powers sv, v ∈ V\{0}, together with s0 = 0.

IV. IDENTIFICATION ALGORITHM

In order to derive an algorithm that is capable of recon-
structing the power distribution grid topology from the volt-
age measurements collected on the grid, we first provide an
analysis of the correlation properties of such measurements.

In order to do so, we introduce the following assumption.
Assumption 5: At every time t, the active power demands

pv , v ∈ V , of the individual nodes are uncorrelated random
variables with finite variance σ2

pv . Similarly, the reactive
power demands qv , v ∈ V , of the individual nodes are
uncorrelated random variables with finite variance σ2

qv .
This assumption is a simplification of the behavior of

individual demands in the power distribution grid. As pointed
out in [23] (and references therein) and in [24], these signals
exhibit a mutual correlation because of a number of coupling
factors (outside temperature, destination of use of the build-
ings, time of the day, etc.). However, on a short time scale,
and when the nodes of the grid correspond to the aggregation
of a small number of intermittent loads, the correlation of
the instantaneous power demands is limited. The robustness
of the solution proposed in this paper with respect to this
approximation has been addressed in the simulations (where



the simulated power demands exhibit some correlation) and
is subject of current research.

The covariance matrix of the signal |u| can be computed
according to the expression proposed in Lemma 4, neglecting
the infinitesimal terms and obtaining

Λ := E
[
(|u| − E|u|) (|u| − E|u|)T

]
=

1

U2
N

XΣX,

where we used the fact that <(ejθXs̄) = X(cos θp+sin θq)
and we defined the diagonal covariance matrix

Σ = cos θΣP + sin θΣQ,

where ΣP = diag(σ2
pv , v ∈ V) and ΣQ = diag(σ2

qv , v ∈ V).
Notice that, because s0 = 0, the matrix Σ is not invertible

and satisfies Σ10 = 0. Moreover, because X also satisfies
X10 = 0 and is symmetric, we have that also Λ is singular
and satisfies Λ10 = 0.

We introduce the following pseudoinverse of Λ.
Lemma 6: Let Λ be a positive semidefinite matrix that

satisfies Λ10 = 0. There exists a unique symmetric, positive
semidefinite matrix K ∈ Rn×n such that{

KΛ = I − 101
T

K1 = 0.
(8)

The proof is omitted due to space constraints, and can be
found in the online extended version of the paper [22].

The matrix K is known as concentration matrix, and has
an interesting and well known interpretation in terms of
conditional correlation. In particular, when K is invertible,
Khk = 0 if and only if |uh| and |uk| are conditionally
uncorrelated given all other voltages |u`|, ` 6= h, k. Notice
that the fact that |u0| is the zero random variable makes
K singular, and makes the problem of determining its
conditional correlation ill posed. The particular choice of the
K pseudoinverse comes into help and yields some interesting
properties, as we will show next.

The matrix K can also be expressed as an algebraic
function of the grid Laplacian matrix and of the covariance
matrix of the power demands, in the form

K = U2
NLΣ†L (9)

where Σ† is the diagonal pseudoinverse of Σ defined as

Σ†vv =

{
0 if Σvv = 0

(Σvv)
−1 if Σvv 6= 0.

Notice that Σ† has the same kernel of Σ, i.e. Σ10 = 0.
Conditions of Lemma 6 can be verified by inspection, as

K1 = U2
NLΣ†L1 = 0

and

KΛ = LΣ†LXΣX = LΣ†(I − 101
T )ΣX =

= LΣ†ΣX = I − 101
T ,

where in the last step we used the fact that ΣΣ† is a projector
operator on the subspace orthogonal to 10.

It is clear, by looking at (9), that the matrix K bears
some useful information about the sparsity pattern of L. In
particular, the following result shows how K has the sparsity
pattern of L2, and because of the tree structure of the graph
G, it also exhibits an useful sign pattern. The proof is omitted
due to space constraints, and can be found in the online
extended version of the paper [22].

Proposition 7: Let K be defined as in (9). Let h, k ∈ V
be two nodes in G. We then have

Khk


> 0 if h = k

< 0 if h ∼ k
> 0 if ∃` ∈ V such that h ∼ ` and ` ∼ k
0 otherwise.

Proposition 7 therefore shows that the sparsity pattern of
K is the same sparsity pattern of the L2. In the terminology
of Markov random fields, this means that the corresponding
graphical model is an undirected graph in which nodes are
connected by an edge (and therefore they are conditionally
correlated) if they are 1-hop or 2-hop neighbors in the graph
G describing the power distribution grid lines.

Proposition 7 also shows that the strictly negative elements
of K have the sparsity pattern of L and can therefore be
directly used to reconstruct the topology of the graph G.

Based on these results, we propose the following algorithm
for the identification of the grid topology, given a sequence
of measurements |u|(t), t = 1, . . . , N collected on the grid.

Algorithm
1) Compute the sample covariance matrix Λ̂ =

cov(|u|(t), t = 1, . . . , N).
2) Compute the matrix K̂ that satisfies

K̂Λ̂ = I − 101
T

K̂1 = 0.

3) Consider the complete graph GK̂ defined on the nodes
of the grid V , with edge weights described by the
elements of K̂. Compute the minimum spanning tree
on GK̂ , i.e. the subgraph of GK̂ that is a tree, connects
all the nodes, and whose total edge cost is less or equal
to any other spanning tree.

Notice that the second step of the algorithm can be
computed numerically via the matrix inversion (??), and that
the minimum spanning tree can be computed in polynomial
time by greedy algorithms like the Prim’s algorithm [25].

The proposed algorithm resembles, in some sense, the
well known Chow-Liu algorithm [26] for graphical model
identification, in which however the choice of the best
spanning tree is motivated by the search for the closest
approximation of the actual distribution in an information-
theoretic sense. In our scenario, on the other hand, we know
in advance that there exists a tree which is the root (in the
graph-theory sense) of the graph that describes the actual
distribution (i.e. the actual graph connects nodes that can be
reached in 1 or 2 hops in such tree), and we make explicit
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Fig. 2. Schematic representation of the IEEE37 test feeder.

use of this additional information. Because of this a priori
knowledge, we also don’t need the tools that have been
developed for model selection [27] (i.e., in some sense, to
tune the sparsity level of the estimated graph).

V. SIMULATIONS

In order to validate the proposed algorithm, we considered
the standard medium voltage testbed IEEE 37 [20]. This
testbed is an actual portion of 4.8kV radial power distribution
network located in California. The load buses are a blend
of constant-power, constant-current, and constant-impedance
loads, with a total power demand of almost 2 MW of active
power and 1 MVAR of reactive power (see [20] for the
testbed data). The length of the power lines range from a
minimum of 25 meters to a maximum of almost 600 meters.
The impedance of the power lines differs from edge to edge
(for example, resistance ranges from 0.182 Ω/km to 1.305
Ω/km). However, the inductance/resistance ratio exhibits a
smaller variation, ranging from ∠ze = 0.47 to ∠ze = 0.59.
This justifies Assumption 1, in which we claimed that ∠ze
can be considered constant across the network.

A time-varying profile for the loads has been generated,
in order to simulate the effect of slowly varying loads (e.g.
aggregate residential demand), fast changing demands (e.g.
some industrial loads), intermittent large loads (e.g. heating),
and correlated generation (e.g. solar panels).

Voltage measurements have been generated by solving the
system of nonlinear equations of the grid, via a numerical
solver [28]. The approximate model presented before has not
been used in the simulations.

We considered measurement errors complying with three
different IEC accuracy classes: 0.1, 0.2, and 0.5 (where
the number refers to the maximum % voltage measurement
error). These are typical levels of accuracy that can be found
in off-the-shelf devices for power system applications.

Figure 3 illustrates the value of the elements of the concen-
tration matrix K̂. Blue squares indicate negative elements,
while red square indicate positive elements. Because the
matrix is obtained from noisy data, the matrix it is not sparse.
The dots inside the squares indicate the non-zero elements
of the Laplacian, and according to the analysis proposed in
this paper, should correspond to negative elements of K̂.
The figure shows the importance of the minimum spanning

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35
-1.5e+07

-1e+07

-5e+06

0

5e+06

1e+07

1.5e+07

Fig. 3. A colormap representation of the estimated concentration matrix
K̂, together with the sparsity pattern of L, indicated by small dots.

tree algorithm for the identification of the correct edges to
include in the estimated topology. In this specific realization,
the algorithm has been able to identify the correct topology.
It can be seen how a simpler threshold analysis (i.e. finding
a threshold τ and imposing that all pair of nodes h, k such
that K̂hk < τ are connected) would not have worked in this
case: for example, we have that K̂4,9 < K̂10,29, even if the
first does not correspond to an edge of the graph, while the
second does. However, the element K̂10,29 is the smallest
among all elements K̂h,29, h ∈ V , and is therefore chosen
by the minimum spanning tree algorithm as the most likely
edge that connects node 29 to the rest of the graph.

Figure 4 illustrate the performance of the algorithm for
different numbers of collected samples and for different mea-
surement accuracy classes. In particular, we have reported the
probability of error in the reconstruction of the correct graph
topology. The estimated error probability have been reported
in the table, and in the plot as thick lines. The confidence
intervals in the plot have been computed according to the
Wilson score interval [29].

It can be seen that, even in the presence of a number of
non-idealities, the algorithm is capable of reconstructing the
grid topology, given a large enough number of measurements
and a minimal accuracy in the measuring devices.

VI. CONCLUSIONS

In this work, we tackled the novel problem of topology
estimation in power distribution networks, which is a prelimi-
nary and necessary step for enabling the incorporation of ICT
solutions in this realm. We proposed an algorithm that, given
voltage amplitude measurements performed at the nodes of
the grid, can estimate the grid topology from a correlation
analysis of such signals. We proved via simulations that the
algorithm is indeed effective in reconstructing the correct
topology, provided that the measurement noise is limited that
the number of samples is sufficiently large.

The next steps will necessarily be the derivation of a
formal analysis of the properties of this algorithm, based
on the many results that are available for loop-less graphical



Number of measurements

meas. err. 360 720 1440 2880 5760

0.1 65.8% 22.9% 2% 0.025% 0%
0.2 91.1% 55.8% 18.95% 4.05% 0.35%
0.5 100% 100% 99% 90% 72%
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Fig. 4. Algorithm performance evaluated via a series of Monte Carlo
simulations, for different measurement noises and different data sizes. The
estimates of the error probability have been reported in the table, and in the
plot as thick lines, together with their confidence intervals.

models. Moreover, the authors are interested in extending the
same approach to the practical case in which not all the nodes
are monitored, but only a limited number of intelligent agent
are deployed. This study will likely require the adoption of
some methodologies derived for hidden variables in Markov
random fields. Finally, it will be investigated if the possibility
of measuring also the power injections at the nodes (i.e. the
input noise in the Markov random field, which is unknown
in typical formulations) can be used to estimate also other
relevant parameters of the grid lines, and in particular the
impedance of the individual edges.
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