
Decentralized Task Assignment in Camera Networks

Angelo Cenedese, Federico Cerruti, Mirko Fabbro, Chiara Masiero and Luca Schenato

Abstract— The problem of task assignment naturally arises
in multiagent multitask systems, where an optimal matching of
agents and tasks is sought. This problem is a combinatorial
optimization problem that can be solved in a centralized
fashion, given the knowledge over all agent states and available
tasks and the presence of a coordination center. Nonetheless,
a decentralized solution would be beneficial in systems where
communication among all agents may be limited and where the
system efficiency and robustness cannot rely on the performance
of a single central unit. A typical example of such a system
is a videosurveillance network. In this work, we address the
problem of decentralized task assignment in this context, first
by formalizing the problem and presenting a general model
framework, and then by proposing a decentralized solution in-
spired by the Stable Marriage Problem, that presents interesting
performances in terms of optimality over a number of defined
metrics, being supported by comparison with both centralized
and decentralized algorithms implemented in numerical simu-
lations.

I. INTRODUCTION

A modern trend in applied research concerns the applica-
tion of the distributed paradigm to manage complex system,
such as for example, the case of monitoring and surveillance
networks [1].

The employment of a decentralized approach in such
applications appears beneficial with respect to centralized
ones, because it can ease modularity and flexibility of the
system, dynamic reconfiguration of the network, scalability,
and inherent robustness in terms of failure of components
and security against malicious breaching.

Although the approach presented in this work is of general
scope, we will devote particular attention to a distributed
camera network for videosurveillance, and the following
problem will be in focus: given a set of agents widely
distributed over the area to be monitored, subject to agent
resource limitations (e.g.: exclusive access mass storage or
limited Pan-Tilt-Zoom camera speed), and given a set of
tasks the network has to complete, we are interested in how
to assign tasks and coordinate behaviors among the agents.
In this framework, the contribution of this work is twofold:
(a) to formalize the task assignment problem for a multi-
agent multi-task finite resource network and (b) to design a
decentralized procedure to attain task assignment.

The remainder of the paper is organized as follows: in
Sec. III the multiagent network definition and the problem

A.Cenedese is with the Department of Engineering and Management,
University of Padova, 36100 Vicenza, Italy

F.Cerruti, M.Fabbro, C.Masiero and L. Schenato are with the Department
of Information Engineering, University of Padova, 35131 Padova, Italy

The research leading to these results has received funding from the
European Community’s Seventh Framework Programme under agreement
n. FP7-ICT-223866-FeedNetBack.

of task assignment are stated formally, and in Sec. II a
brief overview on related works is given. Then, Secs. IV-V
contain the core of the work, respectively dealing with task
assignment modeling and control, and Sec. VI present the
evaluative simulations. Finally, in Sec. VII some conclusions
are drawn.

II. STATE OF THE ART

Applications of the task assignment problem can be found
in many different disciplines, ranging from the information
technology and computer science, to business administration
and project management.

To begin with, a naive approach is frequently used in
these applications because of its simplicity of implemen-
tation. Such an approach can be applied to the multiagent
surveillance networks simply by attaining combinations of
task and agents on a first-come first-served policy: a new task
instance is assigned to the first free agent that is compatible
with the task. In case of assignment conflicts, an elected
leader agent is deputed to solve the impasse. Obviously,
this approach does not give any guarantees on the quality
of assignment but it is fast and robust to node failure, and
moreover the presence of a leader agent prevents deadlocks.

On a different spirit, the market-based approach relies
on the idea that it is possible to obtain a match between
agents and tasks by means of auctions. In its simplest
incarnation, agents play the role of bidders to gain the
task assignment. These methods are for instance frequently
used in coordinating mobile vehicles in search-and-rescue
missions [2][3][4].

Also, similar scenarios may arise in the coordinated in-
formation discovery problem. Suppose that a set of agents
is exploring the environment and looking for pieces of
information that are spread around: the optimal association
among agents and information bits is sought in order to
minimize the cost of information discovery. In this case
though, the main difference stands in the dynamics of the
system, since the occurrence of new information happens on
a time scale that is much slower than the agent convergence
to knowledge [5].

A further point of view looks at game-theoretical ap-
proaches [6]. A typical situation can be the assignment of
tasks to employees. The key idea is to take into consideration
the preferences of both managers and employees. The issue is
formulated in order to resume a weighted multiple knapsack
problem, in which tasks play the role of items, and each
employee work can be viewed as a knapsack to fill.

To complete this brief and not exhaustive overview, the
assignment problem can be thought as a Stable Marriage

Problem [7][8] that can be handled by means of Gale-
Shapley algorithms [9]. This solution has been found partic-
ularly interesting in this work and constitutes the base for the
development of the proposed strategy. It will be developed
in the following sections.

III. STATEMENT AND FORMALIZATION OF THE CAMERA
NETWORK PROBLEM

We consider n agents A = {a1, . . . , an} distributed in the
environment and for simplicity interconnected by a meshed
communication graph, meaning that local information is
known by all agents across the network. In other terms, each
agent is capable of taking autonomous decision based on the
complete information over the state of the network and the
environment: the system design is therefore referred to as
decentralized (Fig. 1).

Communication links

Monitoring task

Event

Detection and
tracking task

Agents

Areas

Fig. 1: Surveillance scenario. Agents are spread over the
environment divided into areas, and are interconnected by
a communication network. Monitoring and event detec-
tion/tracking tasks are graphically shown.

The environment is also partitioned into p areas of interest
that are assumed to coincide with the field of views of at least
one camera (in the following, we will reasonably assume that
a minimum level of redundancy is present in the scene): in
doing so, a binary coverage matrix V ∈ Rn×p is defined
where the non-null entries along the i-th row indicate the
areas actually seen by the i-th agent, while the non-null
entries along the j-th column indicate the areas that can see
the j-th region. 1

At the same time, a set of s different asynchronous
task functions can be issued to the network: T =
{τ1(·), . . . , τs(·)}. Without loss of generality, in this work
each task is characterized by type, target area or target agent,
intrinsic priority pr(τj) ∈ (0, 1], and drop time Tdrop, after
which the task can be considered obsolete. The instance of
a task is also time-stamped with its occurrence time Tocc.

Finally, when a task τj(·) is generated, one key charac-
teristic is the list of agents that can fulfill it, A(τj) ⊆ A:

1In the context of this work the problem of optimal area coverage is not
taken into account, although of relevance.

conversely, each agent ai sees a list of possible task to
undertake T (ai).

In particular, in the following a simplified but perfectly
sensible task set is considered, such as
• automatic tracking τ1(·): area related task; its request

is pulsated by a camera that has detected an anomalous
event in an area; the intrinsic priority of the task is
medium;

• manual tracking τ2(·): agent related task; it has high
priority and receives direct commands from an operator;

• patroling task τ3(·): area related task; it is a default
task (zero priority) although of crucial importance: if
an anomalous event takes place (i.e. an event detection
occurs), the patroling agent issues an automatic tracking
request to the network;

• playback streaming τ4(·): area related task; agents are
used as a distributed repository of video information
retrieved from a specific area; it is given low priority.

To exemplify the idea and state it clearly, the task of stream-
ing, say τ1(·), could be issued explicitly for two different
agents a1 and a2 or implicitly for the geographical area seen
by a1 and a2, with exactly the same result of generating
tasks τ1(a1) and τ1(a2).

Given this specific task list, the maximum number of
different tasks that can be issued to the network is given
by l = 3p + n, being p the number of possible different
automatic tracking, playback, or patroling requests (one per
each area), and n that of possible manual tracking requests
(one per each agent).

As a final remark, it is noted that to allow for continuity
in the task management and actually deal with a realistic
scenario, a level of redundancy is enforced in the system,
namely that for each tracking or patrolling task there are at
least two cameras that are able to cover the same area (i.e.
|A(τ1)| ≥ 2). This implies that each column of the coverage
matrix V presents at least two 1’s.

IV. TASK ASSIGNMENT MODELING

Two data structures are defined for task management: a
Waiting Task List (WTL) and an Active Task List (ATL).
Let define the task pool as ATL ∪ WTL. When a task
occurs, it is initially added to the WTL, and then it is
either moved to the ATL if engaged in by an agent or it
is dropped off if obsolete. In this respect, it is meaningful
to define a dropping procedure that contrasts obsolescence:
when a task exceeds a fixed lifetime, it is removed although
not completed or even never undertaken, because it can be
reasonably considered unprofitable and in doing so a WTL
excessive growth is avoided. These two lists are thought to be
either global network structures, or equivalently local agent
structures (WTL(ai) and ATL(ai), for agent ai, obtained
from exchanging activity information within the neighbor-
hood and from capturing the neighborhood relevant tasks
issued to the network. By doing so, at every instant all agents
are aware of the existing tasks that may be of interest and
of their characteristics.

The main issue when devising a procedure to solve the
task assignment problem basically resides in its time-varying
nature: in fact, tasks can be generated with a rate that is faster
than the average completion time, so that the assignment is
always dynamic and (in principle) may never reach a steady
state.

More formally: at a fixed time t, given the set of n agents
and the presence of mt task instances, to solve the task
assignment problem means to find a binary array xt ∈ Rnmt

that maximizes some utility function J(x) : Rnmt → R, with
respect to the constraint Atx ≤ b.

In detail,

xt = [x1 1 x1 2 . . . x2 1 x2 2 . . . xn1 xn 2 . . . xnmt
]>

where the variable xij assumes unitary value if the j-th
task is given to the i-th agent, whereas it is equal to zero
otherwise.

The binary matrix At ∈ R∗×nmt is related to the specific
problem constraints, and shows as many rows as the number
of constraints (whose values are given by the b vector).
In general, the constraints fall into three categories, namely
those related to the agents activity (e.g. one task per agent),
those related to the task fulfilment (e.g. one agent per
task), and those related to the feasibility of the agent-task
assignment (e.g. constraints dictated by the coverage matrix).
In the particular case of interest, the constraints are, for task
and agent respectively:

n∑
i=1

xij ≤ 1 ∀j = 1, . . . ,mt, (1)

and
mt∑
j=1

xij ≤ 1 ∀i = 1, . . . , n. (2)

For the feasibility of the coverage assignment, assuming
that all agents are equally able to perform all other tasks, the
constraint takes the following form:

n∑
i=1

v̄ihxih = 0 ∀h = 1, . . . , p, (3)

being v̄ih the one’s complement of the V -matrix entry v̄ih.
By accounting only for Equations (1) and (2), the At

matrix is of size (n+mt)× (nmt) can be therefore written
as

At =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 1
Imt

Imt
. . . Imt

 , (4)

where 0 and 1 are mt-dimensional row vectors of zeros and
ones respectively, and Imt is clearly the mt × mt identity
matrix. Most importantly, in this form the At matrix is
totally unimodular (TU), i.e. it is a binary matrix whose
determinant is ±1: this condition actually yields the nice
property that the integer constraints on the solution xij ∈
{0, 1} can be relaxed to xij ∈ [0, 1], therefore x can be

defined as a continuous variable. In other words, the total
unimodularity of the constraint matrix guarantees that the
continuous optimal solution to the problem coincides with
the discrete optimal solution in all feasible x. Differently, the
constraints defined by Eqn (3) in the At matrix formulation
would lead to a non TU matrix, thus leading to a complex
combinatorial problem. As a consequence, we propose to
overcome this difficulty by implicitly taking into account
the constraints of Eqn. (3) by properly defining the utility
function to be maximized, thus removing them from the
constraints. In particular we define the utility function as
a linear combination of the variable terms xij :

J(x, t) = c(t)>x =
n∑
i=1

mt∑
j=1

cj(t)xij , (5)

where if a particular task-agent assignment is feasible, for
example w.r.t. the information given by the coverage matrix,
the weight cj(t) is set to a positive value related to the
priority of the task, otherwise it is set to −∞.

Starting from these assumptions, some considerations are
in order. A feasible solution vector x is chosen among
zt = 2nmt different strings Zt: instead, the cardinality of
the feasible solution set Xt ⊂ Zt (w.r.t. constraints (2)-(1))
is given by

|Xt| =
min(n,mt)∑

k=0

(
n
k

)
k!
(
mt

k

)
(6)

In these terms, the problem is perfectly symmetric in
the agent-task duality, being k the number of allocated
agents/undertaken tasks.

Also, if a default task is assumed for all agents (e.g.
the patroling task), then at any instant no agent can remain
unassigned in the network, and the cardinality of Xt is simply

|Xt| = min (n,mt)!
(

max (n,mt)
min (n,mt)

)
(7)

It is now interesting to study the behavior of this set,
when the list of tasks to be fulfilled is dynamic. An effective
pictorial view of the set Zt is given by the vertices of the
unitary hypercube in Rnmt , while the feasible solution set Xt
is obtained by intersecting the hypercube with the constraint
hyperplane (Fig. 2).

A. Dynamic Task Occurrence

It is intuitive to understand that when a new task instance
occurs, the solution space dimension increases to Rn(mt+1)

and the previous solution set Xt remains feasible also for
the new task configuration although with the new task still
unassigned (Fig. 2): hence, in general, this solution may
not be optimal because very different scenarios can take
place. For example, it is possible that the occurrence of a
new task does not imply any modification to the optimal
solution (for instance, if all agents of the interested area are
already performing more convenient tasks); or else, the new
occurrence may cause many agents to change their tasks with
better ones that are now available.

Fig. 2: Task-agent assignment. With n = 1 agent and mt = 2
tasks, the vertices of a square represent the set Zt while the
intersection with the diagonal highlights the feasible set Xt.
As the number of tasks increases (mt = 3), the set Zt grows
to the cube vertices and the feasible set Xt is obtained by
intersection with the diagonal plane.

Conversely, when a task becomes obsolete or is completed,
the dimension of Zt-space reduces to (mt − 1)n. In the
latter case, the task belongs to the WTL and thus the optimal
agent-task association is not affected. In the former case, the
optimal arrangement changes and two possible choices can
be made for the assignment problem: either the assignment
is recomputed for the new task set and the whole agent set,
which can guarantee the optimality of the solution, or it is
based heuristically on a greedy local policy, in the sense
that the agent that has freed its resources takes on the most
beneficial unassigned task. This kind of heuristics can not
ensure optimality.

B. Performance Metrics

The intrinsic complexity of the studied application and
the necessity of working with dynamic assignments, imply
heterogeneous concurrent and often contrasting goals. On
the one side, an optimal assignment is sought w.r.t. task
priorities, on the other one a certain continuity in tasks
execution is beneficial, avoiding situations where tasks are
temporarily paused even if almost fulfilled, or repeatedly
assigned to different agents before completion.

In this context, the following performance metrics have
been considered, both referring to the assignment solution x
and to the whole system design:
• optimality: we define the solution optimality PT (xt) in

the time interval [0, T] as

PT (xt) =
1
T

∫ T

0

∑
τi∈ATL pr(τi)

maxj
∑
n pr(τj)

dt (8)

where maxj
∑
n pr(τj) is the sum of the n higher

intrinsic priority values in ATL ∪WTL, and for sake
of notation we used τi = τi(t) and ATL = ATL(t);
thus, PT (xt) states how close solution xt is to the ideal
best choice w.r.t. the feasibility of task assignment;

• idle state avoidance: from a different point of view
than that of optimality, it can happen that not optimal
assignments cause some agent to be in idle state, in
the sense that even the possible area patroling has been
taken by some sibling. We model the patroling activity
as a task in order to achieve a better uniformity among
tasks2. With regard to the utility function of Eqn. (5),
it is possible to say that, if patroling tasks are enough
to keep all the agents busy, each optimal solution is
characterized by the fact that all agents are busy. A
figure of the overall idle state of the network is given
by:

IT (xt) =
1
T

∫ T

0

n∑
i=1

(mt∑
j=1

xij

)
dt (9)

where in reality xij = xij(t) and the bar indicates the
one’s complement.

• assignment interruption: from a local perspective, a
continuous task swapping may be detrimental for the
agent, therefore we define an index that tries to capture
how much each agent completes by itself the assigned
tasks. For this purpose, we introduce the following
index:

DT (xt) =
1
T

∫ T

0

n∑
i=1

di(xt) dt (10)

where di(xt) is an indicator function triggered to 1 each
time a task is sent to the WTL before completion;

• average waiting time: although the permanence of high-
priority tasks in the WTL strongly depends on new
tasks arrival rate, it also suggests system inefficiency.
Let T CT (xt) be the set of task completed in the [0, T]
time interval, we introduce the average waiting time:

WT (xt) =
1

|T CT (xt)|

|T C
T (xt)|∑
j=1

TWTL,j(xt), (11)

where TWTL,j is the permanence time of the j-th task
in the WTL, that depends on the task assignment xt;

• dropping rate: being T DT (xt) be the set of task dropped
and TT (xt) the set of task other than patroling, in [0, T],
the dropping rate is defined as

FT (xt) =
|T DT (xt)|
|TT (xt)|

. (12)

V. TASK ASSIGNMENT CONTROL

A. The Gale-Shapley Algorithm

The assignment issue can be thought as a Stable Marriage
Problem (SMP) formalized by Gale and Shapley [9] [7].
An instance of the classical SMP involves N men and N
women, each of whom builds a preference list containing all
the members of the opposite sex in a strict decreasing order.
The goal is to find a set of stable marriages between the

2Our approach creates an initial pool whose elements are patroling tasks,
one for each area that has to be monitored. A sufficient condition to assure
that patroling tasks are enough to keep all agents busy is that the covering
matrix V contains a permutation of the columns of the identity matrix IN

men and the women. A marriage is said to be stable if there
is no pair of a man and a woman who both prefer another
partner to their current one. The algorithm proposed in [7]
to solve this problem is the following: an unpaired man θ1
considers the first woman φ on his list and removes her from
it. If φ is not engaged, she accepts his proposal, otherwise
she evaluates it: if she prefers θ1 to her current partner θ0,
she breaks up with θ0 (who gets unpaired) and marries θ1,
otherwise θ1 is still unpaired because φ is happier with θ0.
These operations are repeated while there are unpaired men.
The termination of this algorithm is assured, thanks to the
elimination of one woman from one man’s list during every
iteration. The attained marriage is stable and optimum for
men, i.e. they are paired with their highest preferred woman
among the possible stable solutions.

Nevertheless, a direct application of this algorithm to
video-surveillance case study problem is not possible, be-
cause of dynamics and characteristics of tasks and agents.
These features lead to deal with one of the variants of SMP:
the Stable Marriage Problem with Ties and Incomplete Lists
(SMTI) [8]. The main differences with SMP are that lists can
be incomplete, i.e. each person has a list that consists of a
subset of the members of the opposite sex, and they contain
ties, i.e. a man(woman) can be indifferent among two or
more women(men) who will be placed in the same position
of his(her) list. In this context, a marriage M is defined
weakly stable if there is no pair (θi, φj), each of whom is
either unmatched in M and the other appears in his/her list,
or strictly prefers the other to his/her partner inM. A weakly
stable matching can be found by arbitrarily ordering all ties,
but the ways in which ties are broken affect the solution. It
would be desirable finding a maximum cardinality weakly
stable marriage, i.e. to maximize the number of couples, but
it turns out to be a NP-hard problem, even under strong
restrictions.

B. The Revised Stable Marriage Solution

In this section, we will introduce the SMTI Revised Algo-
rithm, which we have developed to solve the task assignment
problem in camera networks. It is inspired by SMTI Problem,
where agents play the role of men and tasks that of women,
but it presents some differences due to the dynamics of the
problem and the difficulties of finding a stable and optimum
solution.

At every iteration of the SMTI Revised Algorithm, each
agent ai gives every τj ∈ T (ai) a profit score computed as:

cj(t) = α · pr(j) +
1− α
Tdrop

· (t− Tocc(j)), (13)

where cj(t) is the profit vector use in Eqn. (5), pr(j) is
the intrinsic priority of the task τj , (t − Tocc(j)) is the
lifetime of the task; α ∈ (0, 1] allows balancing between
the absolute priority term and the obsolescence driven one:
α → 0 gives more importance to tasks whose life span is
close to drop time; α→ 1 weighs more tasks equipped with
higher intrinsic priorities. Note that in between a new task
arrival or task completion, the different cj(t)’s grow with the

same rate, as graphically illustrated in Fig. 3, therefore the
optimal assignment does not vary between these events and
the cj(t)’s can be evaluated only when a new task appear or
an old task is completed.

Fig. 3: Profit score as a function of time for a specific target
sequence.

Each agent ai builds its own preference list containing
all the elements τj ∈ T (ai), sorted by the scores cj’s
defined above. This preference list can be incomplete since
it contains only the feasible tasks T (ai), and may contain
ties since two or more tasks can have received the same
score cj from one agent. So this problem can be thought as
a SMTI, but here we will limit ourselves to find a stable (not
necessarily optimum) match, in order to avoid the difficulties
related to NP-hard complexity. However, differently from the
standard SMTI where a fixed arbitrary order is imposed on
the agents’ preference lists to break the ties, here we propose
a different strategy that dynamically favor the assignment of
tasks to avoid idle agents. More precisely, each task has its
own preference list of agents based on how loaded the agents
are and on the position of the task in the agents’ preference
list. This list is used to determine when a task swap from
one agent to another is convenient. This heuristic has no
optimality guarantee but maintain stability and termination
in finite time, and exhibits good performance in simulations
as shown in Sec. VI.

The proposed approach is summarized in Algorithm 1.
Lines 1-6 correspond to the algorithm initialization. Line 8
states that the order from which agents are selected is
arbitrary since it does not affect stability nor termination of
the algorithm (but it does affect final assignment), thus being
suitable for decentralized implementation. Line 10 is one of
the difference of our algorithm from standard SMTI, since
our algorithm each agent starts evaluating its preference list
at every iteration, while in latter the task that are evaluated at
one iteration are eliminated form the list. This modification
allows the algorithm to be adaptive to new task arrival or
task completion. Also Line 13 give rise to a substantial
difference between our algorithm and the standard SMTI
solution. In fact in the latter an arbitrary order is set for
the agent preference list and then each task is sequentially
evaluated for potential swapping, while here we first check
if there is any unmatched task in a tie block, and only if this
condition is not satisfied we then evaluate tasks for potential
swapping. This apparently innocuous difference allows better

load balancing among the agents, since the algorithm does
not steal a task from another agent if there is an unassigned
task with the same profit in its list.

Algorithm 1 SMTI-Revised Algorithm
Require: new task occurrence or task completion.

1: for all agent ai do
2: compute ordered task list for agent ai based on cj .
3: group tasks of ai with same score (ties) in blocks b`
4: end for
5: for all task τj do
6: compute ordered agent list for task τj based on uij .
7: end for
8: repeat
9: for all agent ai (arbitrary order) do

10: for all block b` (decreasing score ordered) do
11: if agent ai is running any task in the block b`

then
12: Skip to next agent.
13: else if there exists any unassigned task τj ∈ b`

then
14: Assign task τj with lower ID to agent ai.
15: Skip to next agent.
16: else
17: for all task τj ∈ b (increas. ID ordered) do
18: if swap is strictly convenient then
19: Assign task τj to agent ai.
20: Skip to next agent.
21: end if
22: end for
23: end if
24: end for
25: end for
26: until no more changes in assignment occur.

C. Task preference list and swap policy
To begin with, it is important to point out that the adopted

swap policy is based on the women (the tasks in our context)
preference list as in the classical Gale-Shapley Algorithm.
Let τj be a task and A(τj) the set of agents ai compatible
with τj . The binary vector uij is defined for each ai ∈ A(t)
as uij = (rij , `i), where rij is equal to the number of tasks
that follow τj in ai’s preference list, and `i is the length of the
ai’s preference list. Then the task τj builds its own preference
list of the agents based on uij ,∀ai ∈ A(τj) as follows: ai
has higher preference than ak for task τj if uij < ukj

3. In
the event of a tie, i.e. uij = ukj , then the agent ID is used to
order them. Based on this list, a swap of task τj from agent
ai to agent ak is strictly convenient if ak appear before ai
in the preference list of task τj .

D. Comparison with Other Algorithms
SMTI Revised Algorithm will be compared with other

approaches which are going to be introduced:

3The ordering is based on the rule uij < ukj if rij < rkj or if rij =
rkj ∧ `i < `k .

• Centralized Assignment or PLI (Linear Integer Pro-
gramming): this approach provides the best solution
with regard to the maximization of the utility function
defined in Eqn. (5), where cj(t) are defined in Eqn. (13).
It can be solved by means of the Simplex Algorithm.

• Naive Approach: each agent which is unload or is pa-
troling an area randomly picks an available unmatched
task (different from patroling); the other agents keep
executing their current tasks.

• Greedy Approach: each agent ai ∈ A scans the task
pool for the best (in terms of highest profit cj(t))
unmatched task τbest: if it is better than the task
ai is currently performing, ai starts executing τbest,
otherwise ai keeps executing the old task.

VI. SIMULATIONS

Simulations are run on an 8agents×9areas scenario (n =
8, p = 9), with a feasible task load C ' 0.48, where C is
the rate of incoming task per single agent multiplied by the
average time for an agent to complete the task. Results are
grouped in terms of the algorithm type and are compared for
different value of parameters Tdrop and α.

PLI SMTI rev. Greedy Naive
0

0.05

0.1

0.15

0.2
Drop Rate

α ≈ 0, Tdrop = 6

α = 1, Tdrop = 6

α ≈ 0, Tdrop = 12

α = 1, Tdrop = 12

Fig. 4: Drop rate.

To begin with, we take into consideration the performances
in terms of dropped tasks according to Eqn.(12). The plot in
Fig. 4 shows the importance of the choice of the parameter
Tdrop. As expected, the longer it is, the smaller is the dropping
rate. The maximum value it can assume is determined by
the practical implementation, as it describes the maximum
allowed duration of a task life. After Tdrop, a task is to be
considered obsolete, so it is removed from the pool.

Still considering the dropping rate, it is interesting to com-
pare the behavior of the different types of tasks, depending
on the values of parameter α. Fig. 5 shows how the highest
priority tasks are preferred when α = 1. This occurs because
α weighs the intrinsic priority of the tasks. On the one
hand, since this is maximum for considered tasks, PLI, SMTI
Revised and Greedy (that make use of the utility function
described in Eqn. (5) show extremely low dropping rate for
this kind of tasks. On the other hand, lower intrinsic priority
tasks are penalized. The latter kind of tasks, that have the

PLI SMTI rev. Greedy Naive
0

0.05

0.1

0.15

0.2

0.25

HP Task Drop Rate

(a) High-priority tasks

PLI SMTI rev. Greedy Naive
0

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

MP Task Drop Rate

(b) Mid-priority tasks

PLI SMTI rev. Greedy Naive
0

0.02
0.04
0.06
0.08
0.1

0.12
0.14

LP Task Drop Rate

(c) Low-priority tasks

Fig. 5: Drop rate for different task priorities (color legend as in Fig. 4).

smallest priority degree, show the worst dropping rate for
high values of α.

As regards to the average waiting time of the executed
tasks given by Eqn. (11), the overall effect of choosing high
values of α is to reduce it, as shown in Fig. 6. This happens
because 1 − α weighs the task life span, giving preference
to tasks that are close to be dropped. As a consequence,
the time spent in queue by the executed tasks results longer,
in average. However, observing in detail the task behavior,
shown in Fig. 7, it can be found that low-priority tasks do
not follow the general trend.

PLI SMTI rev. Greedy Naive
0

0,5

1

1,5

2

2,5

3
Avg. Waiting Time

Fig. 6: Average waiting time (color legend as in Fig. 4).

In order to achieve a better comprehension of these results,
it is useful to think about the role of α. Considering the array
of all tasks (both active and waiting), sorted by occurrence
time, we can say that Tdrop defines the length of this structure.
The time interval I in which the probability of selecting a
task is higher, is linked to α. The bigger it is, the wider I
is (over time). Viceversa, for lower values of α, I shrinks to
its fixed extreme t− Tdrop, t being the current time. Dually,
α plays the same role with regard to priority: higher values
of α imply bigger probability of selecting only the highest
priority tasks. Fig. 8 gives a graphic representation of the
role of α.

In spite of the fact that high values of α generally cause
the waiting time to decrease, low-priority tasks behave differ-
ently. This is because they have the lowest intrinsic priority,
so with α ≈ 1 agents tend to neglect them. Obviously, longer
Tdrop allows the queue to grow, so waiting time are increased.

We have already stated that we are interested in a good
trade-off between continuity and optimality. We now con-
sider the first one w.r.t. Eqn. (10), comparing the different
candidate algorithms shown in Fig. 9. As expected, the

Fig. 8: Sliding pool of tasks. Color intensity is proportional
to associated profit score cj(t).

PLI algorithm does not exhibit the desired continuity. This
happens because this approach is memoryless: it does not
take into account the previous matching in order to update the
assignment when a new task occurs or is completed. Greedy
and Naive show the best results, since they are designed
to be extremely conservative in matching tasks and agents.
The best performances are exhibited by the Greedy algorithm
when α ≈ 0, because in such schenario agents evaluate tasks
considering only their occurrence time. As a consequence the
oldest tasks are always at the top of the agents’ lists. SMTI
Revised achieves good performances, thanks to the fact that
swaps are limited by restrictive conditions based on uij .

PLI SMTI rev. Greedy Naive
0

0.5

1

1.5

2

2.5
Discontinuity in task execution

Fig. 9: Discontinuities in task execution (color legend as in
Fig. 4).

Another meaningful aspect that has to be inspected is
the presence of undesired idle agents in terms of Eqn. (9)
shown in Fig. 10. Under our assumptions we can exclude
an instantaneous optimal solution in which some agents are
unloaded. As matter of fact, PLI never shows idle agents.
SMTI Revised achieves good performances since it wilfully
tries to match each agent. In order to do it, in comparing
agents to be assigned to a task, it weighs the shortness
of their list of unexplored feasible tasks, i.e. rij used for

PLI SMTI rev. Greedy Naive
0

1

2

3

4
HP Task Avg. Waiting Time

(a) High-priority tasks

PLI SMTI rev. Greedy Naive
0

0.5

1

1.5

2

2.5

MP Task Avg. Waiting Time

(b) Mid-priority tasks

PLI SMTI rev. Greedy Naive
0

0.5

1

1.5

2

2.5

LP Task Avg. Waiting Time

(c) Low-priority tasks

Fig. 7: Average waiting time for different task priorities (color legend as in Fig. 4).

the swap. Greedy and Naive do not guarantee the idle state
avoidance. As a general trend, when working with a longer
Tdrop, the pool contains more elements and makes unlikely
that an agent has no tasks to perform.

PLI SMTI rev. Greedy Naive
0

0.02

0.04

0.06

0.08

0.1
IDLE occurrence

Fig. 10: Idle state occurrence rate (color legend as in Fig. 4).

Referring to optimality, a remarkable aspect is the relative
intrinsic priorities of assigned tasks, as defined in Eqn. (8)
and shown in Fig. 11. The best results are obtained by PLI
and SMTI Revised and there are not significant variations
with different values of α.

PLI SMTI rev. Greedy Naive
0

0.2

0.4

0.6

0.8

1
Assigned priority

Fig. 11: Relative assigned priorities (color legend as in
Fig. 4).

VII. CONCLUSION

The proposed SMTI Revised algorithm shows good per-
formances. In maximizing assigned priorities, avoiding idle
agents and reducing both drop rate and average waiting time,
it is similar to the centralized assignment (PLI). Moreover,
it is better in terms of continuity. As previously discussed,
SMTI Revised can be easily turned into a distributed algo-
rithm (with local interactions only), even though the costs

in terms of both communication and code implementation
should be further analyzed. As regards the PLI algorithm,
despite the better performances, it is hardly useful over
a real world scenario, due to the bad scalability and the
unacceptable discontinuity in task execution.

A point that will be studied next is the problem of keeping
the task pool up to date when algorithms are implemented
in distributed form. In this context, issues regarding the
asynchronous management of the agent task list and occur-
rence/dropping of tasks will be of interest. On the other hand,
the possibility of scaling up in a fully distributed fashion
for wide area networks, where the local feature of both
information sharing and agent memory content is enhanced,
will be in focus.

REFERENCES

[1] J. Hespanha, P. Naghshtabrizi, and Y. Xu, “A survey of recent results
in networked control systems,” Proceedings of the IEEE, special issue,
vol. 95, no. 1, pp. 138–162, January 2007.

[2] N.Michael, M. M.Zavlanos, V.Kumar, and G.J.Pappas, “Distributed
multi-robot task assignment and formation control,” in Proc. of the
3rd IEEE International Conference on Robotics and Automation,
ICRA2008, 2008.

[3] B.J.Moore and K.M.Passino, “Distributed task assignment for mobile
agents,” IEEE Transactions on automatic control, vol. 52, no. 4, pp.
749–753, 2007.

[4] L. Brunet, “Consensus-based auctions for decentralized task assign-
ment,” Master Thesis, Massachusetts Institute of Technology, 2008.

[5] M.J.Feiler, “On distributed search in an uncertain environment,” in Proc.
of the 1st IFAC Workshop on Estimation and Control of Networked
Systems, Venice, Italy, 2009.

[6] B.Lagesse, “A game-theoretical model for task assignment in project
management,” in In IEEE International Conference on Management of
Innovation and Technology, 2006.

[7] W.Hunt, “The stable marriage problem,” [online] http://www.csee.wvu.
[8] D.F.Manlovea, R.W.Irvinga, K.Iwama, S.Miyazaki, and Y.Morita, “Hard

variants of stable marriage,” Theoretical Computer Science, vol. 276,
pp. 261–279, 2002.

[9] D.Gale and L. S.Shapley, “College admissions and the stability of
marriage,” The American Mathematical Monthly, vol. 69, no. 1, pp.
9–15, 1962.

