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Abstract— Trust management, broadly intended as the ability will do it in a conscious way. Moreover, trustworthiness
to maintain belief relationship among entities, is recogried  quantification increases the degree of cooperation between
as a fundamental security challenge for autonomous and self  yaers hy forcing them to act responsibly, since selfish astio
organizing networks. tted and recorded. In oth ds, the ability t

In this work, we focus on the evaluation process of trust are spotied and recorded. In other -WOI’ S € ability 1o
evidence in distributed networks, where no pre-establise €valuate and keep record of trust relationships represeats
infrastructure can be assumed. After casting the problem ilo  main driving force of cooperation in most settings [13],.[5]
the framework of Estimation Theory, a distributed Maximum The lack of infrastructure and of any authoritative entity
Likelihood trust estimation algorithm is proposed. Strong i, the network enforces the use of reputation-based systems
parallels with Spin Glasses Theory are shown, providing key h trust i tablished b t Is that trv t luat
insights about the algorithm performance and limitations, as where trus 'S_ establis e- y protoco S attry to eya uate
well as useful formulas for parameters tuning. Only the preVIOUS behaVIOI‘ Of the entItIeS, the Only II‘]fOI’-

This work presents a mathematically rigorous analytical mation available in a setting where peers have no prior
approach to the problem, and proposes the use of statistical knowledge of each other.

physics methods not only to understand the complex dynamics Unfortunately, despite the growing importance of this

that arise from the interactions of peers in decentralized .
networks but also to design robust protocols and algorithms problem, state of the art design of trust management systems

whose performance can be rigorously evaluated. is still mostly at an empirical level [15], [21], [18], [1],
[13], [22], [5]. As it is pointed out in [17] and in [10],
. INTRODUCTION most of the work on trust management in the literature is

A major effort of the networking community is currently prevalently based on heuristics and simulation as evaluati
devoted at introducing security services into decentdliz method. The validation of the proposed systems is often
autonomous networks, such as MANETs and Wireless Sean overlooked aspect, where not all solutions are actually
sor Networks (WSN). In fact security represents a majoverified and almost none are implemented and tested in a real
issue in these kind of networks, both for the lack of inenvironment. In this context, theoretical analysis is extely
frastructure and for the use of wireless communications theare and the comparison between different methods is there-
can be easily eavesdropped. Moreover the physical contfolre extremely difficult to accomplish, mainly because & th
on the access to the network, that is usually guaranteed byeat simulative effort that would be required. Solutions a
cables, is often completely lost. Even if for different reas, often hard to compare even on a simulative basis, since they
similar issues also affect peer to peer networks [2], [15] anoften rely on different hypothesis and are aimed at differen
electronic commerce communities [24], [20], [22], sinceyth application scenarios.
all share the lack of a centralized control on the network and In this context, a rare exception is the interesting ana-
they usually provide open access, even to malicious userdytical study of the problem presented in [8], a work that

In the outlined setting, the most basic problem that need®nsiderably inspired this study. Given the importance of a
to be addressed is that of being able to assess the trusiwortheoretical framework, the aim of this work is to provide a
ness of the nodes in the network [15], [4], [1]. In our contextdeeper understanding of the problem through a more rigorous
we will broadly interpret trust as a belief relationship,ea  approach that makes use of powerful tools and ideas arisen
an entity is confident that another peer will operate fawly, in statistical physics.
as it is designed [17]. In particular we tackle the problem from a mathematically

This kind of information is in fact essential to be able toformal point of view by casting it into the framework of
predict the future behavior of the peers, hence empoweritigstimation Theory. A distributed maximum likelihood trust
the decision-making process of the protocols underlyimy thestimation algorithm is then proposed and strong paral-
network (such as routing in MANETS and WSN, as pointedelisms with the dynamics of disordered magnetic systems
out in [17], [13]). In this way, potential damage caused byre shown. Properties of Spin glasses discovered by physi-
malicious users will be reduced, for example because mosists are used to develop an intuitive understanding of the
entities will avoid interacting with them, or at least theyalgorithm behavior and to predict its performance.



Spin glasses models such as the famous Sherringtoemtitiesi andj are modeled in the following way:
Kirckpatrick model [16] have already proved to be extremely TT: 4w, if A —1
versatile and valuable to understand the global behavior of Cij = { 01 7o i Az_J_ — 0 (2)
complex systems such as neural networks, whose dynamics E
can be modeled by the statistical mechanics of infinite€angvhere w;; ~ N(0,0%) is a Gaussian random variable
Ising spin glasses [3]. In this work we show how theythat models the uncertainty that affects the opinion-foigni
can also be used to understand the complex dynamics tipabcess.
arise from the local interactions of peers in decentralized With this choice, untrustworthy nodes are not selfish and
networks, and we also demonstrate how to exploit the emdsolated but they rather try to act as a group, since they tend
gence of collective behavior in large families of corretate to have good opinions of nodes that should not be trusted.
random variables in the design of distributed protocols to The role of the trust estimation algorithm is to find a trust

achieve a desired global behavior. configuration]’ € {—1,1}* that represents a good estimate
of the real trust vectofl’. The most natural approach here
Il. THE TRUST ESTIMATION PROBLEM FORMULATION is to search for the configuration that is more likely to have

In our model, we consider a network consisting &f generated a certain observed opinion magrixor in other
nodes, represented by a directed grépk: (V, E) in which words the trust configuration with the highest a posteriori
each entity can communicate with a certain subset of othBfobability, givenC'.
nodes according to an adjacency matfix Under the assumptions made so far, we can compute

We represent the real trustworthiness status of each nod¢ likelihood LH (.5; C) of any configurationS given an
i with a bit variableT; € {—1,1}, so that we collectively OPinion matrixC' in the following way:
describe the trust ?\tfatus of_ the network WItWGii| trust LH(T;T) := p(T|C)
vectorT € {-1,1}", adopting the convention o
where p(T|C) is the probability of T conditioned that

T; :{ 1 if nodei is trustworthy C = C. In this way the maximum likelihood estimator

—1 otherwise g:RNXN 1 1V s
In a real setting the completegl .trust v_ecto(T is u_nkn_own g(C) := arg max LH(T;U)
to the peers, nonetheless, as it is outlined in the intraoiict 7

many protocols need to somehow estimate it to be able Bbserve that the Bayes rule yields
operate correctly.

Even if T is unknown, nodes are usually able to judge p(T|C) = p(CIT)p(T)
their neighbors on the base of the history of their previous p(C)

interactions, that we assume to be statistically corrdhfanidw wherep(T') is the a priori probability of the discrete random
the real trustworthiness status of the nodes. In partiau@r yariaple 7 € {—1,1}" while p(C) and p(C|T) are the

assume thal” does not change over time and it is related tQjensjty and conditional density of the continuous random
anopinion matrixC' € RV by the following equation  \ariablec’ € RV *N. This shows that

C=f(Tw), wel (1) 9(C) = argmax p(C|T)p(T)
T

where( is a sample space anf{-) represents the way in

) e ) . For the Gaussian model described in (2), assuming inde-
which opinions are formed. In this setting an elementof

h g tixC is th inion that node h d pendence, we have thetC|T') = 0 if C has a nonzero entry
€ opinioh matrixt/ 1S the opinion that hodenas on node ;. position (i, j) ¢ E. If insteadC' has nonzero entries only

j, and we assume that it is significant onlyiifand j are in (i, ) € E, then
neighbors, since it is based on the history of their previous '
interactions. The outlined frameworks is very general and,
with slight modifications, can be easily applied also to the
case of P2P networks and e-commerce communities.
Within this model, the role of a trust management algo- =

rithm is that of estimating” from C, assuming thaC' and whereq(C) is a normalization constant independentlof

the form of f(-) in equation (1) are known. In the following Therefore maximizing(C|T) is equivalent to maximize
sections we will show how to design such an algorithm in ‘?‘](T- 0):=% TT.c.. so that
) T (i,j)GE 1+t

distributed way, so that in each iteration only local opiso
are used but still obtaining the solution that maximizes the argmax p(C|T) = argmax U(T; O)
likelihood given the entire matrix’. T T

_ (eij—TiT;)?
202

p(C|T)

1
H V2mo? ‘

(i,j)EE
q(C)e= Lanen TiTscis

Itis easy to see thdf (T, C) = U(—T; C), a straightforward

consequence of the symmetrical behavior of trustworthy
In the following work we will mainly consider a special and untrustworthy nodes. As a consequence, if aléb)

case of equation (1) in which the opinions between tw@és symmetrical, the resulting complete likelihood funatio

A. The Gaussian case



LH(T;C) becomes symmetrical ifi, a situation in which

We can therefore compute a maximum likelihood estimate

effectively distinguishing between the two kinds of node®f the real trust vector by setting

would be clearly impossible. Therefore we will concentrate 9

on a priori distributions of the real trust vectd@ that

are unbalanced, that is they privilege the presence of one

2 1—p

kind of nodes. In a practical setting, such a requiremernd by maximizing (4) over all possible configuratidfis
is not restrictive, because it is likely that more nodes arEquation (4) is very important because it represents the

trustworthy rather than not.

energy or Hamiltonian of a configuratiof in an lIsing

Suppose that the a priori probability distribution isModel [16] in the presence of an external magnetic field

Bernoulli-distributed with parameter, namely
p=P(;=1)
Then, assuming independence, if we define
w(T) = [{a|Ti = 1}

then we have

w(T)
WD) = PO = ()

Since
- N + Zi T;

w(T) )

we also have

p(T) =

= (1 p)pV/ed el

(1-p)¥ (1%)

> %(N""Zl Ti)
In this way we obtained that
p(T) =ye 2 ©)

where~ normalizes to a probability distribution and

1 P
1= ()

of strengthn that breaks the symmetry of the system. Again
the physical interpretation confirms that in the case in Wwhic
the a priori distribution of7" is symmetrical, that i =

0.5, the magnetic field disappears and the system becomes
completely symmetrical.

The statistical physics interpretation ensures an ingiiti
understanding of the dynamics of the system and enables
us to take advantage of the rich literature in the field to
study our problem. In particular we are referring to systems
known as Spin Glasses [16], that exhibit randomly distebut
ferromagnetic and anti ferromagnetic interactions betwee
spins. They represent the first studied class of systems with
frustrated behavior, where the presence of conflictingrinte
actions forbids simultaneous minimization of the intei@ct
energies and hence the existence of a trivial global ground
state.

So far we have shown how the original problem of max-
imum likelihood estimation can be reduced to the problem
of finding the maxima of (4), or in other words the global
minima of —H(S), configurations known in physics as
ground stateof the system.

Unfortunately this optimization problem has been proved
to be NP-Complete for generic graphs in [6], and hence an
exhaustive search for global minima is widely believed to be
computationally intractable. However a natural approach t
tackle the problem seems to be a local search method based
on Simulated Annealing. In fact this powerful method has
been introduced in [9] to solve NP-complete optimization

Clearly the sign of\ determines if the a priori distribution problems by searching for the ground states of a system
is biased toward trustworthy nodes or the opposite, while falescribed by a proper Hamiltonian function, that is exactly
A = 0 (or equivalentlyp = 0.5) we have the symmetrical the same problem we need to solve.

case in which we cannot expect good results from the In a nutshell, the general algorithm works as follows.
estimation. Starting with any configuratioly, we randomly choose one

Putting all together we obtain nodeis. If by flipping its trustworthiness valu§; we obtain a
higher energy (we want to maximize), we accept the change.
Otherwise, in case of a downhill move, the flip is accepted
with a certain probability. This probability is chosen to be
exponentially decreasing with the energy loss and depends
upon the global parameterrepresenting the temperature of
the corresponding physical system that is gradually rediuce
We conclude that the following proposition holds. by the algorithm.

Proposition 1: The likelihood LH (T’;C) of a configura-  An apparently similar approach has been previously pro-
tion T is proportional to a monotonic increasing functionPosed in [8], but using a model in which the energy was
of unrelated to statistical properties of the estimate. Meeeo

H(T) = Z T\Tjci; —UZTz‘ (4) they did not solve t.he.optimizgtion problem, since .they

(i eE - only used a l_\/letrgpohs—hke algorlthm tq generate a suéabl

Markov Chain with a Boltzmann-distributed steady state
probability distribution, without being able to provideyan

LH(T;C) = q(C’)en_12 2igern TiTicij ye=2 20 T

= WQ(C)eﬁ(Zu,ﬂEE TiTjcij=Ao® 32, T0)

wheren = \o2.



guarantee on the quality of the solution sampled from thia modified version of the classical Metropolis-Hastings al-
distribution. gorithm, where we introduce a Markov Chain with different
transition probabilities but with the same steady statdpro
ability distribution. The graph associated with the Markov
The simulated annealing algorithm sketched out in thehain is strongly connected and consists of a finite number
previous section can be seen as an iterative application @) of states, each one with a self-loop. Therefore the
a voting rule in which each node is repeatedly evaluategransition matrix is primitive and the resulting chain is
by its neighbors. In particular they express their opiniongegular so that by Perron-Frobenius Theorem we conclude
with a vote on its trustworthiness, and theting ruletakes that there exists a unique steady state probability distith
them into consideration together with the current estishatethat is reached from any initial probability distribution.
trustworthiness status of the participants to the vote. To we will show in the following proposition that that with
emulate the Metropolis-Hastings [11] algorithm we introdu the proposed voting rule (5) we obtainreversible Markov

stochasticity into the rule so that we obtain the desire@hain, that is the followingdetailed balance equatiois
Markov Chain structure with the proper steady state probaatisfied byr

bility distribution.
The remarkable fact is that, despite the two levels of ran- TS PS,R = TR PR,s V R, S (7)
domness present in the system, both in the local interau:tioal
between peers and in the way the opinions are generat
we can show the emergence of a collective behavior of the
system that guarantees an efficient trust estimation. g

Ill. THE TRUST ESTIMATION ALGORITHM

ere R, S are generic states angy r is the transition
obability from stateS to R.

Proposition 2:If t = 1 is fixed, then the voting rule
efines a Markov Chain whose steady state probability

Precisely, as mentioned before, at each time step a no Liribution = is Boltzmann-distributed

node: is chosen randomly. The trustworthinesgk + 1) of

nodes; different formi are kept constant while, as in [8], o — e PH(T) ®)
the node: adopt the following voting rule for computing = Z
Si(k+1) where
esi<k+1>t<(v:)i<k>w) 7 = Ze BH(T)
PSi(k + 1)|mi(F)] = o= —o ©©) o
e '™ t+e plays the same physical role ofpartition function
wherem; (k) is defined to be Proof: We will show that (7) holds true. Notice that, if
the Hamming distance betweéhand R is greater tharl,
mi(k) = Z (cij + ¢ji) S (R), (6) thenps r = pr.s = 0 and so (7) holds true. If the Hamming
JEN distance betwee® and R is zero, thenS = R and so (7)

N; is the set of neighbors of (we assume that does holds true. Assume now that the Hamming distance between
not belong to\;) and¢(k) is the temperature parameter atS and R is 1, and leti be the index such thaf; = R; for
iteration k. all j # i andS; # R;. Observe now thatn;(S) = m;(R),

In this way we obtain a Markov chain with state spacend so denote these number with the symbgl Then
{—1,1}" and with transition probabilitps r := P[S(k + B8R (mi(S)—1)
1) = R|S(k) = S] which is equal to zero if the Hamming Psr _ € 7 — ¢~ 2B8i(mi—n)
distance of S and R is greater thanl, while, if if the prs  eFSimi(S)=n)
Hamming distance of and R is less than or equal td&, On the other hand notice that
we have that

1 Ri(m—?g—)fm H(R) - H(S) =
e t
PSR= N me-m  _m®-n 25im — 25 Z Sicij — 25 Z Sicji
e R +e t(k) jl(i,5)EE JlGi)er
wherei is the index such tha$; = R; for all j # i and where the sums are over all outgoing and ingoing edges from
;. By substituting (6
mi(S) = Y (cij +¢)S; St 9
JEN; H(R) — H(S) = —25;(m; —n)
It can be shown([14]) that with a logarithmic temperaturerherefore
scheduling Ps,r _ B(H(R)-H(S))
t(k) = __f PRS ‘
log(2 + k) "

G BH(S) .
and with an initial temperaturig large enough, the probabil- and hence (7) holds true withs = ¢”(%). Finally notice

ity of finding a global minimum converges tbask — co.

If instead we choose to fix the temperature parameter Zﬂsps R= Z?TRPR s =TR ZpR s =TR
over time, the voting rule defined by equation (5) is simply 3 ’ B ’ 5 ’



which shows thatrg is the steady state probability distribu- In this context Simulated Annealing can be seen as an

tion. B attempt to gradually increase the difficulty of the problem
The choice of thevoting rule (5) however is not funda- by decreasing the temperature, while taking advantage of

mental, because the steady state probability distribu@@n the solution found for a somewhat easier problem.

could clearly be also obtained using the standard Metropo- According to the previously described trust management

lis Algorithm, that is by choosing the following transition system, each iteration of the algorithm consists in a local

probability vote, where the results are decided according to equation
(5). The most remarkable result is that the iterations are

_ 1 if AU>0 ©) local, that is they involve only the opinions of the neighbor
Ps.k ePAY)  otherwise of a node being voted. In this way the opinions data do

not have to travel all over the network, as it happens for
whereAU = 25;(n—m;(5)), and whereS and i are states  example with a consensus-based system, but yet it achieves
with Hamming distance equal ftoandi is such thatS; = R;  an estimate as good as it would be the one obtained by a
forall j # i andS; # R;. centralized server that knows the entire opinion marix
Both (9) and (5) are valid choices in the sense thathis fact is particularly important in a decentralized iseft
the associated Markov Chain is guaranteed to converggere it would be just too expensive to propagate all the
to the steady state probability distribution (8). Howeveinformation through the network.
the convergence rate depends on the eigenvalues of thennother important aspect of the dynamics that can be
transition matrix and hence on the voting rule used. Bynferred from the statistical physics literature is thae th
Perron-Frobenius theorem we know that in both casés existence of a global behavior essentially descends from
a dominant eigenvalue, so that the remaining eigenvalugge concentration of measure phenomenon. This fundamental
are located StriCtly into the unit CirCle, but it is their exa and ubiquitous Concept refers to the phenomenon of a func-
position that determines the convergence rate. tion of a large number of random variables that, under aertai
The method described so far is an application of theonditions of regularity and on the statistical dependence
general idea arising from statistical physics to transfarm petween the random variables, tends to concentrate itesalu
combinatorial optimization problem, where the largestieal in a set of relatively small measure. The famous Laws of
of a target function is searched for over all possible con-arge Numbers and the Central Limit Theorem are just
figurations, into the sampling of all its large values throug some examples of this general principle applied to sums of
a distribution that assigns them the appropriate protis#sili independent variables. In our case, even if the global ouéco
or weights. In our case the weight function is given by thés the result of a complicated local interaction between
parameters, that represents the inverse of the temperatusgarious level of randomness, the result not only appearsto b
of the system. Its role is to tune the degree of randomneasinost deterministic, but it is also extremely robust. lotfa
introduced by thermal fluctuations, as opposed to the onke concentration of measure phenomenon ensures that the
quenchedinto the system and described by equations (2jlobal properties are obtained to some extent regardless of
and (3). If we consider equation (8), when the valugddé  the particular probability distribution of the noise thé#feats
large, the probability is concentrated on the configuratiat the opinions modeled in equation (1).
minimizes H(S), while for smaller values ofs its relative A mathematically rigorous approach for the Sherrington-
weight decreases in favor of configurations with lower valueKirkpatrick model con be found in [7], where it is shown that
of H(S). the Spin glass qualitative behavior relies on weak hypdghes
The role of the parametef can therefore be read ason the distribution of the couplings; in equation (4) (that
a coefficient that enables us to tune the difficulty of theve assumed to be Gaussian). This ensures a great degree of
problem, that ranges from a trivial cas@ (= 0, high robustness to the algorithm proposed, as it is confirmedsn th
temperature) and a very difficult one (8s— oo, and the simulative analysis, where it is tested in settings sigaiftty
system freezes concentrating all the weight on gheund different from the ideal Gaussian framework for which the
statg. In fact even if we can use algorithms such as (9) oalgorithm has been originally conceived.
(5) to sample such a probability distribution for any valde o
> 0, their convergence speed (determined by the eigenval- IV. ANALYSIS
ues of the transition matrix as previously discussed) to the Thanks to a much stronger mathematical understanding
desired steady state probability distribution decreaseth@ of the problem, we have been able to design a distributed
temperature is lowered. Intuitively, this happens becdlise algorithm that finds a reasonable solution in the form of a
Markov Chain is indeed ergodic for every value @f but maximum likelihood estimate. In this section we address the
the degree of ergodicity decreases asncreases because problem of understanding the average performance of the
downhill moves become more unlikely and therefore it islgorithm, both from a theoretical point of view and by the
easier to get stuck in local minima df(S). On the other means of Monte Carlo simulations.
hand, for small values off there is a faster convergence, From a qualitative point of view, we can start the analysis
but the resulting steady state probability distributiom@sy by noticing that we cannot expect any topology-independent
because of the weight distribution at high temperatures. result. For example, in a network made by isolated vertices,



we cannot do any better than just using the a priori knowl we denoteh (T )/N with the symbolz, then the previous
edge. We will therefore need to fix a topology to be able tinequality together withd < 2 < 1 proves that

show some meaningful results. 9
Elzy — 23] — 0

A. Case study: complete graphs as N tends to infinity. We need to show that this implies that

Even if it not representative of the topologies of any reaE[xzy] — 0.
world network, we will focus our attention on the case Inthe remaining part of the proof we will restrict ourselves
of a complete communication graph, mainly because mogi the case; < 0 for the ease of explanation. However a
analytical results from Spin glasses theory are derived fdotally symmetric argument can be developed for the case
this topology. However the intuition developed in the pres > 0.
vious sections through physical interpretations sugghbsiis Remind that the symbol(7") means the number com-
the qualitative behavior should not change for non-singulgonents inT" equal to+1. Now notice thatw(T' ) > N/2.
topologies, and we expect to be able to take advantage irirdeed this follows from the fact thaf (T') > H(—1") which
near future of the recent analytical results obtained fbeot implies that
topologies such as Bethe lattices [12]. A . A . .
In the the case of a complete communication graph with H(T ) =T'0T - nZTi 2 T'0T + nZTi = H(-T)
N nodes, equation (2) becomes ! !
, and so—2nziﬂ- > 0. Sincen < 0 then we must have
C=TT+Ww >, Ti > 0 and sow(T') > N/2. Consider now the three sets
where each element of the matiiX is w;; ~ A'(0,02). Let AL = {ilTi = T3}, Ao = {i|Ty = =1}, and Az = {i|T; =
—1}. Clearly A;UAsUA3 = {1,..., N} from which follows
T := argmaxge(y v H(S) that their cardinality satlsfyA|+|A2|+|A3| > {1,...,N}|,
or equivalently(N — (1)) +(N —w(T))+(N — w(T)) > N,
which implies:

h(T) < 2N — w(T) — w(T)

Let moreover
MT) = [{i: Ti # T3}
namely the number of correct estimates giveriﬁ)yNe have ) o i . .
the following result. Using this inequality together witw(7) > N/2, we can
Proposition 3: If 7 # 0 argue that(T) < (3/2)N —w(T"). Observe now that (7"
is a binomial random variable, namely

h(T)

Jm B =] =0 Plur) =i = (4 ) -
Proof: Observe that ) ) )
We want to use this fact in order to estimaigxy >
E[H(T) = E[T’CT—WZE] = 1 — 6] where § is such that0 < § < p — 1/2. Since
; hT) < (3/2)N — w(T), thenh(T)/N > 1 — 4 implies
= E[T'TT'T|+E[T'WT] - nZE thatw(T)/N < 1/2+ 6 and so

Plzny >1—6] < Plw(T) < (1/2+ 6)N]

Since(1/2+ §)N < Np = E[w(T)] we are in a position to
apply the Chernoff bound which ensures that

Plw(T) < (1/24§)N] < eV

= N2 + ZE[MU [TlTJ] - ’I]N(2p - 1) =
ij

— NZ_pN(2p—1)

On the other hand we have that
. . where
EH(T)] = E[T'T)% +E[T'WT] - nZT (p—1/2-9)?
V= 2p

Notice now thatl"T = N — 2h(T) and that—, >, 7; < We can argue therefore th@zy > 1 — 3] < e V. We
|n|N. Moreover from spln glass theory we know [19],want to use this inequality in order to estimétie:%;]. Indeed,
[7] that the sequenc& —2E[maxg S'WS] converges asV  observe that
tends to infinity and so there exists a constansuch that

N
]E[T/I/VT] < aN3/? for all N. These facts imply that E[2%] = % Z kQP[h(T) =kl =
E[H(T)] < E[(N — 2h(F))%] + aN¥/2 + |y|N T :
R ) = — > KPKD) =K+
Since we always have thaf(7') > H(T), thenE[H (T")] > N k<(1—6)N
E[H (T')] which implies that 1

A +— > KPh(T) =k
N2 —N(2p — 1) < E[(N — 20(T))?] + aN*/? + |y|N N2 s GToN



Performance of the algorithm with Gaussian opinion errors and p=0.7

035 ; ; ; ; ; section II-A, for various values aV ando?. The estimation

T e algorithm uses the simulated annealing approach, with an

— — N=100

0.3

exponential temperature coolingk + 1) = « (k) of
parameter = 0.91 starting from an initial temperature of
10N2. However the choice of these parameters is not very
important and does not affect significantly the performance

As we can note in figure 1 the performance of the
algorithm decreases as does the quality of the a posteriori
information (measured by a larger variance on the opinions)
However it is remarkable that the algorithm is never outper-
formed by the optimal estimator that is based solely on the
a priori informationsS; :

g _ [1,...,1] ifp>
@ —[1,...,1] ifp<

that clearly shows an average error ratg bf- p).
Fig. 1. Performance of the algorithm with a complete commaiivn Moreover we can see that proposition 3 is confirmed by
graph of N nodes for several values @f. The a priori probabilityp that the data. where the error rate decreasesfag;rows
a node is trustworthy i9.7. ! . )

To show the robustness of the algorithm proposed we

consider another reasonable model for (1), where the errors
Observe thak? < N? and that, wherk < (1 — §)N, then &€ Bernoulli distributed. In particular we assume that if
k2 < (1 - §)Nk. Using these inequalities we obtain that “ij =1 then

0.2

Average error rate

01r

)

[MIEENTE

(1-10) . o T;T;  with probability 1 — p.
Epd] < %= Y. kPI(I) =K+ % =\ T, with probability p, (10)
k<(1-6)N
=070 . This means that if a node is trustworth¥; (= 1), thenc;; =
+ Z PIMT) = k] < T, with probability 1 — p., while the contrary holds when
k>(1-0)N T, = —1. Thus the parameter, represents the probability
N Jre i
(1—9) . for a trustworthy node of misjudging a neighbor.
< N ka[h(T) =k + The results obtained with various error probabilities
=1 and various networks sizes are shown in figure 2. The trust
+P[R(T) > (1 = )N] < estimation algorithm uses a value of
—vN
S 0% = El(cy; — T1T)?] = dpe an

Observe finally that and it shows an exceptional performance at least until

SE[zn] = Elzy —2%] +Elzy] pe approache®.5. The results are comparable with those
—(1-6)Efzy] < Elzy — 23] + e~V obtained with model (2), when the variance of the error
on the opinions is the same according to equation (11).

Since both term in the sum tends to zero, gz y] tends However wherp, > 0.5, on average there are more wrong

to zero. opinions than correct, and the algorithm is outperformed by
Inthe case) > 0 one should considef7') = N—w(T) = the one based solely on the a priori information. The average
[{i|T; = —1}| in place ofw(T) and repeat an analogouserror rate shows a sharp phase transition phenomenon around
argument. pe = 0.45, that is typical of spin glasses systems.
[

CONCLUSIONS

In this work we present a mathematically sound framework
From a simulative point of view, we are interested infor trust evaluation in decentralized autonomic networks b
measuring what is the fraction of nodes that the Simulateghsting it as an estimation problem. A maximum likelihood
Annealing-based algorithm is not able to correctly identif  estimation algorithm is developed, with the fundamental
expectation. IfS* is the maximum likelihood configuration property that it is completely based on local interactions
returned by the algorithm, we are interested in the averagtween nodes without any need for central coordination.
error rate . These local interactions are characterized by severdksleve
E [M} =K {M} of randomness, both unavoidable because residing in the
2N N uncertainty in the opinions that the nodes have on theirmeig
where the expectation is taken over all levels of randonbors and artificially introduced by the algorithm in the wofi
ness. The first experiment is performed by simulating theule. Despite that, an almost deterministic global behaigio
environment described by the Gaussian model presenteddhtained, as predicted by Spin glass theory models in the

B. Simulative Results
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Fig. 2. Performance of the algorithm with a complete comrmation graph
of N nodes for several values 6f and opinions generated according to [5]
model (10). The a priori probability that a node is trustworthy i8.7.

(6]

more general framework of the concentration of measurd’]
phenomenon. In our opinion this concept might play a
fundamental role in the design of protocols for decentealiz [g]
settings where little is known or can be assumed on the
behavior of singular nodes, but it is necessary to obtain &
desired behavior of the network as a whole. [10]
In this perspective statistical physic tools and more gen-
. . 11
erally theories about disordered systems have already b er]
successfully applied to the study of collective animal be-
havior and flocking. This case study on trust managemeH¢!
represents a first attempt to lift the use of these tools to g
designing perspective, from an engineering point of view.

As outlined in section 1V, the resulting algorithm exhibits
an excellent performance, as it was predicted by the the-
oretical analysis carried out. Another positive aspechat t [14]
the corresponding physical model enables us to understand a
least at an intuitive level what will be the effect of paraaret [15)
tuning on the dynamics of the system.

The great degree of robustness of the algorithm makes[its]
suitable for a variety of settings in distributed networkgen
where equation (2) is not a good model of the way in whict7]
opinions are generated, as the simulative analysis sugjgest
This property is particularly important because it enstinas  [18]
to some extent the system is resilient to malfunctioning or
even malicious users that try to jeopardize the system. 19

Even if there is evidence from spin glasses theory [7] that
the qualitative behavior of the system relies on really wealk®!
hypothesis on the distributions of; in the Hamiltonian (4) oy
(a finite fourth moment is sufficient), a promising research
direction is certainly to quantify the robustness of thetmelt [22]
from a quantitative point of view, both from a theoreticatlan
simulative perspective.

Immediate future work will also include the study of 23
the performance of the algorithm on more realistic networlos)
topologies, such as the one generated with the Watts-$troga
model [23] that exhibit small-world properties, including

] M. Talagrand.

short average path lengths and high clustering.
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