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Abstract— Trust management, broadly intended as the ability
to maintain belief relationship among entities, is recognized
as a fundamental security challenge for autonomous and self-
organizing networks.

In this work, we focus on the evaluation process of trust
evidence in distributed networks, where no pre-established
infrastructure can be assumed. After casting the problem into
the framework of Estimation Theory, a distributed Maximum
Likelihood trust estimation algorithm is proposed. Strong
parallels with Spin Glasses Theory are shown, providing key
insights about the algorithm performance and limitations, as
well as useful formulas for parameters tuning.

This work presents a mathematically rigorous analytical
approach to the problem, and proposes the use of statistical
physics methods not only to understand the complex dynamics
that arise from the interactions of peers in decentralized
networks but also to design robust protocols and algorithms
whose performance can be rigorously evaluated.

I. I NTRODUCTION

A major effort of the networking community is currently
devoted at introducing security services into decentralized
autonomous networks, such as MANETs and Wireless Sen-
sor Networks (WSN). In fact security represents a major
issue in these kind of networks, both for the lack of in-
frastructure and for the use of wireless communications that
can be easily eavesdropped. Moreover the physical control
on the access to the network, that is usually guaranteed by
cables, is often completely lost. Even if for different reasons,
similar issues also affect peer to peer networks [2], [15] and
electronic commerce communities [24], [20], [22], since they
all share the lack of a centralized control on the network and
they usually provide open access, even to malicious users.

In the outlined setting, the most basic problem that needs
to be addressed is that of being able to assess the trustworthi-
ness of the nodes in the network [15], [4], [1]. In our context,
we will broadly interpret trust as a belief relationship, where
an entity is confident that another peer will operate fairly,or
as it is designed [17].

This kind of information is in fact essential to be able to
predict the future behavior of the peers, hence empowering
the decision-making process of the protocols underlying the
network (such as routing in MANETS and WSN, as pointed
out in [17], [13]). In this way, potential damage caused by
malicious users will be reduced, for example because most
entities will avoid interacting with them, or at least they

will do it in a conscious way. Moreover, trustworthiness
quantification increases the degree of cooperation between
peers by forcing them to act responsibly, since selfish actions
are spotted and recorded. In other words, the ability to
evaluate and keep record of trust relationships representsthe
main driving force of cooperation in most settings [13], [5].

The lack of infrastructure and of any authoritative entity
in the network enforces the use of reputation-based systems,
where trust is established by protocols that try to evaluate
only the previous behavior of the entities, the only infor-
mation available in a setting where peers have no prior
knowledge of each other.

Unfortunately, despite the growing importance of this
problem, state of the art design of trust management systems
is still mostly at an empirical level [15], [21], [18], [1],
[13], [22], [5]. As it is pointed out in [17] and in [10],
most of the work on trust management in the literature is
prevalently based on heuristics and simulation as evaluation
method. The validation of the proposed systems is often
an overlooked aspect, where not all solutions are actually
verified and almost none are implemented and tested in a real
environment. In this context, theoretical analysis is extremely
rare and the comparison between different methods is there-
fore extremely difficult to accomplish, mainly because of the
great simulative effort that would be required. Solutions are
often hard to compare even on a simulative basis, since they
often rely on different hypothesis and are aimed at different
application scenarios.

In this context, a rare exception is the interesting ana-
lytical study of the problem presented in [8], a work that
considerably inspired this study. Given the importance of a
theoretical framework, the aim of this work is to provide a
deeper understanding of the problem through a more rigorous
approach that makes use of powerful tools and ideas arisen
in statistical physics.

In particular we tackle the problem from a mathematically
formal point of view by casting it into the framework of
Estimation Theory. A distributed maximum likelihood trust
estimation algorithm is then proposed and strong paral-
lelisms with the dynamics of disordered magnetic systems
are shown. Properties of Spin glasses discovered by physi-
cists are used to develop an intuitive understanding of the
algorithm behavior and to predict its performance.



Spin glasses models such as the famous Sherrington-
Kirckpatrick model [16] have already proved to be extremely
versatile and valuable to understand the global behavior of
complex systems such as neural networks, whose dynamics
can be modeled by the statistical mechanics of infinite-range
Ising spin glasses [3]. In this work we show how they
can also be used to understand the complex dynamics that
arise from the local interactions of peers in decentralized
networks, and we also demonstrate how to exploit the emer-
gence of collective behavior in large families of correlated
random variables in the design of distributed protocols to
achieve a desired global behavior.

II. T HE TRUST ESTIMATION PROBLEM FORMULATION

In our model, we consider a network consisting ofN
nodes, represented by a directed graphG = (V, E) in which
each entity can communicate with a certain subset of other
nodes according to an adjacency matrixA.

We represent the real trustworthiness status of each node
i with a bit variableTi ∈ {−1, 1}, so that we collectively
describe the trust status of the network with areal trust
vectorT ∈ {−1, 1}N , adopting the convention

Ti =

{

1 if node i is trustworthy
−1 otherwise

In a real setting the completereal trust vectorT is unknown
to the peers, nonetheless, as it is outlined in the introduction,
many protocols need to somehow estimate it to be able to
operate correctly.

Even if T is unknown, nodes are usually able to judge
their neighbors on the base of the history of their previous
interactions, that we assume to be statistically correlated with
the real trustworthiness status of the nodes. In particularwe
assume thatT does not change over time and it is related to
an opinion matrixC ∈ RN×N by the following equation

C = f(T, ω), ω ∈ Ω (1)

whereΩ is a sample space andf(·) represents the way in
which opinions are formed. In this setting an elementcij of
the opinion matrixC is the opinion that nodei has on node
j, and we assume that it is significant only ifi and j are
neighbors, since it is based on the history of their previous
interactions. The outlined frameworks is very general and,
with slight modifications, can be easily applied also to the
case of P2P networks and e-commerce communities.

Within this model, the role of a trust management algo-
rithm is that of estimatingT from C, assuming thatC and
the form off(·) in equation (1) are known. In the following
sections we will show how to design such an algorithm in a
distributed way, so that in each iteration only local opinions
are used but still obtaining the solution that maximizes the
likelihood given the entire matrixC.

A. The Gaussian case

In the following work we will mainly consider a special
case of equation (1) in which the opinions between two

entitiesi andj are modeled in the following way:

cij =

{

TiTj + wij if Aij = 1
0 if Aij = 0

(2)

where wij ∼ N (0, σ2) is a Gaussian random variable
that models the uncertainty that affects the opinion-forming
process.

With this choice, untrustworthy nodes are not selfish and
isolated but they rather try to act as a group, since they tend
to have good opinions of nodes that should not be trusted.

The role of the trust estimation algorithm is to find a trust
configurationT̂ ∈ {−1, 1}N that represents a good estimate
of the real trust vectorT . The most natural approach here
is to search for the configuration that is more likely to have
generated a certain observed opinion matrixC, or in other
words the trust configuration with the highest a posteriori
probability, givenC.

Under the assumptions made so far, we can compute
the likelihood LH(S; C) of any configurationS given an
opinion matrixC in the following way:

LH(T ; C) := p(T |C)

where p(T |C) is the probability of T conditioned that
C = C. In this way the maximum likelihood estimator
g : RN×N → {−1, 1}N is

g(C) := arg max
T̂

LH(T̂ ; C)

Observe that the Bayes rule yields

p(T |C) =
p(C|T )p(T )

p(C)

wherep(T ) is the a priori probability of the discrete random
variable T ∈ {−1, 1}N while p(C) and p(C|T ) are the
density and conditional density of the continuous random
variableC ∈ RN×N . This shows that

g(C) = argmax
T̂

p(C|T̂ )p(T̂ )

For the Gaussian model described in (2), assuming inde-
pendence, we have thatp(C|T ) = 0 if C has a nonzero entry
in position(i, j) 6∈ E. If insteadC has nonzero entries only
in (i, j) ∈ E, then

p(C|T ) =
∏

(i,j)∈E

1√
2πσ2

e−
(cij−TiTj)2

2σ2

= q(C)e
1

σ2

P

(i,j)∈E TiTjcij

whereq(C) is a normalization constant independent ofT .
Therefore maximizingp(C|T ) is equivalent to maximize

U(T ; C) :=
∑

(i,j)∈E TiTjcij , so that

arg max
T̂

p(C|T̂ ) = arg max
T̂

U(T̂ ; C)

It is easy to see thatU(T ; C) = U(−T ; C), a straightforward
consequence of the symmetrical behavior of trustworthy
and untrustworthy nodes. As a consequence, if alsop(T )
is symmetrical, the resulting complete likelihood function



LH(T ; C) becomes symmetrical inT , a situation in which
effectively distinguishing between the two kinds of nodes
would be clearly impossible. Therefore we will concentrate
on a priori distributions of the real trust vectorT that
are unbalanced, that is they privilege the presence of one
kind of nodes. In a practical setting, such a requirement
is not restrictive, because it is likely that more nodes are
trustworthy rather than not.

Suppose that the a priori probability distribution is
Bernoulli-distributed with parameterp, namely

p := P (Ti = 1)

Then, assuming independence, if we define

w(T ) = |{i|Ti = 1}|

then we have

p(T ) = pw(T )(1 − p)N−w(T ) = (1 − p)N

(

p

1 − p

)w(T )

Since

w(T ) =
N +

∑

i Ti

2

we also have

p(T ) = (1 − p)N

(

p

1 − p

)
1
2 (N+

P

i Ti)

= [(1 − p)p]N/2e
1
2 log( p

1−p )
P

i Ti

In this way we obtained that

p(T ) = γe−λ
P

i Ti (3)

whereγ normalizes to a probability distribution and

λ = −1

2
log

(

p

1 − p

)

Clearly the sign ofλ determines if the a priori distribution
is biased toward trustworthy nodes or the opposite, while for
λ = 0 (or equivalentlyp = 0.5) we have the symmetrical
case in which we cannot expect good results from the
estimation.

Putting all together we obtain

LH(T ; C) = q(C)e
1

σ2

P

(i,j)∈E TiTjcij γe−λ
P

i Ti

= γq(C)e
1

σ2 (
P

(i,j)∈E TiTjcij−λσ2 P

i Ti)

We conclude that the following proposition holds.
Proposition 1: The likelihoodLH(T ; C) of a configura-

tion T is proportional to a monotonic increasing function
of

H(T ) :=
∑

(i,j)∈E

TiTjcij − η
∑

i

Ti (4)

whereη = λσ2.

We can therefore compute a maximum likelihood estimate
of the real trust vector by setting

η = λσ2 = −σ2

2
log

(

p

1 − p

)

and by maximizing (4) over all possible configurationsT .
Equation (4) is very important because it represents the
energy or Hamiltonian of a configurationS in an Ising
Model [16] in the presence of an external magnetic field
of strengthη that breaks the symmetry of the system. Again
the physical interpretation confirms that in the case in which
the a priori distribution ofT is symmetrical, that isp =
0.5, the magnetic field disappears and the system becomes
completely symmetrical.

The statistical physics interpretation ensures an intuitive
understanding of the dynamics of the system and enables
us to take advantage of the rich literature in the field to
study our problem. In particular we are referring to systems
known as Spin Glasses [16], that exhibit randomly distributed
ferromagnetic and anti ferromagnetic interactions between
spins. They represent the first studied class of systems with
frustrated behavior, where the presence of conflicting inter-
actions forbids simultaneous minimization of the interaction
energies and hence the existence of a trivial global ground
state.

So far we have shown how the original problem of max-
imum likelihood estimation can be reduced to the problem
of finding the maxima of (4), or in other words the global
minima of −H(S), configurations known in physics as
ground statesof the system.

Unfortunately this optimization problem has been proved
to be NP-Complete for generic graphs in [6], and hence an
exhaustive search for global minima is widely believed to be
computationally intractable. However a natural approach to
tackle the problem seems to be a local search method based
on Simulated Annealing. In fact this powerful method has
been introduced in [9] to solve NP-complete optimization
problems by searching for the ground states of a system
described by a proper Hamiltonian function, that is exactly
the same problem we need to solve.

In a nutshell, the general algorithm works as follows.
Starting with any configurationS, we randomly choose one
nodei. If by flipping its trustworthiness valueSi we obtain a
higher energy (we want to maximize), we accept the change.
Otherwise, in case of a downhill move, the flip is accepted
with a certain probability. This probability is chosen to be
exponentially decreasing with the energy loss and depends
upon the global parametert, representing the temperature of
the corresponding physical system that is gradually reduced
by the algorithm.

An apparently similar approach has been previously pro-
posed in [8], but using a model in which the energy was
unrelated to statistical properties of the estimate. Moreover
they did not solve the optimization problem, since they
only used a Metropolis-like algorithm to generate a suitable
Markov Chain with a Boltzmann-distributed steady state
probability distribution, without being able to provide any



guarantee on the quality of the solution sampled from this
distribution.

III. T HE TRUST ESTIMATION ALGORITHM

The simulated annealing algorithm sketched out in the
previous section can be seen as an iterative application of
a voting rule, in which each node is repeatedly evaluated
by its neighbors. In particular they express their opinions
with a vote on its trustworthiness, and thevoting rule takes
them into consideration together with the current estimated
trustworthiness status of the participants to the vote. To
emulate the Metropolis-Hastings [11] algorithm we introduce
stochasticity into the rule so that we obtain the desired
Markov Chain structure with the proper steady state proba-
bility distribution.

The remarkable fact is that, despite the two levels of ran-
domness present in the system, both in the local interactions
between peers and in the way the opinions are generated,
we can show the emergence of a collective behavior of the
system that guarantees an efficient trust estimation.

Precisely, as mentioned before, at each time step a node
nodei is chosen randomly. The trustworthinessSj(k+1) of
nodesj different form i are kept constant while, as in [8],
the nodei adopt the following voting rule for computing
Si(k + 1)

P [Si(k + 1)|mi(k)] =
e

Si(k+1)(mi(k)−η)

t(k)

e
(mi(k)−η)

t(k) + e−
(mi(k)−η)

t(k)

(5)

wheremi(k) is defined to be

mi(k) =
∑

j∈Ni

(cij + cji)Sj(k), (6)

Ni is the set of neighbors ofi (we assume thati does
not belong toNi) and t(k) is the temperature parameter at
iterationk.

In this way we obtain a Markov chain with state space
{−1, 1}N and with transition probabilitypS,R := P [S(k +
1) = R|S(k) = S] which is equal to zero if the Hamming
distance ofS and R is greater than1, while, if if the
Hamming distance ofS and R is less than or equal to1,
we have that

pS,R =
1

N

e
Ri(mi(S)−η)

t(k)

e
(mi(S)−η)

t(k) + e−
(mi(S)−η)

t(k)

wherei is the index such thatSj = Rj for all j 6= i and

mi(S) :=
∑

j∈Ni

(cij + cji)Sj ,

It can be shown([14]) that with a logarithmic temperature
scheduling

t(k) =
t0

log(2 + k)

and with an initial temperaturet0 large enough, the probabil-
ity of finding a global minimum converges to1 ask → ∞.

If instead we choose to fix the temperature parametert
over time, the voting rule defined by equation (5) is simply

a modified version of the classical Metropolis-Hastings al-
gorithm, where we introduce a Markov Chain with different
transition probabilities but with the same steady state prob-
ability distribution. The graph associated with the Markov
Chain is strongly connected and consists of a finite number
(2N ) of states, each one with a self-loop. Therefore the
transition matrix is primitive and the resulting chain is
regular so that by Perron-Frobenius Theorem we conclude
that there exists a unique steady state probability distribution
that is reached from any initial probability distribution.

We will show in the following proposition that that with
the proposed voting rule (5) we obtain areversible Markov
Chain, that is the followingdetailed balance equationis
satisfied byπ

πS pS,R = πR pR,S ∀ R, S (7)

where R, S are generic states andpS,R is the transition
probability from stateS to R.

Proposition 2: If t = 1
β is fixed, then the voting rule

defines a Markov Chain whose steady state probability
distributionπ is Boltzmann-distributed

πT =
e−βH(T )

Z
(8)

where
Z =

∑

S

e−βH(T )

plays the same physical role of apartition function.
Proof: We will show that (7) holds true. Notice that, if

the Hamming distance betweenS and R is greater than1,
thenpS,R = pR,S = 0 and so (7) holds true. If the Hamming
distance betweenS and R is zero, thenS = R and so (7)
holds true. Assume now that the Hamming distance between
S andR is 1, and leti be the index such thatSj = Rj for
all j 6= i andSi 6= Ri. Observe now thatmi(S) = mi(R),
and so denote these number with the symbolmi. Then

pS,R

pR,S
=

eβRi(mi(S)−η)

eβSi(mi(S)−η)
= e−2βSi(mi−η)

On the other hand notice that

H(R) − H(S) =

2Siη − 2Si

∑

j|(i,j)∈E

Sjcij − 2Si

∑

j|(j,i)∈E

Sjcji

where the sums are over all outgoing and ingoing edges from
i. By substituting (6)

H(R) − H(S) = −2Si(mi − η)

Therefore
pS,R

pR,S
= eβ(H(R)−H(S))

and hence (7) holds true withπS = eβH(S). Finally notice
that

∑

S

πSpS,R =
∑

S

πRpR,S = πR

∑

S

pR,S = πR



which shows thatπS is the steady state probability distribu-
tion.

The choice of thevoting rule (5) however is not funda-
mental, because the steady state probability distribution(8)
could clearly be also obtained using the standard Metropo-
lis Algorithm, that is by choosing the following transition
probability

pS,R =

{

1 if ∆U > 0

eβ(∆U) otherwise
(9)

where∆U = 2Si(η−mi(S)), and whereS andR are states
with Hamming distance equal to1 andi is such thatSj = Rj

for all j 6= i andSi 6= Ri.
Both (9) and (5) are valid choices in the sense that

the associated Markov Chain is guaranteed to converge
to the steady state probability distribution (8). However
the convergence rate depends on the eigenvalues of the
transition matrix and hence on the voting rule used. By
Perron-Frobenius theorem we know that in both cases1 is
a dominant eigenvalue, so that the remaining eigenvalues
are located strictly into the unit circle, but it is their exact
position that determines the convergence rate.

The method described so far is an application of the
general idea arising from statistical physics to transforma
combinatorial optimization problem, where the largest value
of a target function is searched for over all possible con-
figurations, into the sampling of all its large values through
a distribution that assigns them the appropriate probabilities
or weights. In our case the weight function is given by the
parameterβ, that represents the inverse of the temperature
of the system. Its role is to tune the degree of randomness
introduced by thermal fluctuations, as opposed to the one
quenchedinto the system and described by equations (2)
and (3). If we consider equation (8), when the value ofβ is
large, the probability is concentrated on the configurationthat
minimizesH(S), while for smaller values ofβ its relative
weight decreases in favor of configurations with lower values
of H(S).

The role of the parameterβ can therefore be read as
a coefficient that enables us to tune the difficulty of the
problem, that ranges from a trivial case (β = 0, high
temperature) and a very difficult one (asβ → ∞, and the
system freezes concentrating all the weight on theground
state). In fact even if we can use algorithms such as (9) or
(5) to sample such a probability distribution for any value of
β > 0, their convergence speed (determined by the eigenval-
ues of the transition matrix as previously discussed) to the
desired steady state probability distribution decreases as the
temperature is lowered. Intuitively, this happens becausethe
Markov Chain is indeed ergodic for every value ofβ, but
the degree of ergodicity decreases asβ increases because
downhill moves become more unlikely and therefore it is
easier to get stuck in local minima ofH(S). On the other
hand, for small values ofβ there is a faster convergence,
but the resulting steady state probability distribution isnoisy
because of the weight distribution at high temperatures.

In this context Simulated Annealing can be seen as an
attempt to gradually increase the difficulty of the problem
by decreasing the temperature, while taking advantage of
the solution found for a somewhat easier problem.

According to the previously described trust management
system, each iteration of the algorithm consists in a local
vote, where the results are decided according to equation
(5). The most remarkable result is that the iterations are
local, that is they involve only the opinions of the neighbors
of a node being voted. In this way the opinions data do
not have to travel all over the network, as it happens for
example with a consensus-based system, but yet it achieves
an estimate as good as it would be the one obtained by a
centralized server that knows the entire opinion matrixC.
This fact is particularly important in a decentralized setting,
where it would be just too expensive to propagate all the
information through the network.

Another important aspect of the dynamics that can be
inferred from the statistical physics literature is that the
existence of a global behavior essentially descends from
the concentration of measure phenomenon. This fundamental
and ubiquitous concept refers to the phenomenon of a func-
tion of a large number of random variables that, under certain
conditions of regularity and on the statistical dependence
between the random variables, tends to concentrate its values
in a set of relatively small measure. The famous Laws of
Large Numbers and the Central Limit Theorem are just
some examples of this general principle applied to sums of
independent variables. In our case, even if the global outcome
is the result of a complicated local interaction between
various level of randomness, the result not only appears to be
almost deterministic, but it is also extremely robust. In fact
the concentration of measure phenomenon ensures that the
global properties are obtained to some extent regardless of
the particular probability distribution of the noise that affects
the opinions modeled in equation (1).

A mathematically rigorous approach for the Sherrington-
Kirkpatrick model con be found in [7], where it is shown that
the Spin glass qualitative behavior relies on weak hypothesis
on the distribution of the couplingscij in equation (4) (that
we assumed to be Gaussian). This ensures a great degree of
robustness to the algorithm proposed, as it is confirmed in the
simulative analysis, where it is tested in settings significantly
different from the ideal Gaussian framework for which the
algorithm has been originally conceived.

IV. A NALYSIS

Thanks to a much stronger mathematical understanding
of the problem, we have been able to design a distributed
algorithm that finds a reasonable solution in the form of a
maximum likelihood estimate. In this section we address the
problem of understanding the average performance of the
algorithm, both from a theoretical point of view and by the
means of Monte Carlo simulations.

From a qualitative point of view, we can start the analysis
by noticing that we cannot expect any topology-independent
result. For example, in a network made by isolated vertices,



we cannot do any better than just using the a priori knowl-
edge. We will therefore need to fix a topology to be able to
show some meaningful results.

A. Case study: complete graphs

Even if it not representative of the topologies of any real
world network, we will focus our attention on the case
of a complete communication graph, mainly because most
analytical results from Spin glasses theory are derived for
this topology. However the intuition developed in the pre-
vious sections through physical interpretations suggeststhat
the qualitative behavior should not change for non-singular
topologies, and we expect to be able to take advantage in a
near future of the recent analytical results obtained for other
topologies such as Bethe lattices [12].

In the the case of a complete communication graph with
N nodes, equation (2) becomes

C = TT ′ + W

where each element of the matrixW is wij ∼ N (0, σ2). Let

T̂ := argmaxS∈{1,−1}N H(S)

Let moreover
h(T̂ ) := |{i : T̂i 6= Ti}|

namely the number of correct estimates given byT̂ . We have
the following result.

Proposition 3: If η 6= 0

lim
N→∞

E

[

h(T̂ )

N

]

= 0

Proof: Observe that

E[H(T )] = E[T ′CT − η
∑

i

Ti] =

= E[T ′TT ′T ] + E[T ′WT ]− η
∑

i

E[Ti] =

= N2 +
∑

ij

E[wij ]E[TiTj] − ηN(2p − 1) =

= N2 − ηN(2p − 1)

On the other hand we have that

E[H(T̂ )] = E[(T̂ ′T )2] + E[T̂ ′WT̂ ] − E[η
∑

i

T̂i]

Notice now thatT̂ ′T = N − 2h(T̂ ) and that−η
∑

i T̂i ≤
|η|N . Moreover from spin glass theory we know [19],
[7] that the sequenceN− 3

2 E[maxS S′WS] converges asN
tends to infinity and so there exists a constantα such that
E[T̂ ′WT̂ ] ≤ αN3/2 for all N . These facts imply that

E[H(T̂ )] ≤ E[(N − 2h(T̂ ))2] + αN3/2 + |η|N

Since we always have thatH(T̂ ) ≥ H(T ), thenE[H(T̂ )] ≥
E[H(T )] which implies that

N2 − ηN(2p − 1) ≤ E[(N − 2h(T̂ ))2] + αN3/2 + |η|N

If we denoteh(T̂ )/N with the symbolxN , then the previous
inequality together with0 ≤ xN ≤ 1 proves that

E[xN − x2
N ] −→ 0

asN tends to infinity. We need to show that this implies that
E[xN ] −→ 0.

In the remaining part of the proof we will restrict ourselves
to the caseη < 0 for the ease of explanation. However a
totally symmetric argument can be developed for the case
η > 0.

Remind that the symbolw(T ) means the number com-
ponents inT equal to+1. Now notice thatw(T̂ ) ≥ N/2.
Indeed this follows from the fact thatH(T̂ ) ≥ H(−T̂ ) which
implies that

H(T̂ ) = T̂ ′CT̂ − η
∑

i

T̂i ≥ T̂ ′CT̂ + η
∑

i

T̂i = H(−T̂ )

and so−2η
∑

i T̂i ≥ 0. Since η < 0 then we must have
∑

i T̂i ≥ 0 and sow(T̂ ) ≥ N/2. Consider now the three sets
A1 = {i|Ti = T̂i}, A2 = {i|Ti = −1}, andA3 = {i|T̂i =
−1}. ClearlyA1∪A2∪A3 = {1, . . . , N} from which follows
that their cardinality satisfy|A|+|A2|+|A3| ≥ |{1, . . . , N}|,
or equivalently(N−h(T̂ ))+(N−w(T̂ ))+(N−w(T̂ )) ≥ N ,
which implies:

h(T̂ ) ≤ 2N − w(T ) − w(T̂ )

Using this inequality together withw(T̂ ) ≥ N/2, we can
argue thath(T̂ ) ≤ (3/2)N −w(T ). Observe now thatw(T )
is a binomial random variable, namely

P [w(T ) = k] =

(

N

k

)

pk(1 − p)N−k

We want to use this fact in order to estimateP [xN ≥
1 − δ] where δ is such that0 < δ < p − 1/2. Since
h(T̂ ) ≤ (3/2)N − w(T ), then h(T̂ )/N ≥ 1 − δ implies
that w(T )/N ≤ 1/2 + δ and so

P [xN ≥ 1 − δ] ≤ P [w(T ) ≤ (1/2 + δ)N ]

Since(1/2 + δ)N ≤ Np = E[w(T )] we are in a position to
apply the Chernoff bound which ensures that

P [w(T ) ≤ (1/2 + δ)N ] ≤ e−νN

where

ν :=
(p − 1/2 − δ)2

2p

We can argue therefore thatP [xN ≥ 1 − δ] ≤ e−νN . We
want to use this inequality in order to estimateE[x2

N ]. Indeed,
observe that

E[x2
N ] =

1

N2

N
∑

k=0

k2P [h(T̂ ) = k] =

=
1

N2

∑

k≤(1−δ)N

k2P [h(T̂ ) = k] +

+
1

N2

∑

k>(1−δ)N

k2P [h(T̂ ) = k]
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Fig. 1. Performance of the algorithm with a complete communication
graph ofN nodes for several values ofN . The a priori probabilityp that
a node is trustworthy is0.7.

Observe thatk2 ≤ N2 and that, whenk ≤ (1 − δ)N , then
k2 ≤ (1 − δ)Nk. Using these inequalities we obtain that

E[x2
N ] ≤ (1 − δ)

N

∑

k≤(1−δ)N

kP [h(T̂ ) = k] +

+
∑

k>(1−δ)N

P [h(T̂ ) = k] ≤

≤ (1 − δ)

N

N
∑

k=1

kP [h(T̂ ) = k] +

+P [h(T̂ ) ≥ (1 − δ)N ] ≤
≤ (1 − δ)E[xN ] + e−νN

Observe finally that

δE[xN ] = E[xN − x2
N ] + E[x2

N ]

−(1 − δ)E[xN ] ≤ E[xN − x2
N ] + e−νN

Since both term in the sum tends to zero, alsoδE[xN ] tends
to zero.

In the caseη > 0 one should considerr(T ) = N−w(T ) =
|{i|Ti = −1}| in place of w(T ) and repeat an analogous
argument.

B. Simulative Results

From a simulative point of view, we are interested in
measuring what is the fraction of nodes that the Simulated
Annealing-based algorithm is not able to correctly identify, in
expectation. IfS∗ is the maximum likelihood configuration
returned by the algorithm, we are interested in the average
error rate

E

[ ||S − T ||1
2N

]

= E

[

h(S∗)

N

]

where the expectation is taken over all levels of random-
ness. The first experiment is performed by simulating the
environment described by the Gaussian model presented in

section II-A, for various values ofN andσ2. The estimation
algorithm uses the simulated annealing approach, with an
exponential temperature coolingt(k + 1) = α t(k) of
parameterα = 0.91 starting from an initial temperature of
10N2. However the choice of these parameters is not very
important and does not affect significantly the performance.

As we can note in figure 1 the performance of the
algorithm decreases as does the quality of the a posteriori
information (measured by a larger variance on the opinions).
However it is remarkable that the algorithm is never outper-
formed by the optimal estimator that is based solely on the
a priori informationS∗

ap:

S∗
ap =

{

[1, . . . , 1] if p > 1
2

−[1, . . . , 1] if p ≤ 1
2

,

that clearly shows an average error rate of(1 − p).
Moreover we can see that proposition 3 is confirmed by

the data, where the error rate decreases asN grows.
To show the robustness of the algorithm proposed we

consider another reasonable model for (1), where the errors
are Bernoulli distributed. In particular we assume that if
Aij = 1 then

cij =

{

TiTj with probability1 − pe

−TiTj with probabilitype
(10)

This means that if a node is trustworthy (Ti = 1), thencij =
Tj with probability 1 − pe, while the contrary holds when
Ti = −1. Thus the parameterpe represents the probability
for a trustworthy node of misjudging a neighbor.

The results obtained with various error probabilitiespe

and various networks sizes are shown in figure 2. The trust
estimation algorithm uses a value of

σ2 = E[(cij − TiTj)
2] = 4pe (11)

and it shows an exceptional performance at least until
pe approaches0.5. The results are comparable with those
obtained with model (2), when the variance of the error
on the opinions is the same according to equation (11).
However whenpe > 0.5, on average there are more wrong
opinions than correct, and the algorithm is outperformed by
the one based solely on the a priori information. The average
error rate shows a sharp phase transition phenomenon around
pe = 0.45, that is typical of spin glasses systems.

CONCLUSIONS

In this work we present a mathematically sound framework
for trust evaluation in decentralized autonomic networks by
casting it as an estimation problem. A maximum likelihood
estimation algorithm is developed, with the fundamental
property that it is completely based on local interactions
between nodes without any need for central coordination.

These local interactions are characterized by several levels
of randomness, both unavoidable because residing in the
uncertainty in the opinions that the nodes have on their neigh-
bors and artificially introduced by the algorithm in the voting
rule. Despite that, an almost deterministic global behavior is
obtained, as predicted by Spin glass theory models in the
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Fig. 2. Performance of the algorithm with a complete communication graph
of N nodes for several values ofN and opinions generated according to
model (10). The a priori probabilityp that a node is trustworthy is0.7.

more general framework of the concentration of measure
phenomenon. In our opinion this concept might play a
fundamental role in the design of protocols for decentralized
settings where little is known or can be assumed on the
behavior of singular nodes, but it is necessary to obtain a
desired behavior of the network as a whole.

In this perspective statistical physic tools and more gen-
erally theories about disordered systems have already been
successfully applied to the study of collective animal be-
havior and flocking. This case study on trust management
represents a first attempt to lift the use of these tools to a
designing perspective, from an engineering point of view.

As outlined in section IV, the resulting algorithm exhibits
an excellent performance, as it was predicted by the the-
oretical analysis carried out. Another positive aspect is that
the corresponding physical model enables us to understand at
least at an intuitive level what will be the effect of parameter
tuning on the dynamics of the system.

The great degree of robustness of the algorithm makes it
suitable for a variety of settings in distributed networks,even
where equation (2) is not a good model of the way in which
opinions are generated, as the simulative analysis suggests.
This property is particularly important because it ensuresthat
to some extent the system is resilient to malfunctioning or
even malicious users that try to jeopardize the system.

Even if there is evidence from spin glasses theory [7] that
the qualitative behavior of the system relies on really weak
hypothesis on the distributions ofcij in the Hamiltonian (4)
(a finite fourth moment is sufficient), a promising research
direction is certainly to quantify the robustness of the method
from a quantitative point of view, both from a theoretical and
simulative perspective.

Immediate future work will also include the study of
the performance of the algorithm on more realistic network
topologies, such as the one generated with the Watts-Strogatz
model [23] that exhibit small-world properties, including

short average path lengths and high clustering.
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