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Abstract

Body rotation and orientation sensing mecha-
nisms used by flying insects are introduced and their
mathematical models are presented. The analysis
and simulations of these models showed the feasibil-
ity of using such biologically inspired approaches to
build biomimetic gyroscopes and angular position de-
tectors. Further, an approximate rigid body model
for the insect body dynamics is developed so that
attitude stabilization techniques for a flying robotic
insect can be tested to illustrate the utility of these
novel sensor architectures. To the authors’ knowl-
edge, this is the first attempt in using output feedback
from biomimetic devices such as ocelli and halteres
to achieve attitude stabilization.

1 Introduction

Micro aerial vehicles (MAVs) have drawn a great
deal of attention in the past decade due to the quick
advances in microtechnology and several groups have
worked on MAVs based on fixed and rotary wings [4].
However, flapping flight provides superior maneuver-
ability that would be beneficial in obstacle avoidance
and for navigation in small spaces. Therefore, the
UC Berkeley Micromechanical Flying Insect (MFI)
project uses biomimetic principles to develop a flap-
ping wing MAV that will be capable of sustained au-
tonomous flight [1],[12]. One important concern in
designing the components of the MFI is their power
consumption. Current power budget for the MFI is
20mW and the majority of this power will be allo-
cated to the actuation of the two wings.

On the other hand, the sensory system of the MFI,
which is crucial for stabilizing flight, should con-
sume little power. The power requirements of off-
the-shelf micro sensors are generally too expensive
for the MFI. At present, piezo-actuated biomimetic
angular rate sensors for use on the MFI have been
constructed [11]. Another biomimetic device called
ocelli, which is currently being implemented, con-
sists of four photoreceptors to sense the light inten-
sity in the surrounding to estimate the orientation of
the MFI. Both sensors have the virtues of simple de-
sign, easy implementation, low power consumption,
and high performance. This paper first presents the
modeling of these two types of biologically inspired
sensors and then proposes a close-loop attitude con-
trol scheme using the sensor output as feedback.

2 Insect Flight Dynamics

Flight dynamics of flapping insects is still an open
area of research [7] due to the difficulties of measur-
ing aerodynamic forces on real flying insects, and

of validating proposed theoretical models. In this
work we model the dynamics of a flying insect as a
rigid body subject to external forces. Albeit wings do
move relative to the insect body, their mass is within
1− 5% of total insect mass and hence their effect on
the insect dynamics is relatively small and can be ne-
glected. Therefore, we assume that the insect body
motion evolves according to the rigid body motion
equations subject to external forces relative to its
center of mass [5]. The external forces acting on an
insect are the aerodynamic forces generated by the
wings, the gravity force, and the body viscous drag.
Since we are interested in attitude control, gravity
does not play a role. Also, we deal mainly with slow
body rotations in this work, angular viscous forces
are neglected. The aerodynamic forces generated
by flapping wings are highly time-varying within a
single wingbeat and they can not be controlled in-
stantaneously. However, preliminary work on wing
kinematics seems to indicate that it is possible to
control the mean value of these forces, in particular
torques, over a full wingbeat [8]. Therefore, in this
work we assume that we have full control of the aero-
dynamic torques. Moreover, since the motion of the
insect is slow relative to the motion of the wings, we
assume that these torques can be controlled contin-
uously. Summing up, the dynamics of the attitude
of a flapping insect is modeled as follows:

Ṙ = Rω̂b

ω̇b = I−1
b (τ b − ωb × Ibω

b)
τ b = u

ω̂b =

[
0 ωb

z −ωb
y

−ωb
z 0 ωb

x

ωb
y −ωx 0

] (1)

where ωb = [ωb
x ωb

y ωb
z]T is the angular velocity of the

insect body relative to the body frame B, τ b ∈ R3

is the total external torque relative to the body
frame B attached to the center of mass of the in-
sect body, Ib ∈ R3×3 is the moment of inertia of
the insect body relative to the body frame B, ωb is
the insect body angular velocity relative to the body
frame B, u ∈ R3 is the control input vector, and
R ∈ SO(3) = {R ∈ R3×3 : RT R = I, detR = +1}
is the rotation matrix representing the orientation of
the insect body frame B relative to the fixed frame A.
In particular, let vb = [xb yb zb]T and va = [xa ya za]T

the coordinates of a vector v ∈ R3 relative to the
body frame B and the fixed frame A, respectively.
Then, these coordinates satisfy the following trans-
formations:

va = Rvb

vb = RT va
(2)

As shown in Figure 1, the coordinates of the z-axis
vb

z = [0 0 1]T attached to the body frame relative to
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Figure 1: Fixed frame and body frame coordinates
representation

Figure 2: Head of a blowfly and the field of reception
of its ocelli (curtesy from [10])

the fixed frame A are va
z = Rvb

z = [r13 r23 r33]T , while
the coordinates of the z-axis wa

z = [0 0 1]T attached
to the fixed frame relative to the body frame B are
wb

z = RT wa
z = [r31 r32 r33]T . Note that wb

z 6= va
z .

3 Ocelli

3.1 Morphology

The ocelli are sensory organs present in many fly-
ing insects. This system consists of three wide angle
photoreceptors placed on the head of the insect (see
Figure 3.1). They are oriented in such a way that
they collect light from different regions of the sky
(see Figure 3.1). Albeit the exact physiology of the
ocelli and their scope in insect flight is still not com-
pletely unveiled, it is believed that they play a fun-
damental role in attitude stabilization, in particular
horizon stabilization in some insects [10].

Biologists believe that ocelli estimate the orienta-
tion of the insect with respect to the sky by compar-
ing the intensity of light measured by the different
photoreceptors. Their argument is based on the as-
sumption that, as a first approximation, the intensity
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Figure 3: Graphical rendering of ocelli present in
flying insects. Four photoreceptors, represented as
P1, P2, P3, P4, collect light from different regions of
the sky. The shadowed area indicates such a region
for photoreceptor P3.

of light measured by the photoreceptors, I, is only a
function of its latitude θ relative to the light source
(i.e. the sun).

3.2 Modeling
Any point P in the sky can be represented in

polar coordinates (r, θ, ψ) where r ∈ R+ is the ra-
dius of the celestial sphere, θ ∈ [0, π] is the lati-
tude, and ψ ∈ [0, 2π] is the longitude, relative to
the fixed frame A. Without loss of generality, the ra-
dius of the celestial sphere is normalized to unity, i.e.
r = 1. Alternatively, the same point can be written
in Cartesian coordinates p = (xP , yP , zP ), ||p|| = 1.
The transformation from polar to Cartesian coordi-
nates is given by:

xP = sin θ cosψ
yP = sin θ sinψ
zP = cos θ

(3)

The ocelli sensory system is modeled as four ideal
photoreceptors, called P1, P2, P3, P4, fixed with re-
spect to the body frame B, each measuring the light
intensity from a region of the sky. They are oriented
symmetrically such that they have the same latitude
and intersect the sky sphere forming an imaginary
pyramid, whose vertex is placed at the center of the
insect head. Formally, their orientation relative to
the body frame B can be represented in Cartesian
coordinates as follows:

P b
1 = (

√
1− h2, 0, h), P b

2 = (−√1− h2, 0, h)
P b

3 = (0,
√

1− h2, h), P b
4 = (0,−√1− h2, h)

(4)

where the parameter h ∈ (−1, 1) sets the latitude
of the photoreceptors. Every photoreceptor collects
light from a conic region Ai around its ideal orienta-
tion Pi as shown in Figure 3.1.

The most important assumption made in this part
is that the intensity of light, I, measured by a pho-
toreceptor P , is independent from its longitude and
is a strictly monotonically decreasing function of its
latitude only. Formally it can be written as:

I(P ) = I(ψ, θ) = I(θ)
θ1 < θ2 ⇒ I(θ1) > I(θ2)

(5)

where, with an abuse of notation, we identify the po-
sition of the photoreceptor with its latitude θ, which



Figure 4: Light intensity distribution over the celes-
tial sphere for different monotonic functions.
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Figure 5: Physical and mathematical representation
of ocelli sensory system.

is the angle between the z-axis of the fixed frame A
and the orientation of the photoreceptor on the ce-
lestial sphere (see Figure 1). Figure 3.2 shows the
light intensity distribution on the sky sphere for dif-
ferent monotonic functions of the latitude. Without
loss of generality, the intensity is normalized so that
Imax = I(0) = 1, Imin = I(π) = −1. The mono-
tonic distribution of light intensity on the celestial
sphere can be satisfied only in an ideal environment
where the landscape is uniform and the light is dif-
fused uniformly around its source. In reality, objects
such as clouds and buildings can mine this assump-
tion. However, we believe that this hypothesis is ap-
proximately correct for the most part of the celestial
sphere around the light source.

The measurements from the photoreceptors are
simply subtracted pairwise as shown in Figure 3.2
and these two signals are the output from the ocelli:

y1 = I(P a
1 )− I(P a

2 )
y2 = I(P a

3 )− I(P a
4 ) (6)

where P a
i is the photoreceptor orientation in Carte-

sian coordinates relative to the fixed frame A. Given
the orientation R ∈ SO(3), of the insect body frame
B relative to the fixed frame A, the orientation of
the photoreceptor Pi relative to the fixed frame is
P a

i = RP b
i . Since the orientation of the photorecep-

tors is fixed with respect to the body frame B, the
outputs from the ocelli depend only on the insect ori-
entation R. From a mathematical point of view, the
ocelli system can be thought as a nonlinear function

f : SO(3) → R2 of the insect orientation as shown
in Figure 3.2.

3.3 Orientation Estimation
This section is devoted to studying the general

properties of the map f(), i.e. how much informa-
tion about the orientation R can be retrieved from
the ocelli output. We first consider the special case
where the light intensity measured by the photore-
ceptors is I(θ) = cos θ. This instance clearly high-
lights the relation between the insect orientation R
and the ocelli output y. Then, we consider general
cases where I(θ) is simply monotonic.

Proposition 1 Suppose that the light intensity mea-
sured by the photoreceptors is I(θ) = cos θ, and let
the orientation of the photoreceptors be such that
h =

√
3

2 in Equations (4). Then the output of the
ocelli is y1 = r31, y2 = r32, where rij is the i − j
entry of the insect orientation matrix R.

Proof: Substituting h =
√

3
2 and I(θ) = cos θ into

Equations (6) we get:

y1 = I(P a
1 )− I(P a

2 ) = cos θP a
1
− cos θP a

2

= eT
z P a

1 − eT
z P a

2 = eT
z RP b

1 − eT
z RP b

2

= eT
z R(P b

1 − P b
2 ) = eT

z Rex = r31

y2 = . . . = eT
z R(P b

3 − P b
4 ) = eT

z Rey = r32

(7)

where ex = [1 0 0]T , ey = [0 1 0]T , ez = [0 0 1]T . The
second line follows from the fact that cos θP a = zP =
eT
z P a and that P a

i = RP b
i .¦

As described at the end of Section 2, r31 and r32
correspond to the x and y coordinates of the z-axis
of the fixed frame A relative to the body insect B.
In other words, the ocelli can measure the x and
y position of the light source relative to the insect
body. Intuitively, it is clear that this information
can be used to rotate the insect body towards the
light source.

When the light intensity I(θ) measured by the
photoreceptors is only a monotonically decreasing
function of the latitude, the ocelli do not estimate
the exact orientation of the sun relative to the insect
body frame, but they can still retrieve its approx-
imate direction, as shown in the following proposi-
tion:

Proposition 2 Suppose that the light intensity mea-
sured by the photoreceptors, I(θ), is unknown but a
strictly monotonically decreasing function of the lati-
tude θ. Then the output of the ocelli has the following
properties:

y1 = 0 =⇒ r31 = 0; y1 6= 0 =⇒ y1r31 > 0
y2 = 0 =⇒ r32 = 0; y2 6= 0 =⇒ y2r32 > 0 (8)

Proof: First we recall that cos−1() is a strictly
monotonically decreasing function of its argument,
and that the composition of two monotonically de-
creasing functions is a monotonically increasing func-
tion. Therefore, Ĩ = I ◦ cos−1() is a monotonically
increasing function. Consider the first ocelli output
y1:

y1 = I(θP a
1
)− I(θP a

2
)

= I(cos−1(eT
z P a

1 ))− I(cos−1(eT
z P a

2 ))
= Ĩ(eT

z P a
1 )− Ĩ(eT

z P a
2 )

= Ĩ(eT
z RP b

1 )− Ĩ(eT
z RP b

2 )
= Ĩ(r31

√
1− h2 + r33h)− . . .

. . .− Ĩ(−r31

√
1− h2 + r33h)

(9)



where we use the fact cos θP a = zP = eT
z P a in the

second line, and the orientations P b
i of the photore-

ceptors are given by Equations (4). Let us define
l =

√
1− h2. Since the function Ĩ is monotonically

increasing we have:

y1 > 0 ⇒ Ĩ(r31l + r33h) > Ĩ(−r31l + r33h)
⇒ r31l + r33h > −r31l + r33h
⇒ 2 r31l > 0 ⇒ r31 > 0

(10)

where we use the fact that Ĩ is monotonically in-
creasing and that l > 0. Analogously, it is easy to
verify that y1 < 0 ⇒ r31 < 0. From monotonicity of
Ĩ also follows that y1 = 0 ⇒ r31 = 0. Finally, the
same arguments can be used to prove the properties
of ocelli output y2. ¦

This proposition indicates that the ocelli still give
an approximate position of the light source, regard-
less of the exact positioning of the photoreceptors
relative to the insect body and regardless of the spe-
cific light intensity distribution as long as it is mono-
tonic. Moreover, the outputs of the ocelli are zero if
and only if the z-axis of the body frame is aligned
with the z-axis of the fixed frame. Intuitively, if the
insect rotates towards the apparent position of the
light source given by the ocelli, it will eventually
align the z-axes of the body and the fixed frame.
This intuition is exploited when designing the stabi-
lizing control laws for the attitude.

4 Halteres

4.1 Morphology

Research on insect flight revealed that in order to
maintain stable flight, insects use structures, called
halteres, to detect body rotations via gyroscopic
forces [3]. The halteres of a fly evolved from hind-
wings and are hidden in the space between thorax
and abdomen so that air current has negligible ef-
fect on them (see Figure 6). The halteres resemble
small balls at the end of thin rods. There are about
400 sensilla embedded in the flexible exoskeleton at
the haltere base. These mechanoreceptors function
as strain gages to detect the Coriolis force exerted
on the halteres [2]. During flight the halteres beat
up and down in vertical planes through an angle of
nearly 180o anti-phase to the wings at the wingbeat
frequency. When a fly’s halteres are removed or im-
mobilized, it quickly falls to the ground. In addition,
the two halteres of a fly are non-coplanar (each is
tilted backward from the transverse plane by about
30o) so that flies can detect rotations about all three
turning axes.

4.2 Modeling

A complex force, as a result of insect motion and
haltere kinematics, acts on the halteres during flight
[6]. Assuming no translational motion of the insect,
this force can be expressed in vector notation by the
following:

F = mg−ma−mω̇×r−mω×(ω×r)−2mω×v (11)

where m is the mass of the haltere, r, v, and a are
the position, velocity, and acceleration of the haltere
relative to the insect body, ω and ω̇ are the angular
velocity and angular acceleration of the insect, and
g is the gravitational constant. Further, this force
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Figure 6: Schematic of enlarged halteres of a fly.

can be decomposed into radial, tangential, and lat-
eral components as depicted by the exploded view
of the haltere in Figure 6. Insect’s body rotations
produce centrifugal (−mω × (ω × r)) and Coriolis
(−2mω × v) forces on the halteres. The centrifugal
force is generally smaller than the Coriolis force and
mostly in the radial and tangential directions. More-
over, the centrifugal force provides no information on
the sign of rotations. The Coriolis force, on the other
hand, has components in all three directions and con-
tains information on the axis, sign, and magnitude of
the insect’s body rotations. The angular acceleration
force (−mω̇ × r) and the Coriolis force are separa-
ble because of the 90o phase shift (they are orthog-
onal functions). The primary inertial force (−ma)
has only radial and tangential components and is or-
ders of magnitude larger than the Coriolis force. The
gravitational force (mg) is always constant and de-
pending on the haltere position and the insect’s body
attitude in space, its distribution in the three direc-
tions varies. However, the effect of this gravitational
force on the rotation sensing is negligible because it
is a tonic lateral component which can be considered
as DC offset on the Coriolis force and removed by
the subsequent signal processing step.

Figure 7 shows the traces of the components of
the Coriolis force for rotations about the roll, pitch,
and yaw axes. Note that since the Coriolis force is
proportional to the cross product of the angular ve-
locity and the instantaneous haltere velocity, there is
no tangential component in the Coriolis force. In ad-
dition, to detect body rotations, the lateral forces on
the halteres are measured because the large primary
inertial force has no contribution in the lateral di-
rection and hence it is possible to measure the Cori-
olis signal among all other interfering force signals
appearing in this direction. Because of the depen-
dence of the Coriolis force on the haltere velocity,
these force signals are modulated in time with hal-
tere beat frequency. For a roll rotation, the signal is
modulated with the haltere beat frequency and the
left and right signals are 180o out-of-phase. For a
pitch rotation, the signal is also modulated with the
haltere beat frequency, but the left and right signals
are in-phase. For a yaw rotation, the signal is modu-
lated with double the haltere beat frequency and the
left and right signals are 180o out-of-phase.

Utilizing the characteristics (frequency, modula-
tion, and phase) of these force signals on the left and
right halteres, a demodulation scheme is proposed
to decipher roll, pitch, and yaw rotations. First, a
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Figure 7: Coriolis force for rotations about the roll,
pitch, and yaw axes.

pitch rotation can be easily distinguished from roll
and yaw rotations by noting the phases of the left
and right signals. Because the left and right signals
are in-phase for pitch while out-of-phase for roll and
yaw, adding the left and right signals retains pitch
component and eliminates roll and yaw components.
In order to separate roll and yaw components, the
force signal is multiplied by demodulating signals of
corresponding frequencies as:

± sin(Ωt) · sin(Ωt) = ± sin2(Ωt) (12)
± sin(2Ωt) · sin(2Ωt) = ± sin2(2Ωt) (13)
± sin(Ωt) · sin(2Ωt) = ±2 sin2(Ωt) · cos(Ωt)(14)

where Ω is the haltere beat frequency.
From equations 12 and 13, it is clear that when

the products are averaged over one haltere cycle, a si-
nusoidal signal at the haltere frequency retrieves the
roll component which is modulated with the haltere
beat frequency, while a sinusoidal signal at double
the haltere frequency retrieves the yaw component
which is modulated with double the haltere beat fre-
quency. However, if the demodulating and force sig-
nals are at different frequencies as in equation 14,
averaging the product over one haltere cycle results
in zero output. Thus, this technique effectively de-
couples roll from yaw. Figure 8 illustrates this pro-
posed demodulation scheme. Ideally, the magnitudes
of the amplifiers, Ar, Ay, and Ap, would be propor-
tional to −1/2mv, where m is the mass and v is the
instantaneous velocity of the haltere.
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Figure 8: Demodulation scheme of haltere forces.

4.3 Simulations

The mechanism which the halteres detect angu-
lar velocities and the proposed demodulation method
have been tested. In the simulations, the halteres
were assumed to be phase-locked to the wings and
beating in the stroke plane. These assumptions are
made due to the fact that when the wings are flap-
ping, the body of the insect would oscillate, as a re-
sult of the wing inertia, along an axis parallel to the
wing stroke in the stroke plane. Since the forces or-
thogonal to the haltere beat plane (i.e. lateral forces)
are sensed, it is possible to avoid the error caused by
this common mode body oscillation by phase-locking
the halteres to the wings in the stroke plane.

For testing the performance of the halteres, the
angular velocities of an insect under hovering condi-
tion are generated by the Virtual Insect Flight Simu-
lator (VIFS), a software testbed that is used to sim-
ulate the dynamics of the MFI and evaluate control
algorithms [9]. The results are shown in Figure 9.
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Figure 9: Angular rotation detection by halteres.

5 Attitude Stabilization via Output
Feedback

In the previous sections we described how halteres
can estimate the insect angular velocities relative to
the body frame, and how the ocelli can estimate the
position of the z-axis of the fixed frame relative to the
body frame. In this section we combine the outputs
from these two sensory systems to obtain a global
stabilizing control law to align the z-axis of the body
frame with the z-axis of the fixed frame. These two
axes are aligned if and only if the angle, θz, between
them is zero. This angle can be computed from the
rotation matrix R, by recalling that cosine of the
angle between two unit vectors is given by their inner
product, i.e. cos θz = eT

z va
z = eT

z Rez = r33 where
vz represents the z-axis of the body frame. Based
on the intuition that the input torque should rotate
the insect body frame such that the angle θz would
decrease, we propose the following output feedback
law:

u = −a[y2 − y1 0]T − c ω̂b (15)

where aandc are scalar and ω̂b is the haltere output.
This is shown in the following two theorems:
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Figure 10: Simulations results of insect dynamics.

Theorem 1 If the intensity function I = f(θ) =
A cos(θ), where A ∈ R is a constant, and a, c > 0
then the control law (15) globally aligns the z-axes
of the fixed and body frames, i.e. (θz = 0, ωb = 0) is
a stable equilibrium point.

Theorem 2 If the intensity function I = f(θ) is a
monotonically decreasing function, then there exists
a positive constant M > 0 such that the control law
(15) globally aligns the z-axes of the fixed and body
frames, i.e. (θz = 0, ωb = 0) is a stable equilibrium
point, as long as c > Ma.

In our framework ”globally” means for any initial
condition but (θz, ω

b) 6= (π, 0), which corresponds
to an unstable equilibrium orientation. The proofs
of these two theorems are rather lengthy, and hence
are omitted in this paper.

Simulations of control law (15) with light intensity
function I = cos5 θ and initial conditions (θz, ω

b) =
(π

2 ,−1,−2, 2) are shown in Figure 9. As expected,
the angle between the z-axes and the insect angular
velocity go to zero. This control law is very promis-
ing for three main reasons. First, it is simple: the
input control is simply some proportional feedback of
the sensors outputs. This is very important in terms
of the implementation of control laws, since the MFI
has very limited computational power. Second, it is
robust: despite its simplicity, this control law does
not depend on the exact light intensity function, as
long as it is a monotonically decreasing function of
the latitude. Third, it is globally convergent: remark-
ably, this control law guarantees the alignment of the
insect vertical axis with the light source from any
initial condition including the upside down orienta-
tion which are likely to occur in the presence of wind
gusts.

6 Conclusions

In this work we have investigated two types of bi-
ologically inspired sensing mechanisms. The halteres
have already been realized as biomimetic sensors for
use on the MFI while the ocelli are under implemen-
tation. We also developed an attitude control law
for the MFI using the output feedback from the hal-
teres and ocelli. Through our work, we have shown

that simple schemes (simple sensor architectures and
feedback control) can achieve robust global stabil-
ity. In the future, we will employ a more realistic
insect body dynamics that can account for the vis-
cous torques resulting from the body rotation, and
consider limiting factors such as input torque satura-
tion and control of the torques only on a wingbeat-
by-wingbeat basis. In addition, we will address the
questions on how to choose better gains a and c in
the control law and how sensor noise affects the per-
formance of the control law.
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