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Abstract— Ranking a set of data plays a key role in many modeling extremal events e.g. in financial risk management
application areas such as signal processing, statisticsoraputer  gnd actuarial sciences [10] and so on.
science and so on. Distributed algorithms for ranking have Our main motivation for studying this problem comes

been proposed in the computer science literature first for tee . e . .
networks. Extension to general networks has been performed indeed from a very specific distributed estimation and clas-

by constructing a spanning tree, which can be done in a Sification problem in sensor networks [11], [12]; in these
distributed manner. In this paper we propose and analyze a papers it is shown that maximum likelihood estimators can
gossip algorithm for distributed ranking. The advantage ofthe  pe easily found as a function of ranked observations. Hence,
proposed algorithm is, on the one hand, its inherent robustass solving the problem of distributed ranking is instrumerical

to changes and/or failures in the network and on the other s . .
its simplicity of implementation. The algorithm is proved to  the (distributed) solution of the problem in [11], [12].

converge, in the sense of giving the correct ranking, with Besides the few applications mentioned above, ranking is

probability one in finite time. a fundamental task in computer science applications, and it
has been widely studied in the past years. Even the problem
. INTRODUCTION of distributed ranking as a long history in the computer

In recent years, we have witnessed an increasing interestSéience community which goes back to the eighties, see for
the design of control and estimation algorithms which caiistance [13]. Most of the literature addresses the problem
operate in a distributed manner over a network of locallpf distributed ranking in tree-networks; solving the pebl
communicating units. A prototype of such problems is thé general (connected) networks requires finding a spanning
average consensus algorithm [1], [2], which can be used &€, which can be done in a distributed manner [14]. Ro-
a distributed procedure providing the average of a set ®ust version of these algorithms (so-called “self-stalitj”
real numbers. The average is the building block for man§lgorithms) have been also studied, see e.g. [15].
estimation methods, so that the average consensus has bedn this paper we take instead a different approach which
proposed as a possible way to obtain distributed estimatidi@s, essentially, the same motivations as gossip algaithm
algorithms and, in particular, to perform distributed Kaim for (average) consensus. The algorithm has to be simple,
filtering [3], [4]. robust to node failures and changes in the network topology.

It is widely recognized that the plain average is notence, we propose a gossip based algorithm for distributed
a robust statistic [5](e.g. for the estimation of a locatiorfanking in a general (connected) network. It is shown that
parameter) in the presence of possible outliers in the @ta [ this algorithm solves (almost surely) in finite time the rmgk
robust estimators (such aginsorized means, see [6] page Problem. The structure of the paper is as follows: Section II
75 for a definition) require order statistics [7], since theystates the problem and sets up notation. Section Il dessrib
are based on weighting the data depending of their rankingie ranking algorithm while in Section V some simulation
We recall here that given a set ®f symbols{ys,..,yn} results are presented. Conclusions end the paper. The proof
belonging to a totally ordered set, ranking means attachirj the main result in given in the Appendix.
to eachy; an integero; which is the position ofy; in the
ordered list (e.gox = 1 if yi is the smallest of thg;’s).

Besides the applications in robust estimation [8], [6], The problem we consider in this paper can be formalized
[5], order statistics are fundamental tools in a variety ofis follows: Consider a set#” of labeled agents ./ :=
estimation and classification problems in rather diversagr {1,..,N} which can be thought of as the vertices (or nodes)
such as signal processing ([9] and references therein), @f a graph¥ := (¥, &), whereé is the set ofedges which

' _ encode the communication links, i.e. nodesnd j can
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Il. PROBLEM FORMULATION AND NOTATION



second smallesty =2 and so on. The map. : A4 — 4 is

Algorithm 1 Randomized Gossip Ranking

of course a permutation of the set’ = {1,..,N}. Using a Require: graph ¥ =

notation which is rather common in the statistics literatur
we can defind-] : .4~ — .4 as the inverse permutation w.r.t 1:

0., i.e. [0]] =i, which implies that 2:
Yi = Y[oi]- 3:
4:

In this section we introduce a novel distributed algorithm .
that can rank the nodes of a network based on the ordered list
of the magnitudes of their measurements. The algorithm iss:
randomized in the same spirit of randomized gossip average’
consensus [16], [17], i.e. at each time an edge of the network’
is selected at random and corresponding nodes exchange
information and update their local variable. The pseuddeco =
of this algorithm is given in Algorithm 1 and illustrated in 12:
Figures 1 and 2. The algorithm works as follows. 13:

« Initialization (lines 1-3 of the algorithm): In the ini-
tialization phase each node sets a number of variabl
as shown in Figure 1. The variabt&° is the local
estimate that the nodeshas about its own ranking,
which is initialized with the node ID. Each node also
creates a copy of its information, i.e. node &9,
measuremeny™™ and rankingrk"™, to be stored on
a virtual node that will be exchanged with neighboring21
nodes thus creatingandering virtual nodes. The vari-
ables relative to the wandering nodes are distinguishet
by the subscriptvnd. 24:

. At each time stefk, an edge(i, j) is selected and the 25
corresponding nodes perform the operations illustrateg®:

D ECENTRALIZED RANKING COMPUTATION

o o

19:
20:

in Figure 2: 27
— wnd ordering (lines 6-10 of the algorithm): The 22

nodes check if the ordering of the rankimig'™
in the wandering nodes is consistent with the>C
corresponding measurementé™. If ordering is
not consistent, then the nodes exchange all the

rankingrk"d, while if ordering is consistent, then 33:

(A,&), probability distribution p;
over &, measurementg, node 1" has ID i.
for all nodei do

o(0) = i, id™9(0) =i, k"™(0) =i, y"(0) =y,
k=0.
end for
randomly select edgé, j) € & with P[(i, )] = pij
repeat
if (™ (k) — Y™ (k) (k" (k) — k™ (k)) < O then
N Srlgwnd(k—i- 1) = k™ (k), kW”d(k+ 1) = rkd (k)
k9 (k+ 1) = kM9 k), k™ (k4 1) = k™ (k)
end if
F(yi —yj) (K (K) — k() < O then
I’k!oc(k—i— 1) k|0C(k), kloc k+ 1) k1|oc )
else
rk(k+1) = rk®(k), rkio°(k+ 1) = rki°(k)
end if
id"™ (k+ 1) = id™(k), id™(k+ 1) =id"™ (k)
M 1) = (), Y+ 1) =y
temp = rk"™ (k4 1)
M (k+ 1) = k™ (k4 1), k™ (k+ 1) = temp
if id"9(k+1) =i then
rki"’c(kjL 1) = k" (k+ 1)
end if
if id*d(k+1) = j then
rkioc (k+1)= rkYV“d(kJr 1)
end |f
forall /=1,...,N.£#i,+# | do
K (k+ 1) = rk'OC(k)
kwnd(k + 1) kwnd(k)
|dW“d(k+ 1) = |dW”d(k)
Y (k1) = 21 ()
end for
k=k+1
until k> M

the nodes keep theik¥nd,

loc ordering (lines 11-15 of the algorithm): The
nodes check if the ordering of the ranking® is
consistent with the corresponding local measure-
mentsy. If ordering is not consistent, then the nodes

Initialization (k=0)

exchange the values ok'°, while if ordering is
consistent, then the nodes keep thifC.
swapping(lines 16-19 of the algorithm): The nodes

swap all their wandering variablgg™, k"4 and
idwnd'

Overwriting (lines 20-25 of the algorithm): Finally
(i) both the nodes check if the wandering nodes
has the saméd of the node, and in this case it
overwrites the rankingk" from the wandering
node to the local estimatd!®

Remaining nodes actionglines 26-31 of the al-
gorithm): All the other nodes do not perform any
update.

Fig. 1. Initialization of variables of Algorithm 2.

The swapping step has the property that each wandering
virtual node will eventually reach (almost surely) any node
in the network (which of course we assume to be connected)
since its dynamics is similar to a random walk on the graph.



status at time step k . Overwriting
Ordering Swapping

Rund Rund "Kund humd
Yund Yund Ywnd Yurmd
idyna| J idyma| b | idyna| k idyna| J

Fig. 2. Graphical representation of Algorithm 2.

Moreover, it also guarantees that eventually (almost gureslowing down convergence “rate”. In practice, the proposed
in finite time) any virtual node pair, j will meet and will  algorithm tries to take the benefits of local ranking ordgyin
perform ordering. In practice, it is as if the wandering rodei.e. fast convergence, and the wandering virtual nodes, i.e
lived on a complete graph where the communication probguaranteed convergence to exact ordering. This is illtestra
bility is state dependent. As a consequence, any distdbutén Figure 3 and discussed in Section V.

algorithm that works only on complete graphs can be made
to work by means of the wandering virtual nodes. Since any ) i )
pair of virtual nodes eventually meets, this imply that also !N this section we propose an analytical study of the
the node with the largest measurement and the node whifrformance of the previous algorithm in the case of a
stores the largest rankirg will meet, and therefore after the COMPIete communication graph. The analysis is not easy
ordering procedure the node with the largest measuremdiPecially for the presence of the two dynamics, the local
will have the correct ranking and will remain fixed from©n€ coded !”S'd% the vanable_lé‘fc(k), and the wandering
then on. A similar argument can be repeated for the nodd'® coded iki™(k), and their intertwining. We will not
with the second largest measurement and the node with tA& abPle to say much about th'sd phenomenon, rather we will
second largest estimated ranking, so that also the node wifincentrate on the variableg™ (k) and we will estimate
the second largest measurement will have the correct rgnkif"€ir convergence time. Finally, adding the time needed
and so on until all notes are ordered. As a consequend@l the wandering variables to go back home where they
eventually all wandering virtual nodes will have the exacPriginated, it will be possible to give an estimation of the
ranking and no ordering will occur. As explained above, eacipt@l time needed to complete the ranking.

wandering virtual node will eventually return to fixed node e start from a complete network with agents and
with the same ID, and therefore eventually also all local'® @ssume thapij = 1/e for all (i,]) with i # j, where
fixed nodes will have the correct ranking. This reasoning\/: N(N —1) is the number of directed edges in the graph.

is formally stated in the following theorem, whose proof is’'Ve Will use the same notatio\rllvngls in t?g proof of Theorem
given in the appendix: 1. In particular we puty = W(rk"(k),y"" (k)) the number

Theorem 1 (Randomized Gossip Ranking): Consider Al- of (directed) edges not correctly ordered at the time step
gorithm 1. If the graph# is connected angb; > O for all k. Clearly, givenV, the probability to select a correctly

edges(i, j) € & then there exist > 0 such that ordered edge at timeis exactly(e—Vk)/e. If this happens,
then Vi1 = V. Otherwise (see the proof of Theorem 1),

r !°C(k) =0 Vk>T,i=1,...,N almost surely Virr < Vk— 1. Let X be a sequence of independent geomet-

Before moving to the next section, a few remarks aréic random variables, of parameters, respectivedy; t)/e.
in order. One might wonder if the wandering virtual node®revious considerations show that the average time to bring
are really necessary, which is equivalent to ask whether thg to 0 is upper bounded by
swapping procedure is necessary. If this was not performed, el o
i.e. if lines 16-19 were removed from Algorithm 1 and E[Xo+Xi+--- 4 Xe_1] = zo—xelnex N%InN for
the graph is not complete, it would be possible that the et
algorithm ended in a deadlock for which no additional updatehere the asymptotic equivalence holds fbr— +o0. Re-
of the ranking is performed but the local ranking has nogarding the extra time needed for all the wandering vargble
reached the correct value. The other question is why t® go back to their generating nodes we can estimate it,
perform the ordering also of the local ranking (lines 11in average, as follows. Starting with the max variable, its
15), since eventually the wandering nodes will overwritevandering is simply governed by a another geometric r.v.
the ordering of the local ranking. In fact, Theorem 1 isy of parameter IN(N —1). The average time needed for
valid even if local ordering of ranking (lines 11-15), isthe wandering variable to go back to its generating node is
removed from Algorithm 1. The reason is that each fixethus E(Y) = N(N —1). Similarly all the subsequent nodes.
node has to wait for the corresponding wandering nod€herefore, a further< N° time is needed for this final
to come back before performing any ranking update, thugdistribution. The total average time is thuas\®.

IV. PERFORMANCE SOME ANALYTICAL RESULTS



When the graph is not complete no such simple estimatic
can be carried on. A possibility would be to use the mear
field techniques employed in studying spin glass models | 7
statistical mechanics. This will be studied in a future pape

V. SIMULATIONS ol

We have tested the proposed algorithm on a connect
random geometric graph with 50 nodes and, on average,
neighbors per node; we have performed 100 Monte Carlo e
periments (randomizing the valugss). For each realization
we have computed the ranking efor

Log of Ranking Error In(J)
L&

[ —
‘]|kOC = W(rk:oc(k),y) (1) a5l |- _J:Oc (no local ordering)
—_—
and averaged the results over the Monte Carlo runs. TI sl | J::”(noswappmg)
logarithm of the average ranking error is displayed in figur
3. The key role played by the “wandering” structures is clee % 500 1000 1500 2000 2500 3000

Iteration k

from the results. In fact without these “wandering” virtual

nodes the ranking error has a constant (and different from

zero) asymptote (red dashed), meaning that the algorithfig- 3. Average (over 100 Monte Carlo runs) of the rankingemwf

gets locked into a local minimum. Differently, the algo_Algorlthm 2 in a random geometric graph with 50 nodes and 2ffes.

rithm without the local ordering of the ranking eventually

converges to the exact ranking, but the transitory is much

worse than in the proposed algorithm. The figure also shows ) )

the ranking error of the wandering virtual nodds , := wherex : R — R is defined as follows

W(rk"nd (k),y"d) i.e. the ranking error that we would have

if the wandering nodes could instantaneously communicate

with their corresponding fixed node. The difference between X(X) = {

Jwnd @nd Joc highlights the effect of the delay due to the

return time of each node to its corresponding fixed node in

the propq;ed algont.hm. . The functionW will be useful to prove Theorem 1. In
In addition the simulation results suggest that, after a_ ~. . : : . .

: . “ N ; . particular two properties of this function will be crucial.

transient dominated by the “local” ordering (blue solid/re

dash-dotted curves for “small” number of gossip steps), Assume thafl € {0,1}N*N is a permutation matrix. Then

convergence “rate” is governed by how fast the “wanderingt is easy to see that

virtual nodes travel across the network (blue solid/green

dashed).

1 ifx>0
0 ifx<o0

Y(Nx,Nz) = W¥(x,2) (A.3)
VI. CONCLUSIONS
We have presented a gossip algorithm for distributed
ranking in sensor networks. It has been proved that, almoshe second property is more difficult to prove and it will be
surely, the algorithm correctly ranks the nodes in finitggiven through the following lemma.
time. Some simulation results show the performance of the | ayma 2: Let Mij € {0,13N*N is the permutation matrix

algorithm on a connected network with 50 nodes. which exchange the entiywith the entryj and assume that

Future work will focus on a more detailed analysis OfZERN andx is a permutation such thék —x;)(z —z;) < O.

the algorithm in particular w.r.t. to the relation betweée t Tnqp
network properties and its convergence “rate”.
APPENDIX W(x,Mijz) < W(x,2) (A.4)

Let ze RN andx = (xy,...,xy) be a permutation of#"  proof We need comput(x, 2) —W(x,M;j2). Notice indeed
(xi € A, i #xj if i # j). Define the following function that

Wx2) = [{({i,]) € /" x A [ (% =x))(z —Z) <0}] (A2)

Notice that W(x,2) - W(x,Mijz) =
N N > X% —%s)(zs— 2)] = X[(% —Xs) ((Mij2)s — (Mij2)r)]
W(x,2) = 21 le [ (6 =xj)(z = Z))] s
i=1j=

2The functionW is defined in (A.2). We split the sum in various parts separating the cases in



which one or both the indicess are equal ta,

W(x,z2) —W(x,Njj2) =

;_X[(Xr—XS)(Zs—Zr)] X[ = x5)((Mij2)s = (Mij2)r)]

r,S#lj

+;x[(><r—>®(2«-—2r)] X106 =x)((Mi;2)i — (Mij2)r )]
r#i,j

+;X[(Xr—xj)(21—2r)] X[ =x))((Mij2); = (Mij2)r)]
I,

+$;_x[(m—xs>(zs—z>] X[(xi =x5)((Mij2)s — (Mij2)i)]
T

+$;X[(X'—Xs)(zs Zj)] = X[ = %) ((Mij2)s = (Mi2);)]
T

+X[(X| %) (@ —2)] = X[(6 =) ((Mij2)i — (Mij2)i)]
[(XJ_XJ)(ZJ_ZJ)] X[ —x)((Mij2); — (Mi2);)]

+X[(x = XJ)( z)] = Xx[(x — XJ)(( i12)j — (Mij2)i)]

+X1(Xj )('—ZJ)] X1(xj )((HIJZ) (Mij2);)]

Now we use the fact thatllijz)r =z if r #1,j and that
(ﬂijz)i =Z and(l‘lijz)j =1z.

WY(x,z) —
;x[( =%i)(z2 —2z)] = X[(% —%)(zj — %))
+;X X —Xi)(zj—z)] - Xi)(z — )]

W(x,Mjjz) =

X[ —

s; X —xs)(Zs—2)] = X[(% — Xs) (25— 7]
S#J XI(Xj —Xs)(2s — 7j)] = X[(Xj — Xs)(zs — 7)]
+X[6 —%))(z) — 2)] = X[(% — %)) (z — Z))]
+X[(X) =) (z — z)] = X[(xj = %) (zj — 2)] =
X —%)(z —z)] = X[(% —x)(z; — )]

7%
+2;

Notice finally that, sincey[xy]
can argue that

—2z)] = X[ —x)(z - z)] +2

= XXIxIYl + x[=X x[-Yy], we

X[ —x)(z —2z)] — X[(% —Xl)(ZJ Z )|+
X[ =xj)(zj —z)] = X[(% — X)) (3 —z)] =
(A.5)
(X[ =X = X% —xi])(X[z —zj] — X[z —2])+
(XX =% = XX =] (X2} —z] — X[z —2])

Assume now thak; < x; which implies thatz > z;. In this

case, sincg[-] is a monotonic non decreasing function, wek- If (

have thaty [x — x| > X[ —
Xe] < X[Xj —X] and)([zJ

xil, X1z — 2] > X[z — 2], X[xi —
%) < X[z — z] which implies that

In case we take([x] = x we get
W(x,2) = Z| 12] 1— (% Xj)(zi_zj):
(Z 1XI) (EI lz|) 2N (Ei'\l:lxizi)

Therefore we could use in the proof also the cost function

N
- lem =-—
i=
Notice finally that minimizing¥(x,z) is the same as mini-

mizing ¥;(z —x)*.

Proof of Theorem 1.
We first show that, with probability 1, there exists a time

Ky > 0 such that
rk'd (k) = Ojqud i vk> Ky, Vie s (A.6)

Suppose now that the eddej) is selected at timk. Then
if, _
(™ (k) = Y™ (k) (k™ (k) — rkf™ (k) > 0

we say thati, j) is correctly ordered at timkeand we clearly
have that

W(rk™ (k+1),y"™ (k+ 1)) = W(rk"™ k), y"™ (k)
We call it a gossip step of type I. If instead
(Y™ (k) = ¥ (k) (k™ (k) — 1K™ (k)) < 0

we say that(i, j) is not correctly ordered at timle and, by
the previous lemma, we have that

W(rkd (k+ 1),y"™d(k+ 1)) < W(rk™9(k),y"™d(k)) (A.8)

This is instead called a gossip step of type Il.
Consider now the Markov chain on the state space

H={(,]) e/ xA[i#]}

(A7)

defined by

RPhifi£h, j=k

Pk ifi=h, j#k

Rj ifi=k, j=h
1—=%0siRe— Yoz Pie—
0 otherwise

Qqi.j) (k) = I
Ij = aJ:

Notice thatQ is irreducible. Suppose now that at a certain
time k, we have that?(rk"(k),y"™(k)) > 1. Then, there
exists a pair(i, j) which is not correctly ordered at time
i,j) € &, then, consider any path of some length
of posmve probability according t®), that starts in(i, j)
and ends with the edgg@, j) — (j,i). Each step in the the

the last term of (A.5) is non-negative. We can conclude th&ath corresponds to a gossip step in the algorithm. Now

W(x,z) —W(x,Mijz) > 2

The case in which; > Xx; andz < z; is analogous. [ |
Notice that the same proof works if we choggl] =

or

x ifx>0

X(X):{ 0 ifx<0

there are two possibilities: either there is at least oneigos
step of type Il in the firsts— 1 steps, or all firsts— 1
steps correspond to gossip steps of type I. In the first case
we clearly obtain that/(rk"™(k+s—1),y"d(k4s—1)) <
W(rk'd k), y"d(k)). In the second case,

Ym(k+s—1) =y"(k), k™ (k+s—1) =rk™ (k)
y"Md(k+s—1) =yd(k), rkid(k+s— 1) =rki(k)



Therefore, the gossip step at titke sis of type Il and there-
fore W(rk"d(k + s),y"(k + s)) < W(rk"d(k),y"d(k)).
SinceQ s irreducible, the time to hit edge, j) — (j,i) start-

(31

ing from vertex(i, j) is finite with probability one. Hence, [4]

our argument above shows thatW(rk"d(k),y*"d(k)) > 1
and there existsi, j) € & not correctly ordered at timg, 5
then, with probability one, there exissssuch that [6]
W(rkuna (k+8),y"™ (k+5)) < WIrk™ (k),y"™(K)) (A.9)  [7]
8l

If instead all edges are correctly ordered at tikpdix any
(i,]) € &/ x4 not correctly ordered at tim&. Consider
now any path of some lengtk, of positive probability
according toQ, connecting(i, j) to & and argue like above. [10]
If any of the gossip steps corresponding to this walk is o
type 11, then (A.9) holds true. If instead all gossip step
are of type I, at the end of it we will have an edge
(h,k) € & not correctly ordered at tim&+s and we are [12]
back in the case studied above. Therefore, we have proven
that if W(rk"nd (k),y"d(k)) > 1, then, with probability one, [13]
there existss such that (A.9) holds true. This easily im-

El

11]

plies that, with probability 1, there exist&;, such that [14]
W(rkang(K1),y"(K1)) = 0. This yields (A.6).
Let i be such thatk"™(K;) = N and putj = id"(K;). [15]
Using now the irreducible Markov chain art” defined by
F«-{F’uifi#j 126]
T 1=y Pe
17]

and arguing as above, it is straightforward to prove tha‘,
with probability 1 there exists; € N such thatid‘j’V”d(K1+

s1) = id"(Ky) = j. Moreover, since all gossip steps, since
time Ky, are of type I, we also havek‘f’“d(KlJrsl) =
rk™d(K;) = N, and (see lines 23 25 in the algorithm)
rk'j°°(K1+81) = N. In other wordsyj is the maximum and
at time Ky +s;1 agentj has acquired in its local register
the right ordered information. Noticing that condition el

11 of the algorithm will never be true for nodesince time
K1+ s1 (becausg has got the right highest ordered position),
we will have thatrk'joc(k) =N for all k> K; + . Now
we can repeat the argument with the second highest value:
with probability one at a certain timk; +s; + s, we will
have thatid‘j’Y“d(K1+51+SQ) = j’ with rk‘Jf‘{”d(K1+81+SQ) =

N —1 and, consequently, alstk'j‘,’C(Kl +s1+)=N-1.
Now notice that also in this case condition at line 11 of
the algorithm will never be true for nod¢ since time
Ki+s1+s (because agenf’ has got the right second
highest ordered position, and the agent with the highest
value j has previously obtained the right highest ordered
position). Hence,rk'j‘?c(k) =Nforal k>K;+s+. A
formal inductive argument along these lines, leads now to
the proof of the result. |
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