Distributed Partitioning Strategies for Perimeter patrolling
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Abstract—In this work we study the problem of real-time
optimal distributed partitioning for perimeter patrolling in the
context of multi-camera networks for surveillance. The objec-
tive is to partition a line of fixed length into non-overlapping
segments, each assigned to a different camera to patrol. Each
camera has both physical mobility range and limited speed,
and it must patrol its assigned segment by sweeping it back
and forth at maximum speed. Here we provide the solution
for the centralized optimal partitioning including the physical
constrains of the cameras. Then we propose three different
distributed control strategies to determine the extremes of the
patrolling areas of each camera. All these strategies require only
local communication with the neighboring cameras but adopt
different communication schemes: synchronous, asynchronous
symmetric gossip and asynchronous asymmetric gossip. For the
first two schemes we provide theoretical convergence guaran-
tees, while for the last scheme we provide numerical simulations
showing the effectiveness of the proposed solution.

I. INTRODUCTION

Current and future generations of video-surveillance sys-
tems target large scale scenarios where tens or even hundreds
of smart Pan-Tilt-Zoom (PTZ) cameras coordinate one an-
other to monitor the environment, cooperate so as to detect
and track events, and perform high level decision tasks,
through video content analysis algorithms.

To this aim, cameras appear as actuated sensor nodes
embedded in the installation environment and connected
through a communication network.

Trading-off between the complexity of the installation
and the coverage performance, one canonical task of such
systems is that of patrolling, meaning the act of walking
around an area in order to protect or supervise it [1]. In
this sense, a good patrolling strategy is one that minimizes
the time lag between two visits to the same location, thus
ensuring that all locations are constantly monitored.

In particular, there exists an interesting variety of outdoor
video-surveillance scenarios where this task takes the struc-
ture of perimeter patrolling, in which the patrolling action is
limited to the one dimensional boundary of the area to be
protected.

To briefly review the literature, we start by pointing out
how the problem of patrolling shows analogies with the
problem of dynamic optimal coverage in sensor networks, as

The research leading to these results has received funding from the
European Community’s Seventh Framework Programme under agreement
n. FP7-ICT-223866-FeedNetBack.

R. Carli, and L. Schenato are with the Department of In-
formation Engineering, University of Padova, Via Gradenigo 6/a,
35131 Padova, Italy {carlirug|schenato}@dei.unipd.it.
A.Cenedese is with the Department of management and Engineering,
University of Padova, Stradella San Nicola 3, 36100 Vicenza, Italy
angelo.cenedeselunipd.it

Angelo Cenedese

Luca Schenato

in [8], [9] where a team of mobile agents needs to coordinate
to attain distributed coverage of an area while avoiding col-
lisions. Similarly, considering coordinated robotic systems,
interesting issues are raised in [10], where a multi-agent
cooperative solution is studied to be robust and adaptive to
perimeter changes. Also, the behavior of the agents so as to
ensure efficient communication is taken into account. Again,
in [5], [2] a theoretical analysis of multi-agent patrolling is
carried out, where conditions that guarantee the existence
of optimal strategies are studied by means of graphs analy-
sis. As for multi-camera tracking in surveillance networks,
most of the literature is concerned with computer-vision
problems, for which we address the reader to the survey
on intelligent surveillance systems [15]. On the other hand,
in [6] a distributed algorithm for PTZ camera networks is
presented, to perform coordinated task relying only on a local
communication scheme to ensure system scalability.

A final and remarkable note is given, concerning the
concept of equitable partitioning, studied in [13], [14] again
within the scope of multiagent robotic systems: in this
respect, the idea of partitioning the operational space into
balanced areas of influence, while considering also the
physical constraints of the agents is close in spirit to the
problem we address (see also [3]), as will appear explicit in
the formalization of the problem.

The remainder of the paper is organized as follows. In
Section II we review the perimeter patrolling problem and
its optimal solution. In Section III we formulate the problem
we aim to solve in this paper. In Section IV, Section V and
Section VI we propose three different solutions depending
upon the communication protocol adopted by the cameras
to exchange information. Specifically, in Section IV we
assume the cameras communicate synchronously and we
introduce the synchronous optimal partitioning algorithm.
In Section V we assume the cameras communicate with
each other through a symmetric-gossip type communication
protocol and we present the symmetric gossip partitioning
algorithm. Finally, in Section VI we assume the cameras
exchange information according to an asymmetric gossip
communication protocol and to deal with this scenario we
introduce the asymmetric gossip partitioning algorithm.

II. PERIMETER PATROLLING

In this section we review the problem of patrolling a one-
dimensional environment of finite length with a finite number
of cameras and its optimal solution as described in [3].

Specifically let £ = [-L, L], L > 0, denote the segment
to be monitored and let N be the cardinality of the camera



set. The cameras are labeled 1 through N and, for the sake
of simplicity, we assume the following properties:

« the cameras are 1-d.o.f., meaning that the field of view
(f.0.v.) of each camera is allowed to change due to pan
movements only;

o the cameras have fixed coverage range, meaning that
during pan movements the camera coverage range is
not altered by the view perspective;

o cameras have point f.o.v..

In this context the following further definitions are intro-
duced:

(@) D; = [D; ins, Di sup) C L is the total coverage range
of i-th camera due to the scenario topology, the agent
configuration and their physical constraints;

(i) vi € [~Vimaz, TVimasz] is the (bounded) speed of
i-th camera during pan movements;

(iii) A; = [ai—1, a;] denotes the effective coverage of the
i-th camera where, clearly, it must hold A; C D;, Vi €
{1,...,N};

(iv) 2;(t) : RT™ — D, is the continuous function mapping

the position of the f.o.v. of the ¢-th camera as a function
of the time variable .

In our analysis, we assume that the coverage ranges D;,
1€ {1,..., N}, satisfies the following inferlacing constraint,

Di,sup S Di—i—l,sup'
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Fig. 1. Perimeter patrolled by a camera set. For the first four cameras,

the physical coverages {D;} with some overlapping sections are shown,
together with the optimal partition domains {A;}.

In order to properly define the patrolling problem we need
to introduce an appropriate cost function J and state an
optimality criterium. The authors in [3] propose a functional
J whose rationale is as follows: at each time instant ¢ and
position z € L, J is equal to 0 if location z is currently seen
by any camera (3z; s.t. z; = x), else it takes a positive real
value as increasing as the time is passing since the last visit
of x € L.

More simply, in this context, we reasonably assume that
the cost J is a monotonic function of the time lag Tj,q
defined as the maximum (w.r.t. x € £) elapsed time between
two visits of the same location, therefore the minimization
problem for J corresponds to the computation of the smallest
time lag T, constrained to the system dynamics
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A. Optimal trajectory without coverage bounds

The optimal solution to the patrolling problem can be
easily established in the absence of coverage constraint
z;(t) € D,, or equivalently, under the assumption that
Dizﬁ,iE{l,...7N}.

Proposition I1.1 The optimal coverage of the whole perime-
ter as the minimization of index J without the coverage
constraint (z;(t) € D;) as in (1), is attained assuming that
every camera is moving at its maximum speed \‘/7;77na$| with
a periodical motion of period T in non-overlapping coverage
interval A;. The area length |A;| and optimal period T are
obtained as

2L
—_—_~ -
2i=1 [Viimas|

The proof of the above Proposition can be found in [3].

‘A1| = |‘/i,maa;‘To and T = 2T, = (2)

B. Optimal trajectory with coverage bounds

In general, the optimal solution to the patrolling problem
without any constraint is not equivalent to the constrained
optimal solution; this happens if the unconstrained solution
is feasible, that is if and only if A; C D,. In this respect,
we introduce the optimal patrolling period with constraints,
T,.. In general it holds: T;, . > T, the equality standing
only when the feasibility constraint is not violated.

To cope with the case where the unconstrained solution
violates this feasibility condition, the authors in [3] suggest
an optimal strategy that yields the splitting of the patrolling
perimeter into smaller subintervals. This idea is here for-
malized in the following proposition that basically extends
the results presented in [3] (violation of the first camera
constraints).

Proposition IL2 If the unconstrained solution yields A; ¢
D;, the optimal coverage is attained by splitting the domain
into L' = [—L, Diinf] and L™ = [D; sup, L], and consid-
ering two separate coverage problems. Being T! and T
the optimal periods for the subdomains, the global coverage
period is obtained as T, . = max {Té, 17},

Proof: We start by assigning the i-th partition as A; =
D,, with a corresponding patrolling period of 7;: note that
T; < T,, otherwise there would not be any constraint viola-
tion. The optimal policy for the two subdomains £' and L is
then computed according to Prop. IL.1, obtaining respectively
T! and T, with at least one of the two larger than T),. In
fact, if this were not the case, this very partition {£!, D;, L"}
would attain a global patrolling period lower than the optimal
solution T,,. It follows that T,, . = max {T}., Ty }.

If both T; < T! and T; < T, then the optimal partition
shows the three domains £!, D;, L£". Conversely, if only
T < T, < Tr (or TT < T; < T!) stands, the partition is
bipartite, {£!UD;, £} (or {£!, D; UL"}), with a patrolling
time for the first interval that is a convex combination of T
and T;, and T, . = T for the second interval (similarly, for
the other case, with T, . = T}) [}



This strategy may then be iterated for all agents violating
the constraints.

Loosely speaking, Proposition II.1 and Proposition I1.2
state that the optimal solution is attained by dividing the
segment £ into N separate segments, and having each cam-
era following a periodical motion at its maximum speed in
its coverage area A;. In doing so the problem of minimizing
the index J (or equivalently the time lag Tj,,) is reduced
to the optimal choice of A; for each camera. This optimal
partitioning problem will be the focus of our analysis in the
rest of the paper.

We consider an iterative” and “distributed” scenario.
Specifically, we assume each camera is initialized at time
t = 0 with a partition A;(0) that, in general, does not
coincide with the optimal solution. Each camera is allowed
to iteratively update A; using only the local information
coming from the neighboring cameras. The goal is to provide
strategies that lead the cameras to asymptotically reach the
optimal steady-state configuration for patrolling extremes.

In the next section we formally describe the setup we
consider and the problem we aim to solve.

III. DISTRIBUTED OPTIMAL PARTITIONING: PROBLEM
FORMULATION

We assume that at time ¢ = 0 each camera is initialized
with a dominance interval A;(0). More precisely, for i €
{1,...,N} let A;(0) = [a;¢(0),a;,(0)] where a;,(0) and
a; ~(0) are respectively the left extreme and the right ex-
treme of A;(0). We assume that the set {A;(0),..., Ax(0)}
satisfies three constraints. Firstly, we assume a physical
constraint, that is, for ¢ € {1,..., N}, A; C D;. Secondly,
a covering constraint is posed, that is,

U 4w=c
ie{l,...,N}
Finally, the interlacing constraint is introduced, meaning
that, for ¢ € {1,...,N — 1},

a;0(0) < aiy1,0(0), a;r(0) < a;11,(0).

Observe that the interlacing and the covering constraints
imply that a; ¢(0) = —L and ay (0) = L.

The goal is to design iterative algorithms that allow the
cameras to update their dominance intervals using only
information coming from neighboring cameras and such that

(i) the physical, the covering and the interlacing con-

straints are satisfied at each iteration; and

(i1) the set of dominance intervals converge to the optimal

partition.
It is worth clarifying that for neighboring cameras we
mean that camera i, ¢ € {2,...,N — 1} exchange infor-

mation with camera ¢ — 1 and camera 7 + 1. If + = 1 (resp.
i = N) the only neighbor of camera 1 (resp. IV) is camera
2 (resp. N —1).

In the next sections we consider three different scenarios
depending upon the communication protocol adopted by the
set of cameras to exchange information with each other.
Specifically, in Section IV we suppose that the cameras

communicate with each other synchronously, that is, at each
communication round, each camera transmits to its neighbors
the information related to its current dominance interval. In
this context, we introduce the synchronous optimal partition-
ing algorithm.

In Section V, we relax the synchronism of the previous
section and we consider a symmetric gossip-type commu-
nication protocol; in this case, at each iteration of the
partitioning algorithm only a pair of neighboring cameras
communicate with each other while the other cameras do
not transmit or receive any information. Accordingly, we in-
troduce the symmetric-gossip optimal partitioning algorithm.

Finally, in Section VI, we assume the cameras adopt an
asymmetric gossip-type communication protocol. While in
the symmetric gossip at each communication round the active
link is bidirectional, that is, if camera 7 transmits to camera
i+ 1 ,then at the same time camera ¢+ 1 transmits to camera
i, in the asymmetric gossip only one direction is active, that
is, either camera 7 transmits to camera ¢ + 1 or camera ¢ +
1 transmits to camera 7. In this section, we introduce the
asymmetric-gossip optimal partitioning algorithm.

IV. SYNCHRONOUS OPTIMAL PARTITIONING ALGORITHM

In this section, we introduce the synchronous optimal par-
titioning algorithm (denoted as OPA hereafter). We start our
analysis by considering the case without physical constraints,
or equivalently by assuming that D; = [—L, L].

For the sake of the notational convenience, in this section
and in the rest of the paper we denote V; ;.4 simply by v;.

A. Implementation without physical constraints
This algorithm is formally described as follows.

Processor states: For each i € {1,..., N}, camera i keeps
in memory the extremes defining its dominance interval,
ie., a;¢ and a;,. Moreover, we assume also that each
camera knows the maximum patrolling-speed of its
neighboring cameras;

Initialization: For ¢ € {1,...,N} values a;((0),a;,(0)
are given as part of the problem. We assume that the
initial conditions satisfy the covering and interlacing
constraints.

Transmission iteration: At each time instant ¢ € N, each
camera transmits to its neighbors the extremes of its
dominance interval and receives from its neighbors the
extremes of their neighbors’ dominance regions.

Extremes’ iteration: At time ¢t € N, for i €
{2,...,N —1}, camera ¢ updates the value of its
current left extreme a; ¢(t) to the value a; (t + 1) €
[@i—1,0(t), air(t)] according to the following neighbors’
equal traveling time criterion
“the time required to camera i to travel at the speed v;
from a; (t+1) to a; - (t) is equal to the time required by
the camera i — 1 to travel at speed v;_1 from a;_14(t)
to a; ¢(t+1)7;
similarly camera ¢ updates the value of its current
right extreme a;,(t) to the value a;.(t + 1) €
[a;¢(t), ai+1,-(t)] in such way that



“the time required to camera i to travel at the speed v;
Sfrom a; () 1o a; »(t+1) is equal to the time required by
the camera i+ 1 to travel at speed v;41 from a; ,(t+1)
10 Qiy1,r (t)”.

Formally a; ¢(t+1) and a; ,(t+1) satisfy the conditions

a;o(t+1) —a;i_10(t)  ai(t) —aze(t+1)

(3)
Vi—1 (%
and
Git1r(t) —air(t+1)  air(t+1) —ait) @
Vit Ui .
From Egs. 3-4 it follows
@i (t)vic1 + ai—1 0(t)v;
ie(t+1)=— : 5
aie(t+1) Vi—1 + v; ©)
and
a4 1) = SOV Gl )
Vi + Vit1
For ¢ =1 and 7« = N we have that
ayo(t) = —L, an(t) = L, for all t € N,
while a1 ,(t) and an¢(t) are updated similarly to (5)
and (6), i.e.,
a2 r(t)Ul — L’U2
A1) = 2L 2 7
ar,(t+1) L + 09 (7N
and
_q1.0(t Lon_
ano(t+1) = aN 1,@( Jon + Loy L ®)

UN-1 T+ UN
Observe that from (5), (6) , (8) and (7) it follows that, for
t>1,
@i (t) = aiq1,0(t)

This fact allows for a simpler description of the OPA as
we next show. For ¢ > 1, let us introduce the variables
ap(t),a1(t),...,an(t) defined by

ao(t) = —L, ai(t) = a”(t) = ai+1,g(t)7 aN(t) =L
(10)

forie{l,...,N—1}. (9)

Then the dynamics of the OPA algorithm can be equivalently
described by the following updating rule, for ¢t > 1,
ai+1(H)vi + ai—1(H)vig

Vi + Vit )

ai(t+1) = (11)

Before stating the main result of this section we observe
that, according to what proved in Proposition II.2, the optimal

partition {A7}Y |, A* = [ar,,a}], for the case with
physical constraints, can be formally described as
ay=—L, ay=1L
a; =a;_q + v, T, (12)

where T, is defined as in (2).
The following Proposition state the main properties of the
OPA.

Theorem IV.1 Consider the OPA under the assumption that
D; =L fori e {l,...,N}. Let {Ai(O)}i]\il be the initial
set of dominance intervals, which is assumed to satisfy the
covering and interlacing constraints. Then, the evolution t —
{A;(t)} generated by the OPA satisfies:
(1) the covering and interlacing constraints are verified for
all t € N; and
(i) the set {A; (t)}fil converges asymptotically to the
optimal solution {A;‘}fvzl

Before providing the proof of the above proposition it is
worth clarifying that for {Ai(t)}fil converging to {Af}f\il
we mean that

lim a;¢(t) = a;_q, lim a;,(t) = a;.
t—oo t—o0
Proof: The proof of (i) follows directly from the fact
that, for ¢ > 1, the dynamics of the OPA can be equivalently
described using the variables ag, ..., ay introduced in (10).
To prove fact (ii), we introduce an additional set of N

auxiliary variables. For i € {1,..., N} let

ai(t) — a;—1 (t) )

x;i(t) := " (13)

Standard algebraic manipulations show that z;, ¢ €
{1,..., N}, satisfy the following recursive equations

x1(t) + xo(t
. 1(?) p—— 2(t)
UN—

)+ — =t

UN-1
UN-1+UN UN-1 T UN

and, fori € {2,...,N — 1},

v
r(t+1)= —

ey(t+1) = N-1( ()

2
Vi—1 Vi — UVi—1Vi41
z,(t+1)= ———x;_1 + L T+
il ) v+ Vi1 (Vi 4+ vig1) (vi +vim1) "
L
v; + Vi41 e
Let #(t) = [#1(t),...,zn(t)]", then we can write

z(t+1) = Ax(t),

where the elements of the N x N matrix A are defined by
the previous equations. Observe that

U1 V2 -1
vi+v2 vV

Vi—1 n UZ-Q — Vi—1Vi41 Vi+1 _
Vi F i1 (v F i) (Vi Fvic1) v v
UN-1 UN-1
UN_1  UN—1+OUN

or equivalently that A1 = 1 where 1 denotes the vector with
all the components equal to 1. This shows that 1 is eigenvalue
of A with corresponding eigenvector the vector 1. Tedious
manipulations show also that the algebraic multiplicity of A

is equal to 1.

Uf —Vi_1Vit1
. (vi+vi+1)(vi+}h‘71) L
Gershgorin theorem that all the eigenvalues of A are inside
the unitary circle. However one can show that equation Ay =

zy, where |z| = 1, y € RY admits the unique solution z = 1

By observing that < 1, it follows from



and y = 1, implying that all the eigenvalues of A are actually
strictly inside the unitary circle, except one eigenvalue which
is equal to 1.

Therefore, lim;_,~, 2(t) = a1 for some suitable «. Since
the intervals A; = [a;_1,0a;], i € {1,..., N} have disjoint
interiors and since A; U...U Ay = L, it follows that «
coincides with the value of T, defined in Proposition II.1.
This concludes the proof. [ ]

We evaluate now the performance of the OPA in terms of
number of iterations required to lead the set of dominance
intervals {14475)}{11 close enough to the optimal partition
{A;‘}ﬁvzl. To make precise the concept of being close enough
we proceed as follows. Let Z, denote the set of all the sub-
intervals of £. Then, for € > 0, let us introduce the notion of
e-optimal partition task T._op : I» — {true, false} defined
as

T.—op <{Ai}£vzl)

|

Accordingly, we introduce the notion of (worst-case) time
complexity 7C (T._op, OPA) as

true,
false,

if |a;, —al| <k, |ai14 — a;?‘71| <e Vi
otherwise

TC(T._op,OPA) = sup inf {t €N st

{A:(0)} ],
Toor ({4(#)}L, ) = we, v >t}

The following proposition characterizes the time-
complexity of the OPA under the assumption that v; = v
for some v > 0 and for all i € {1,..., N}.

Proposition IV.2 Consider the OPA under the assumption
that, for all i € {1,...,N}, v; = v. Then

TC(Tc—op,OPA) € © (N?log(e™ "))

Proof: Let A be the N x N dimensional matrix as
defined in the previous proof. We observe that, when v; =
v for all i € {1,...,N}, A = ATrid}; (1/2,0) where we
refer the reader to [11] and [4] for a formal definition of
ATrid}; (1/2,0).

The proof follows by applying Theorem II.2 in [11]. H

B. Implementation with physical constraints

In this section we suitably modify the OPA illustrated in
the previous section in order to adapt it to a general set
of physical constraints D1, ..., Dy. Basically, the modifica-
tions we introduce are two.

The first modification refers to the additional knowledge
that each camera must have about the physical constraints of
its neighbors. Specifically, we assume the processor of the
i-th camera keeps in memory not only a;,(t), air(t), vi,
Vi—15 Vi+1 but also Di, Di,1 and Di+1.

Secondly, we have to take into account the fact that the
updating rules (5), (6) might violate the physical constraints;
for instance it might happen that a;, > D; cup OF a;p <
D; ins. To deal with this situation we modify the extremes’
updating rules as follows. Without loss of generality we

consider only how cameras ¢ and 741 update a; , and a;11,¢,
respectively.
We distinguish between three cases

(@) i1, (D)vi + ai () vigr
Vi + Vit

@it1,r ()Vi + a0 (t)vig1
Vi + Vit

i1, ()0 + @i o (D) vigr
V; + Vit1

> Di,sup;

(i2)
(iii)

If case (i) is verified then

< Diy1inf;

S [Di-i-l,infa Di,sup} .

air(t+1) = aip1,6(t + 1) = Dj sup;
if case (i%) is verified then
@ir(t+1) = aip1,0(t +1) = Diy1iny;
if case (iii) is verified then

i1, (1) 0; + @i (t)vigy
Vi + Vit '

aiyr(t + 1) = ai+1)[(t + ].) =

One can see that the modified OPA satisfy the property
that the physical, the covering and the interlacing constraints
are satisfied for all ¢ > 0. A theoretical analysis of the
convergence properties of the modified OPA will be the
subject of future research.

V. SYMMETRIC GOSSIP-TYPE IMPLEMENTATION

In this section we introduce the symmetric gossip optimal
partitioning algorithm (denoted as sOPA hereafter). This al-
gorithm is based on a symmetric gossip-type communication
protocol. Basically at each iteration of the algorithm only a
pair of neighboring cameras exchange information with each
other, while the remaining cameras do not transmit or receive
any information.

Again, we start our analysis by considering the uncon-
strained problem, or equivalently by assuming that D; =
[-L,L].

A. Implementation without physical constraints

With the respect of the OPA, the Transmission iteration
and the Extremes’ update are changed as follows
Transmission iteration: For ¢ € N, during the ¢-th iteration

of the sOPA, only a pair of neighboring cameras (%, +
1) communicate with each other; the communicating
link is bidirectional, namely, camera ¢ sends to camera
i+ 1 the values of its extremes a; ¢(t) and a; ,(¢), and
camera ¢+ 1 sends to camera ¢ the values of its extremes
CL,L'_;,_Lg(t) and ai_H,T(t).

Extremes’ iteration: For h ¢ {i,i+ 1}, camera h left
unchanged its extremes, i.e., ape(t + 1) = ape(t)
and ayp,(t + 1) = ap,(¢). Based on the information
received, camera ¢ modifies only its right extreme while
camera modifies only its left extreme. Analogously to
OPA we have that

it1,r(B)Vi + @i e(t)Vigr

am(tJrl) = ai+1,g(t+1) = v+
% i+1

(14)



We characterizes now the convergence properties of the
sOPA. We provide conditions ensuring both deterministic
and probabilistic convergence. We start with the deterministic
convergence.

Theorem V.1 Consider the SOPA, under the assumption that
D; =L forie{l,...,N}. Let {Ai(O)}iI\Ll be the initial
set of dominance intervals which is assumed to satisfy the
covering and interlacing constraints. Moreover assume that
there exists a positive integer number T such that, for all
t € N, any pair of neighboring cameras (i,i + 1), i €
{1,..., N =1}, communicates with each other at least once
within the interval [t,t+T). Then the evolution t — {A;(t)}
generated by the sOPA algorithm satisfies:

(1) the covering and interlacing constraints are verified for
all t € N; and
(i) the set {A4; (t)}f\;l converges asymptotically to the
; ) N
optimal solution {A}}

i=1"

Proof: Observe that after T iterations of the sOPA,
we have that a; (t) = a;41,(t). Hence we can introduce
the auxiliary variables ag,ai,...ay defined in (10) and, in
turn, the variables x1, ...z y defined in (13).

In this context we can write that

2(t+1) = A)a(t),

where the matrix A(t) depends on which pair of neighbor-
ing cameras communicate with each other during the ¢-th
iteration of the sOPA. Let (h,h + 1) be such pair, for some
he{l,...,N —1}. Then

1 ifi=j,ith ith+1

Lo ifi=j=h

T b
' fimj=h+1
+ g
AW =0 w1, j=n
Uhq;t:jrh;rl o ) y J
Vp R4 ifi=h, j=h+l

otherwise

One can see that for any ¢ € N the sequence of matrices in
A(t), A(t+1),..., A(T) satisfy the conditions given in [12]
to guarantee that the previous time-varying system converges
to consensus. Hence, we have that lim;_ ., 2(t) = a1 and
reasoning similarly to the proof of the previous Theorem we
can get the desired results. [ ]

We provide now conditions ensuring probabilistic conver-
gence.

Theorem V.2 Consider the sOPA algorithm under the as-
sumption that D; = L for i € {1,...,N}. Let {Ai(O)}i]\Ll
be the initial set of dominance intervals which is assumed
to satisfy the covering and interlacing constraints. Moreover
assume that there exists a real number p, 0 < p < 1, such
that, for all t € N and for all i € {1,...,N — 1}

P[(i,i + 1) communicates at iteration t] > p. (15)

Then the evolution t — {A;(t)} generated by the sOPA
algorithm satisfies:

(1) the covering and interlacing constraints are verified for
all t € N; and

(i) the set {Ai(t)}i]i1 converges almost surely to the
optimal solution {A;‘}f\]:l

Proof: The analysis is similar to the previous Theorem,
with the difference that z(t + 1) = A(t)x(t) is a stochastic
system. One can show that, thanks to condition (15), the sys-
tem x(t+1) = A(t)x(t) satisfies the assumption of Corollary
3.2 of [7], which ensures that almost surely lim;_, o, 2:(t) =
al, where « is as in the proof of Theorem IV.1. |

B. Implementation without physical constraints

In presence of general physical constraints D; the above
updating rules are modified similarly to the previous sce-
nario.

VI. ASYMMETRIC GOSSIP-TYPE IMPLEMENTATION

In this section we introduce the asymmetric gossip optimal
partitioning algorithm (denoted as aOPA hereafter). This
algorithm is based on an asymmetric gossip-type com-
munication protocol. This communication protocol is less
demanding than the symmetric gossip-type communication
protocol since it does not require a bidirectional exchange
of information. Indeed, at each iteration of the algorithm
there is only one camera sending information to one if its
neighbors.

Similarly to the previous sections, we first consider the
unconstrained case.

A. Implementation without physical constraints

With the respect of the OPA and sOPA, the Transmission
iteration and the Extremes’ update are changed as follows

Transmission iteration: For ¢ € N, there is only one
camera transmitting information to one of its neighbors
during the t¢-th iteration of the aOPA; without loss of
generality we assume that camera ¢ transmits the values
of its extremes a; ¢(t) and a; ,(t) to camera i + 1;

Extremes’ iteration: For h # ¢ + 1, camera h left un-
changed its extremes, i.e., an¢(t + 1) = ape(t) and
ap,r(t+1) = ap(t). Based on the information received
camera ¢+1 updates only the extreme closer” to camera
i. Specifically a;+1,(t+1) = a;41,,(t) while a; 1 ¢(t+
1) is updated as follows: if “'i“m(tgivﬂfjf(t)viﬂ >
a; r(t) then

ai+17g(t + 1) = am(t) (16)

otherwise

ait1 ()i + aio(t)vipa

ai+17g(t + 1) = Vit Vies
1 (3

a7)

Unfortunately, we were not able to prove so far any type of
convergence of the above algorithm. However we conjecture
that assumptions similar to the ones stated in Theorem V.1
and in Theorem V.2 guarantee also the deterministic and the



almost-surely convergence of the aOPA. To make more pre-
cise this last statement let us denote by £ the set describing
the feasible communications of the aOPA, i.e.,

&= {(172)} U {(NvN - 1>} U {(Zvl - 1)7 (i7i+ 1)}11\;;1

where the pair (7, j) denotes the directional link meaning that
camera ¢ sends its information to camera j. We conjecture
the following two facts:

Conjecture VI.1 Assume that there exists a positive integer
number T such that, for all t € N, any pair in & is selected
at least once within the interval [t,t+T). Then the evolution
t — {A;(t)} generated by the aOPA, starting from an initial
condition satisfying the covering and interlacing constraints,
. . . A N
converges asymptotically to the optimal solution {A}},”,.

Conjecture VL2 Assume a real number p, 0 < p < 1, such
that for all t € N and for all edge (i,j) € £

P[(4,4) is selected at iteration t] > p.

Then the evolution t — {A;(t)} generated by the aOPA
starting from an initial condition satisfying the covering and
interlacing constraints converges almost surely to the optimal
solution {Af}f\;

We show the effectiveness of aOPA in Section VII through
some numerical simulation. We conclude by observing
that, if {4;(0)}), satisfies the covering and interlacing
constraints, then the updating rules (16) and (17) imply
ai+1,0(t +1) < a;,(t) for all ¢ > 0; in other words the
covering and interlacing constraints are satisfied also by
{Ai(t)}i.\[:1 for all ¢t > 0.

B. Implementation with physical constraints

In presence of general physical constraints D; the above
updating rules are modified similarly to the previous two
scenarios.

VII. NUMERICAL EXAMPLES

In this section we provide two examples showing the
effectiveness of the aOPA.

Example VII.1 We consider a set of 50 cameras with the
goal of patrolling the interval £ = [—100, 100]. We assume
that the velocities are all equal to the same value v, i.e.,
v; = v, for all ¢ € {1,...,N}. We assume that at each
iteration of the aOPA, an edge of £ is randomly chosen.

To evaluate the performance of aOPA we consider the
following functional cost

10
T0) = 3 2 (waelt) = i) + (asr(0) — )

where according to (12) we have a] = —100 + 4 x ¢. The
obtained result is plotted in Figure 2. Observe that .J goes
to 0 as t increases showing the effectiveness of the aOPA.
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Fig. 2. Simulation of the aOPA with N = 50 cameras.

Example VII.2 We consider a set of N = 6 cameras with
the goal of patrolling the interval £ = [—100, 100]. Again
we assume that all the velocities v;, i € {1,..., N}, take the
same value v and that at each iteration of the aOPA, an edge
of £ is randomly chosen. In Figure 3 we plot the behavior of
ai ¢, @i, @ € {1,..., N}. The simulation shows how a;11 ¢
and a;, converge to the same value.

60

I I I 1 I I I 1 I
0 20 40 60 80 100 120 140 160 180 200
t

Fig. 3.
cameras.

Behavior of the extremes when aOPA is applied with N = 6
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