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ABSTRACT 

The modeling, simulation, and experimental 
verification of several MEMS devices are 
presented. Simulated results include 3D mode 
analysis, residual stress effects, thermal expansion, 
nonlinear deflections, time-varying electrostatic 
forces, process sensitivities, induced currents, and 
the transient performance in accelerated reference 
frames. To simulate the performance of these 
MEMS devices a modified nodal analysis approach 
is used to formulate a system of ODEs that is 
solved by static, steady state, and transient solvers. 

 
Index Terms - SUGAR, modified nodal analysis, static, 
steady state, transient, accelerating frames, sensitivity. 
 

1 INTRODUCTION 

SUGARv1.1 is a collection of MATLAB [1] 
algorithms that take a netlist description of MEMS 
devices and perform static, steady-state, model, and 
transient analyses of three-dimensional mechanical 
structures and electrical circuits. The code, demo files, 
and manual are downloadable from the Berkeley 
Sensor and Actuator Center at the University of 
California at Berkeley [2]. NODAS [3] performs 
similar MEMS nodal analysis. 

 
SUGAR uses a SPICE-like [4] environment where 

a netlist provides the geometry and connectivity of 
each component, a process file provides the process 
parameters (e.g. Young’s modulus, Poisson’s ratio, 
coefficient of thermal expansion, residual stress, etc), 
and new component models can be easily added. 
Creating a netlist and obtaining speedy results is a 
simple process in SUGAR. For example, the 
following netlist and commands display the second 
mode of a cantilever beam.  

 
 
 
 

%Modelname Layer [nodes] [parameters] 
anchor p1 [a X][l=5u w=10u oz=180 h=4u] 
beam p1 [a b][l=100u w=2u y=0 oz=0 ox=0]  
 
%Matlab commands: 
[net] = cho_load('cantilever.net'); %load netlist 
[f, egv, dq] = cho_mode(net); %mode calculation 
mode = 2; scale = 0.7;  
cho_modeshape(net,egv,dq,scale,mode); %3D display 
 

Sections two and three below describe the models 
and algorithms used in the simulations, which are 
presented in section four. 

2 MODELING 

2.1 MEMS Representation in SUGAR 

Many microelectromechanical systems can be 
represented by lumped models and their performance 
can be described by parameterized ODEs 

 

                       FKqqDqM Σ=++ ���  (1) 
 

where coefficients M, D, and K represent the mass, 
damping, and stiffness system matrices. The three-
dimensional displacement and excitation vectors for a 
system of N nodes (6N degrees of freedom) are 
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The qi’s consist of displacement translations and 
rotations about global axes. The Fi’s are the 
corresponding forces and moments. Any electrical 
elements are appended onto these elements, creating 
vectors of length 6NMechanical + NElectrical. 

The parameterized Mi, Ki, and Di elements for a 
linear beam model can be shown to be [5]  
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The above element matrices are in terms of a local 

coordinate system, i.e. the x-axis is oriented along the 
length of each element. Since each element may have 
arbitrary orientation, they must all be rotated to a common, 
global coordinate system before they can be assembled into 
system matrices. The following relations govern these 
transformations 
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µ = viscosity   ∆ = fluid layer thickness 
L = beam length  w = width 
h = layer thickness Iy = moment about y-axis 
Iz = moment about z-axis J = polar 2nd moment of area 
E = Young’s modulus G = Shear modulus 
v = Poisson’s ratio A = hw, cross sectional area 
D = 3D damping matrix ρ = material density 
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where Ψι is the direction cosine matrix corresponding to the 
orientation of element i.  

Nonlinear beam elements are currently supported 
in two dimensions. 

 

2.2 Thermal Expansion 

The current thermal model assumes a constant 
temperature along each beam. The temperature of a beam is 
specified in the netlist. The ambient temperature is 
specified in the process file. 

Using equation (1), the linear displacement of a MEMS 
device due to thermal expansion is given by  
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where 
 
 
 
 
 
 

2.3 Residual Stress 

The method used for the determination of static 
equilibrium due to stress and strain gradients is similar to 
the above analysis. Given a residual stress, the static 
deflection is  
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where 
 
 
 
Likewise, for the strain gradient Γ specified in the 

process file, the deflection is obtained by the moments 
acting on each node 
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where 
 

2.4 Accelerating Frames 

For non-inertial reference frames, i.e. accelerating and 
rotating substrates, SUGAR solves the following ODE 

 

)(),( tFqtFKqqDqM InertialticElectrosta +=++ ���          (11)  

 
where FElectrostatic are forces due to the on-chip electrostatic 
actuators (see section 2.5), and FInertial are the inertial forces 
due to the accelerating frame given by 

 

rMrMrMRMFInertial ×−×−××−= ωωωω ��

�� 2)(      (12) 

 
 
 
 
 
 

and where the terms on the right side of equation (12) 
correspond to the translational, centrifugal, Coriolis, and 
transverse forces respectively. 

 

2.5 Electrostatic Gap 

Since SUGAR is node based, the distributed forces 
along the beam of an electrostatic gap must be formed into 
equivalent node forces and moments. This is accomplished 
by integrating the electrostatic load p(x) multiplied by the 
Hermitian shape function H(x) along the length of the 
beams [5] 
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where 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 

 
E = Young’s modulus 
∆T = Tbeam – Tambient 
α = coefficient of thermal expansion 
σ = thermal stress 
A = cross sectional area 

where  M = 3D system mass matrix 
R(t) = substrate position vector 
ω(t) = angular frequency vector 
r(t) = node position vector 
 

Hi(x) = Hermitian shape functions 
p(x) = electrostatic load 
V = voltage 
d(x) = gap distance 
εo = permittivity of free space 
h = layer thickness 
α(x) = fringing field factor 

    Figure 1: Gap model parameters defined. 

σ  > 0, tensile (beam shortening) 
σ  < 0, compressive (beam lengthening) 

M = moment 
Γ  > 0, concave up 
Γ  < 0, concave down 



3 ALGORITHMS 

3.1 Static Analysis 

SUGAR uses a modified Newton-Raphson algorithm to 
find an equilibrium state when one or more nonlinear 
elements or excitations are entered in the netlist. The 
determination of multiple equilibria (e.g. buckling) is not 
implemented. Given a system subject to nonlinear 
excitations of various energy domains (e.g. thermal, 
electrical, mechanical), the system is in static equilibrium 
when 

 
                                0)( =qf                                   (14) 

 
where the function f contains the modified nodal equation 
for each energy domain that represents the particular 
system. For a system containing mechanical and electrical 
elements, equation (14) represents a state where all nodal 
forces, moments, and electric currents sum to zero.  

SUGAR solves equation (14) using Newton’s method 
with stopping criterion  

 

                              ζ<−+ nn qq 1                          (15) 

 
where ζ is the selected tolerance. 
 
 

3.2 Steady-State Analysis 

To determine the steady-state response, SUGAR first 
linearizes the system of ordinary differential equation at the 
point of static equilibrium. The high order system of ODEs 
is then converted into first order form given by  
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where x is the system dynamic state variable, u is the 
sinusoidal excitation, and y is the system dynamic response. 
A, B, C, and D are the system, input coupling, output, and 
feed forward matrices respectively [6]. The solution of 
equation (16) provides Bode plots as well as modal 
analysis.  

 

3.3 Transient Analysis 

This solver calculates the transient response of a MEMS 
device, which may contain nonlinear elements and 
excitations that are functions of time t and state vector q. 
Several ODE solvers are available, whereby speed may be 
traded for accuracy and long-term stability. These 

numerical methods include an implicit second order 
Rosenbrock solver for stiff problems where low accuracy is 
acceptable, an explicit Runge-Kutta 4th-5th order solver for 
non-stiff systems, an implicit multi-step integration method 
of varying order for stiff problems requiring higher 
accuracy, and a simple explicit Euler algorithm. The 
transient solvers require the system ODEs to be in first 
order form. We do this in the standardized way [7] by 
introducing a new state vector Q where 
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3.4 Sensitivity Analysis 

The predicted performance of MEMS is subject to 
process variations that occur during the fabrication stage. 
Small variations in geometry may lead to performance 
which is substantially different from the ideal. SUGAR 
models this effect by perturbing the system stiffness matrix 
K. 

For static analysis 
 

          qKgKF )]()([ δ∆+=                              (18)  

 
where g contains the ideal layout geometry and process file 
parameters. δ  is the variation in g given by Gaussian, 
uniform, or uniform distribution of corners. The 
perturbation in stiffness, ∆K(δ), is determined by both 
probabilistic and deterministic techniques.  

A Monte-Carlo algorithm [8] evaluates the most likely 
outcome of equation (18) by drawing many samples from a 
random distribution of geometric variables.  

Given the bounds on the geometric variables, an 
Ellipsoidal Calculus technique [9] is used to find the 
extreme bounds on performance parameters, i.e. the worst-
case scenario. 
 
 

4 RESULTS 

 
 

4.1 Residual Stress Effects 

 
MEMS are often subject to residual stresses that depend 

on the fabrication technique. Residual stress may affect 
device geometry and performance. Figure 3 shows a 
simulation of compressive stress applied to a residual stress 
gauge designed by C. Pan and W. Hsu. Simulated 
deflection is within 0.59% of measured data [10]. 



Some fabrication methods produce material layers with 
stress that is a function of layer depth. Figure 4 shows the 
static deflection of a simplified XL-05 accelerometer. The 
strain gradient term in this simulation is magnified to 
highlight the doming up of the backbone and the bending 
down of the comb-drive electrodes. The actual negative 
strain gradient for this particular process is such that a 
150µm cantilever beam will typically deflect down 0.3µm, 
which is in good agreement with SUGAR [11]. 

 
 

 
 
 

 

 
 

 

4.2 Thermal Expansion 

SUGAR uses a limited thermal model where each beam 
may be assigned a constant temperature. In the real device 
temperature is distributed along the length of the beam [12], 
where temperature is a function of electric current through 
the beam, atmospheric convection, conduction from 

attached elements, and sources of radiation. By applying an 
average temperature to each beam element in a heatuator 
design, SUGAR comes within 6% of the measured tip 
deflection provided by P. Allen et. al. [13]. Figure 5 shows, 
the average temperatures of the hot arm, cold arm, and tip 
displacement. 

 

 
 
 
 

4.3 Nonlinear Stiffness  

Figure 6 shows the simulation of a 4-bit MEM-DAC 
(microelectromechanical digital to analog converter) 
designed by R. Yeh, B. Murmann, and K. Pister [14]. 
Figure 6a plots simulation against measured data. The 
linear beam model fits the ideal converter case; however, 
measured data reveals nonlinearities in the device 
performance. This can be attributed to large beam 
deflections. SUGAR’s nonlinear beam model more 
accurately predicts experimental data, where stiffness is a 
function of displacement. 

 
 

 

Figure 3: Residual stress gauge 

Figure 4 Strain gradient example. 

Figure 5: Thermal deflection of a heatuator. 

Figure 6a: MEM-DAC data. 



           
 

4.4 Transient Response 

Figure 7b shows the transient response to the gap-
closing actuator in 7a. An initial voltage is applied across 
the gap, which increases linearly in time. Displacement of 
node C is shown as a function of time. The initial voltage 
step starts the device to resonate. As the voltage increases at 
a linear rate, the gap decreases at a nonlinear rate due to the 
electrostatic force increasing as ~1/gap2. This force also 
causes the period of oscillation to increase. Once the 
voltage is removed, the actuator exponentially decays back 
to equilibrium due to viscous air damping. 

Figure 8 shows the response of a simple gyro subject to 
a spinning substrate. The gyro is first set in motion along 
the y-axis. The plots show the Ey and Ex displacements of 
node E as functions of time. Midway through the 
simulation the left anchor is set to spin about the z-axis at 1 
rad/sec. Though this angular velocity has almost no affect 
on Ey, Ex is significantly affected.  

 

 

 
     
 
 

 
 

4.5 Process Variation Analysis 

In this simulation a 100µN vertical force is applied at 
the lower-middle node of the dog-bone suspension shown 
in figure 9. Ideally, a symmetric structure such as this 

Figure 6b: MEM-DAC 

Figure 7a: Gap-closing actuator. 

8a 
ω vs time 

Ey vs time 

Ex vs time 

Figure 8: Gyro in accelerating frame. 

displacement 
vs time 

Figure 7b: Dynamics of a gap-closing actuator. 

8b 

8c 

8d 

7a 



would only generate vertical displacement. However, due to 
variations in geometric variables, the node also experiences 
rotational displacement. Figure 9b shows possible 
displacements due to a uniform distribution of geometric 
variables and worst-case ellipsoid. The results from a 
uniform corner distribution is shown in figure 9c, where it 
is more likely that solutions could fall on the ellipsoid 
boundary of 100% confidence.   

      
 
 
 

 
 
 

4.6 Steady-State Response 

Figure 10 shows steady-state analysis performed on a 
multi-domain system, where electrostatic forces are applied 
to coupled mechanical and electrical elements. 

Figure 10a shows a simulation of the induced current 
produced by a multi-mode resonator designed by R. 
Brennan [15]. Figure 10b shows the Bode and phase plot 
for the induced current of the sensing comb as a function of 

frequency of the voltage at the driving comb. The measured 
modes are within 5% of experimental frequencies. 

 
 

4.7 3D Modal Analysis 

The final example demonstrates the use of three-
dimensional modal analysis performed on a gyro prototype 
designed by A. Seshia and R. T. Howe [16].  

 

Figure 9b-c: Geometrical variation analysis. 

uniform distribution 

uniform  corners 

9b 

9c 

9a 

Figure 10: Steady-state response of induced current. 

Figure 9a: Geometrical variation analysis. 

10a 

Figure 11: First 4 mode shapes. 

10b 



5   CONCLUSIONS 

We have shown that a MEMS modified nodal analysis 
environment modeled on SPICE can predict the 
performance of a variety of MEMS devices. SUGAR 
currently incorporates static, steady-state, modal, transient, 
and sensitivity solvers. Further development may include 
bifurcation phenomena, model reduction, contact problems, 
efficient modeling of multi-scale physics, and industry 
standard CIF file readability. SUGAR is also being made 
available through U. C. Berkeley’s Millennium web service 
[17] to internal Berkeley users, and eventually to external 
users. 

 

ACKNOWLEDGMENT 

The authors would like to thank R. T. Howe, A. Seshia, 
and R. Connant for helpful discussions. 

 
 

REFERENCES 

 
[1]  MATLAB, High-Performance Numeric Computation 

and Visualization Software, The Math Works Inc., 24 
Prime Park Way Natick, Mass. 

[2] http://www-bsac.eecs.Berkeley.edu/~cfm 
[3] J. Vandemeer, “Nodal Design of Actuators and 

Sensors (NODAS),” M.S. Thesis 
[4] L. W. Nagel, “SPICE2: A Computer Program to 

Simulate Semiconductor Circuits,” ERL Memo. No. 
UCB/ ERL Vol M75/520 (1975) 

[5] J. V. Clark, N. Zhou, K. S. J. Pister, “MEMS 
Simulation Using SUGARv0.5,” Tech. Digest, Solid-
State Sensor and Actuator Workshop, Hilton Head 
Island SC, pp.191-196, Jun8-11 (1998). 

[6] Norman S.Nise, “Control System engineering,” The 
Benjamin/Cummings Publishing, Inc,CA (1991) 

[7] S. Sastry, “Nonlinear Systems Analysis, Stability, 
and Control,” Springer (1999) 

[8]  D.J.C MacKay, “Introduction to Monte Carlo 
Methods,” M. I. Jordan, (1999) 

[9] G. Calafiore, L. El Ghaoui, “Confidence ellipsoids 
for uncertain linear equations with structure,” In 
Proceedings of the IEEE CDC, (1999) 

[10] Chi. Pan, W. Hsu, “A Microstructure for In Situ 
Determination of Residual Strain,” Journal of 
Microelectromechical Systems, vol 8, No. 2, June 
(1999) 

[11]  Personal communication with R. T. Howe. 
[12]  Conant, R.A., R. S. Muller, “Cyclic Fatigue Testing 

of Surface-Micromachined Thermal Actuators,” 
presented at the 1998 ASME Internation Mechanical 
Engineering Congress and Exposition, Nov 15-20, 
11998, Anaheim, CA, DSC-Vol. 66, pp. 273-277. 

[13] P. Allen, J. Howard, E. Kolesar, J. Wilken, “Design, 
Finite Element Analysis, and Experimental 
Performance Evaluation of a Thermally-Actuated 
Beam Used to Achieve Large In-Plane Mechanical 
Deflections,” Tech. Digest, Solid-State Sensor and 
Actuator Workshop, Hilton Head Island SC, pp.191-
196, Jun8-11 (1998). 

[14]  Yeh, R., Conant, R., and Pister, K.S.J., “Mechanical 
Digital to Analog Converter,” Proc. The Tenth 
International Conference on Sensors and Actuators 
(Transducers '99), Sendai, Japan, June 7-10, 1999, 
pp. 998-1001. 

[15] R. Brennen, A. Pisano, W. Tang, “Multiple Mode 
Micromechanical Resonators,” Proc. IEEE Micro 
Electro Mechanical Systems Workshop (1990). 

[16]  Personal communication with A. Seshia. 
[17] http://www.millennium.berkeley.edu 
 
 


