ADMM and Fast Gradient Methods for Distributed Optimization

João Xavier Instituto Sistemas e Robótica (ISR), Instituto Superior Técnico (IST)

> European Control Conference, ECC'13 July 16, 2013

Joint work

Fast gradient methods

- Dušan Jakovetić (IST-CMU)
- José M. F. Moura (CMU)

ADMM

- João Mota (IST-CMU)
- Markus Püschel (ETH)
- Pedro Aguiar (IST)

Multi-agent optimization

minimize
$$f(x) := f_1(x) + f_2(x) + \cdots + f_n(x)$$

subject to $x \in \mathcal{X}$

- f_i is convex, private to agent i
- $\mathcal{X} \subset \mathbf{R}^d$ is closed, convex (hereafter, d=1)
- $f^* = \inf_{x \in \mathcal{X}} f(x)$ is attained at x^*
- network is connected and static
- applications: distributed learning, cognitive radio, consensus, ...

Distributed subgradient method

Update at each agent i (with constant step size)

$$\mathbf{x}_i(t) = \mathcal{P}_{\mathcal{X}} \left(\sum_{j \in \mathcal{N}_i} W_{ij} \, \mathbf{x}_j(t-1) - lpha
abla f_i(\mathbf{x}_i(t-1))
ight)$$

- \mathcal{N}_i is neighborhood of node i (including i)
- W_{ij} are weights
- $\alpha > 0$ is stepsize
- $\nabla f_i(x)$ is a subgradient of f_i at x
- $\mathcal{P}_{\mathcal{X}}$ is projector onto \mathcal{X}

Several variations exist and time-varying networks are supported

Small sample of representative work:

- J .Tsitsiklis *et al.*, "Distributed asynchronous deterministic and stochastic gradient optimization algorithms," *IEEE TAC*, 31(9), 1986
- A. Nedić and A. Ozdaglar, "Distributed subgradient methods for multi-agent optimization," *IEEE TAC*, 54(1), 2009
- B. Johansson, "A randomized incremental subgradient method for distributed optimization in networked systems," SIAM J. Optimization, 20(3), 2009
- A. Nedić *et al.*, "Constrained consensus and optimization in multi-agent networks," *IEEE TAC*, 55(4), 2010
- J. Duchi et al., "Dual averaging for distributed optimization: convergence and network scaling," IEEE TAC, 57(3), 2012

Convergence analysis: under appropriate conditions

$$f(x_i(t)) - f^* = \mathcal{O}\left(\alpha + \frac{1}{\alpha t}\right)$$

For optimized α , $\mathcal{O}(1/\epsilon^2)$ iterations suffice to reach ϵ -suboptimality

Distributed subgradient method in matrix form

$$x(t) = \mathcal{P}\left(W x(t-1) - \alpha \nabla F(x(t-1))\right)$$

- $x(t) := (x_1(t), \dots, x_n(t))$ is network state
- $F(x_1,...,x_n) := f_1(x_1) + \cdots + f_n(x_n)$
- $\nabla F(x_1,\ldots,x_n) = (\nabla f_1(x_1),\ldots,\nabla f_n(x_n))$
- ullet ${\cal P}$ is projector onto ${\cal X}^n$

Interpretation:

• when $W = I - \alpha \rho \mathcal{L}$ ($\mathcal{L} =$ network Laplacian, $\rho > 0$)

$$x(t) = \mathcal{P}\left(x(t-1) - \alpha \nabla \Psi_{\rho}(x(t-1))\right)$$

• classical subgradient method applied to penalized objective

$$\Psi_{\rho}(x) = F(x) + \frac{\rho}{2} x^{\top} \mathcal{L} x = \sum_{i=1}^{n} f_{i}(x_{i}) + \frac{\rho}{2} \sum_{i \sim i} \|x_{i} - x_{j}\|^{2}$$

Key idea: apply instead Nesterov's fast gradient method

$$x(t) = \mathcal{P}(y(t-1) - \alpha \nabla \Psi_{\rho}(y(t-1)))$$

$$y(t) = x(t) + \frac{t-1}{t+2}(x(t) - x(t-1))$$

• $y(t) = (y_1(t), \dots, y_n(t))$ is auxiliary variable

Distributed Nesterov gradient method (D-NG) with constant stepsize

$$x(t) = \mathcal{P}(Wy(t-1) - \alpha \nabla F(y(t-1)))$$

$$y(t) = x(t) + \frac{t-1}{t+2}(x(t) - x(t-1))$$

Convergence analysis: if f_i 's are differentiable, ∇f_i 's are Lipschitz continuous, and \mathcal{X} is compact

$$f(x_i(t)) - f^* = \mathcal{O}\left(\frac{1}{\rho} + \frac{1}{t^2} + \frac{\rho}{t^2}\right)$$

For optimized ρ , $\mathcal{O}(1/\epsilon)$ iterations suffice to reach ϵ -suboptimality

D. Jakovetić et al., "Distributed Nesterov-like gradient algorithms", IEEE 51st Annual Conference on Decision and Control (CDC), 2012

Proof

Step 1: plug-in Nesterov's classical analysis

• $\|\nabla f_i(x) - \nabla f_i(y)\| \le L \|x - y\|$ implies

$$\|\nabla \Psi_{\rho}(x) - \nabla \Psi_{\rho}(y)\| \le L_{\rho} \|x - y\|$$

for $L_{\rho} = L + \rho \lambda_{\text{max}}(\mathcal{L})$

- notation: $\Psi_{\rho}^{\star} := \inf_{x \in \mathcal{X}} \Psi_{\rho}(x)$ is attained at x_{ρ}^{\star}
- with $\alpha := 1/L_{\rho}$, classical analysis yields

$$\Psi_{\rho}(x(t)) - \Psi_{\rho}^{\star} \leq \frac{2L_{\rho}}{t^{2}} \left\| x(0) - x_{\rho}^{\star} \right\|^{2}$$
$$\leq \frac{2L_{\rho}}{t^{2}} B$$

(1)

for some $B \geq 0$ (since \mathcal{X} is compact)

Step 2: relate $f(x_i)$ to $\Psi_{\rho}(x)$, $x = (x_1, \dots, x_n)$

$$f(x_i) = \sum_{j=1}^{n} f_j(x_i)$$

$$= \underbrace{\sum_{j=1}^{n} f_j(x_j) + \frac{\rho}{2} x^{\top} \mathcal{L} x}_{\Psi_{\rho}(x)} + \underbrace{\sum_{j=1}^{n} f_j(x_i) - f_j(x_j) - \frac{\rho}{2} x^{\top} \mathcal{L} x}_{\Delta(x)}$$
(2)

Step 3: upper bound
$$\Delta(x) \leq \frac{C}{\rho}$$
 for some $C \geq 0$

• use Lipschitz continuity of f_i to obtain

$$\sum_{j=1}^{n} f_j(x_i) - f_j(x_j) \le G \sum_{j=1}^{n} \|x_i - x_j\|$$
 (3)

for some $G \ge 0$

• since $\mathcal{L}\mathbf{1}=0$,

$$x^{\top} \mathcal{L} x = (x - x_i \mathbf{1})^{\top} \mathcal{L} (x - x_i \mathbf{1})$$
 (4)

• combine (3) and (4) to obtain

$$\Delta(x) \leq G \|x - x_i \mathbf{1}\|_1 - \frac{\rho}{2} (x - x_i \mathbf{1})^\top \mathcal{L} (x - x_i \mathbf{1})$$
$$= G \|\widehat{x}\|_1 - \frac{\rho}{2} \widehat{x}^\top \widehat{\mathcal{L}} \widehat{x}$$

- \hat{x} is $x x_i \mathbf{1}$ with *i*th entry removed
- $ightharpoonup \widehat{\mathcal{L}}$ is \mathcal{L} with *i*th row and *i*th column removed
- lacktriangle easy to see that $\widehat{\mathcal{L}}$ is positive definite (network is connected)

• it follows

$$\Delta(x) \leq \max_{y} G \|y\|_{1} - \frac{\rho}{2} y^{\top} \widehat{\mathcal{L}} y$$

$$= \max_{y} \max_{\|z\|_{\infty} \leq 1} G z^{\top} y - \frac{\rho}{2} y^{\top} \widehat{\mathcal{L}} y$$

$$= \max_{\|z\|_{\infty} \leq 1} \max_{y} G z^{\top} y - \frac{\rho}{2} y^{\top} \widehat{\mathcal{L}} y$$

$$= \frac{1}{\rho} \underbrace{\frac{G^{2}}{2} \max_{\|z\|_{\infty} \leq 1} z^{\top} \widehat{\mathcal{L}}^{-1} z}_{G}$$
(5)

• use $f^* \geq \Psi_{\rho}^*$, and combine (1), (2) with (5) to conclude

$$f(x_i(t)) - f^* \leq \frac{2(L + \rho\lambda_{\mathsf{max}}(\mathcal{L}))B}{t^2} + \frac{C}{\rho} = \mathcal{O}\left(\frac{1}{\rho} + \frac{1}{t^2} + \frac{\rho}{t^2}\right)_{\blacksquare}$$

Numerical example

Distributed logistic regression

minimize
$$\sum_{i=1}^{n} \sum_{j=1}^{5} \phi \left(-b_{ij} (s^{\top} a_{ij} + r) \right)$$
subject to $||s|| \leq R$

- $\{(a_{ij},b_{ij})\in\mathbb{R}^3\times\mathbb{R}:j=1,\ldots,5\}$: training data for agent i
- $\phi(t) = \log(1 + e^{-t})$
- geometric graph, n = 20 nodes and 86 edges

Constant stepsize

$$e_f(t) := \frac{1}{n} \sum_{i=1}^n \frac{f(x_i(t)) - f^*}{f^*}$$

Red: D-NG¹ Blue: subgradient² Black: dual averaging³

¹D. Jakovetić *et al.*, "Distributed Nesterov-like gradient algorithms", *IEEE* 51st Annual Conference on Decision and Control (CDC), 2012

²A. Nedić and A. Ozdaglar, "Distributed subgradient methods for multi-agent optimization," *IEEE TAC*, 54(1), 2009

³J. Duchi *et al.*, "Dual averaging for distributed optimization: convergence and network scaling," *IEEE TAC*, 57(3), 2012

Diminishing stepsize
$$e_f(t) := \frac{1}{n} \sum_{i=1}^n \frac{f(x_i(t)) - f^*}{f^*}$$

D-NG: $\alpha(t) = 1/t$ Subgradient, dual averaging: $\alpha(t) = 1/\sqrt{t}$

Distributed Nesterov gradient method (D-NG) with diminishing stepsize

Unconstrained problem

minimize
$$f(x) := f_1(x) + f_2(x) + \cdots + f_n(x)$$

subject to $x \in \mathbf{R}^d$

Diminishing stepsize $\alpha(t) = \frac{c}{t+1}$

$$x(t) = W y(t-1) - \alpha(t-1)\nabla F(y(t-1))$$
 (6)

$$y(t) = x(t) + \frac{t-1}{t+2}(x(t) - x(t-1))$$
 (7)

D. Jakovetić et al., "Fast cooperative distributed learning", 46th Asilomar Conference on Signals, Systems and Computers (ASILOMAR), 2012

Convergence analysis: if f_i 's are differentiable, ∇f_i 's are bounded and L-Lipschitz continuous, and W is symmetric, stochastic and pos.-def.

$$f(x_i(t)) - f^* = \mathcal{O}\left(\frac{\log t}{t}\right)$$

- dependence on network spectral gap $\frac{1}{1-\lambda_2(W)}$ also known
- agents may ignore L and $\lambda_2(W)$

Sample of related work (different assumptions):

- K. Tsianos and M. Rabbat, "Distributed strongly convex optimization," 50th Allerton Conference on Communication, Control and Computing, 2012
- E. Ghadimi et al., "Accelerated gradient methods for networked optimization," arXiv preprint, 2012

Sketch of proof

Step 1: look at network averages

$$\overline{x}(t) := \frac{1}{n} \sum_{i=1}^{n} x_i(t) \qquad \overline{y}(t) := \frac{1}{n} \sum_{i=1}^{n} y_i(t)$$

• from (6) and (7)

$$\overline{x}(t) = \overline{y}(t-1) - \underbrace{\frac{\alpha(t-1)}{n}}_{\widehat{L}(t-1)} \underbrace{\sum_{i=1}^{n} \nabla f_{i}(y_{i}(t-1))}_{\widehat{\nabla} f(\overline{y}(t-1))}$$

$$\overline{y}(t) = \overline{x}(t) + \frac{t-1}{t+2} (\overline{x}(t) - \overline{x}(t-1))$$

interpretation: inexact Nesterov's gradient method

• using ideas from optimization with inexact oracles⁴,

$$f(\overline{x}(t)) - f^* \le \frac{2n}{ct} \|\overline{x}(0) - x^*\|^2 + \frac{L}{t} \sum_{s=0}^{t-1} \frac{(s+2)^2}{s+1} \|\delta_y(s)\|^2$$
 (8)

where

$$\delta_{y}(t) := y(t) - \overline{y}(t)\mathbf{1}$$

= $(y_{1}(t) - \overline{y}(t), \dots, y_{n}(t) - \overline{y}(t))$

⁴O. Devolder *et al.*, "First-order methods of smooth convex optimization with inexact oracle," submitted, *Mathematical Programming*, 2011

Step 2: show $\delta_{\nu}(t) = \mathcal{O}\left(\frac{1}{4}\right)$

rewrite (6) and (7) as the time-varying linear system

$$\begin{bmatrix} \delta_{x}(t) \\ \delta_{x}(t-1) \end{bmatrix} = A(t) \begin{bmatrix} \delta_{x}(t-1) \\ \delta_{x}(t-2) \end{bmatrix} + u(t-1), \tag{9}$$

where

$$A(t) := \begin{bmatrix} \frac{2t-1}{t+1} \Delta_W & -\frac{t-2}{t+1} \Delta_W \\ I & 0 \end{bmatrix}, \quad u(t) := \begin{bmatrix} -\alpha(t)(I-J)\nabla F(y(t)) \\ 0 \end{bmatrix}$$

- $b \delta_x(t) := x(t) \overline{x}(t) \mathbf{1}$ $b J := \frac{1}{2} \mathbf{1} \mathbf{1}^{\top}$
- $\blacktriangleright \Delta_W := W I$
- $u(t) = \mathcal{O}\left(\frac{1}{t}\right)$ due to $\alpha(t) = \frac{c}{t+1}$ and bounded gradient assumption

• Fact: if

$$x(t) = \lambda x(t-1) + \mathcal{O}\left(rac{1}{t}
ight)$$

(10)

with $|\lambda| < 1$, then $x(t) = \mathcal{O}\left(\frac{1}{t}\right)$

• "hand-waving" argument: upon approximating

$${\cal A}(t)\simeq egin{bmatrix} 2\Delta_W & -\Delta_W \ I & 0 \end{bmatrix},$$

and diagonalizing, system (9) reduces to (10)

• since $\delta_{\mathsf{x}}(t) = \mathcal{O}\left(\frac{1}{t}\right)$,

$$egin{array}{lcl} \delta_{{ extsf{y}}}(t) &=& \delta_{{ extsf{x}}}(t) + rac{t-1}{t+2} \left(\delta_{{ extsf{x}}}(t) - \delta_{{ extsf{x}}}(t-1)
ight) \ &=& \mathcal{O}\left(rac{1}{t}
ight) \end{array}$$

Step 3: relate $f(x_i)$ to $f(\overline{x})$

$$f(x_i) = \sum_{j=1}^{n} f_j(x_i)$$

$$= \underbrace{\sum_{j=1}^{n} f_j(\overline{x})}_{f(\overline{x})} + \underbrace{\sum_{j=1}^{n} f_j(x_i) - f_j(\overline{x})}_{\Delta(x)}$$
(11)

• by the bounded gradient assumption

$$\Delta(x) = \sum_{i=1}^{n} f_j(x_i) - f_j(\overline{x}) \le Gn \|x_i - \overline{x}\| \le Gn \|\delta_x\|$$
 (12)

• combine (8), (11) and (12) to conclude

$$f(x_i(t)) - f^* = \mathcal{O}\left(\frac{\log t}{t}\right)_{\blacksquare}$$

Numerical example

Acoustic source localization in sensor networks

• agent *i* measures

$$y_i = \frac{1}{\|x - r_i\|^2} + \text{noise}$$

 $r_i = position of agent i$

- goal: determine source position x
- convex approach⁵:

$$\underset{x}{\text{minimize}} \quad \sum_{i=1}^{n} \operatorname{dist}^{2}(x, C_{i})$$

with
$$C_i = \left\{ x : \|x - r_i\| \le \frac{1}{\sqrt{y_i}} \right\}$$

• geometric graph, n = 70 nodes and 299 edges

⁵A. O. Hero and D. Blatt, "Sensor network source localization via projection onto convex sets (POCS)", *IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, 2005

$$e_f(t) := \frac{1}{n} \sum_{i=1}^n \frac{f(x_i(t)) - f^*}{f^*}$$

Red: D-NG⁶, $\alpha(t) = 1/(t+1)$ Others: subgradient⁷

⁶D. Jakovetić *et al.*, "Fast cooperative distributed learning", 46th Asilomar Conference on Signals, Systems and Computers (ASILOMAR), 2012

⁷A. Nedić and A. Ozdaglar, "Distributed subgradient methods for multi-agent optimization," *IEEE TAC*, 54(1), 2009

Numerical example

Distributed regularized logistic regression

minimize
$$\sum_{i=1}^{n} \underbrace{\phi\left(-b_{i}(s^{\top}a_{i}+r)\right)+\beta \left\|s\right\|^{2}}_{f_{i}(s,r)}$$

- (a_i, b_i) : training data for agent i
- $\phi(t) = \log(1 + e^{-t})$
- geometric graph, n = 20 nodes and 67 edges

$$e_f(t) := \frac{1}{n} \sum_{i=1}^n \frac{f(x_i(t)) - f^*}{f^*}$$

Red: D-NG, $\alpha(t) = 1/(t+1)$ Others: subgradient

Distributed Nesterov gradient method (D-NC) with consensus iterations

$$x(t) = W^{a(t)} (y(t-1) - \alpha \nabla F(y(t-1)))$$

$$y(t) = W^{b(t)} \left(x(t) + \frac{t-1}{t+2} (x(t) - x(t-1)) \right)$$

- $a(t) = \lceil \frac{2 \log t}{-\log |\lambda|_2(W)} \rceil$ and $b(t) = \lceil \frac{\log 3}{-\log |\lambda|_2(W)} + \frac{2 \log t}{-\log |\lambda|_2(W)} \rceil$
- $|\lambda|_2(W)$ must be known by all agents

D. Jakovetić *et al.*, "Fast distributed gradient methods", arXiv preprint, 2011

Convergence analysis: if f_i 's are differentiable, ∇f_i 's are bounded and L-Lipschitz continuous, W is symmetric and stochastic, and $\alpha = 1/(2L)$

$$f(x_i(t)) - f^* = \mathcal{O}\left(\frac{1}{t^2}\right)$$

- t iterations involve $\mathcal{O}(t \log t)$ communication rounds
- dependence on network spectral gap also known

Similar rate guarantees in:

 A. Chen and A. Ozdaglar, "A fast distributed proximal gradient method," 50th Allerton Conference on Communication, Control and Computing, 2012

Distributed optimization via ADMM (D-ADMM)

ADMM = Alternate Direction Method of Multipliers

Recent review:

 S. Boyd et al., "Distributed optimization and statistical learning via the alternating method of multipliers," Foundations and Trends in Machine Learning, 2011

Star network

ADMM, distributed optimization:

- I. Schizas et al., "Consensus in ad hoc WSNs with noisy links part
 I: distributed estimation of deterministic signals," IEEE TSP, 56(1),
 2008
- many others

Generic network

This talk:

- J. Mota *et al.*, "D-ADMM: a communication efficient distributed algorithm for separable optimization," *IEEE TSP*, 61(10), 2013
- J. Mota *et al.*, "Distributed optimization with local domains: applications in MPC and network flows," arXiv preprint, 2013

Illustrative example:

minimize
$$f_1(x_1, x_2) + f_2(x_2) + f_3(x_1, x_2)$$

- f_i 's are proper, closed, convex functions with range $\mathbb{R} \cup \{+\infty\}$
- fi's may depend on different subsets of variables

minimize
$$f_1(x_1, x_2) + f_2(x_2) + f_3(x_1, x_2)$$

Roadmap to obtain a distributed algorithm

Step 1: split each variable across associated nodes

Step 2: introduce consistency constraints

minimize
$$f_1\left(x_1^{(1)},x_2^{(1)}\right)+f_2\left(x_2^{(2)}\right)+f_3\left(x_1^{(3)},x_2^{(3)}\right)$$
 subject to $x_1^{(1)}=x_1^{(3)}$ $x_2^{(1)}=x_2^{(3)}$ $x_2^{(1)}=x_2^{(2)}$

Step 3: pass to augmented Lagrangian dual

$$\mathsf{maximize}_{\lambda_1^{(1,3)},\lambda_2^{(1,3)},\lambda_2^{(1,2)}} \quad \mathcal{L}_{\rho}\left(\lambda_1^{(1,3)},\lambda_2^{(1,3)},\lambda_2^{(1,2)}\right)$$

with
$$\mathcal{L}_{\rho} \left(\lambda_{1}^{(1,3)}, \lambda_{2}^{(1,3)}, \lambda_{2}^{(1,2)} \right) = f_{1} \left(x_{1}^{(1)}, x_{2}^{(1)} \right) + f_{2} \left(x_{2}^{(2)} \right) + f_{3} \left(x_{1}^{(3)}, x_{2}^{(3)} \right)$$

$$+ \left\langle \lambda_{1}^{(1,3)}, x_{1}^{(1)} - x_{1}^{(3)} \right\rangle + \frac{\rho}{2} \left\| x_{1}^{(1)} - x_{1}^{(3)} \right\|^{2}$$

$$+ \left\langle \lambda_{2}^{(1,3)}, x_{2}^{(1)} - x_{2}^{(3)} \right\rangle + \frac{\rho}{2} \left\| x_{2}^{(1)} - x_{2}^{(3)} \right\|^{2}$$

$$+ \left\langle \lambda_{2}^{(1,2)}, x_{2}^{(1)} - x_{2}^{(2)} \right\rangle + \frac{\rho}{2} \left\| x_{2}^{(1)} - x_{2}^{(2)} \right\|^{2}$$

Step 4: color the network

$$f_1(x_1, x_2)$$
 $f_3(x_1, x_2)$
 g_2
 $g_2(x_2)$

$$\mathcal{L}_{\rho}\left(\lambda_{1}^{(1,3)}, \lambda_{2}^{(1,3)}, \lambda_{2}^{(1,2)}\right) = f_{1}\left(x_{1}^{(1)}, x_{2}^{(1)}\right) + f_{2}\left(x_{2}^{(2)}\right) + f_{3}\left(x_{1}^{(3)}, x_{2}^{(3)}\right) + \left\langle\lambda_{1}^{(1,3)}, x_{1}^{(1)} - x_{1}^{(3)}\right\rangle + \frac{\rho}{2} \left\|x_{1}^{(1)} - x_{1}^{(3)}\right\|^{2} + \left\langle\lambda_{2}^{(1,3)}, x_{2}^{(1)} - x_{2}^{(3)}\right\rangle + \frac{\rho}{2} \left\|x_{2}^{(1)} - x_{2}^{(3)}\right\|^{2} + \left\langle\lambda_{2}^{(1,2)}, x_{2}^{(1)} - x_{2}^{(2)}\right\rangle + \frac{\rho}{2} \left\|x_{2}^{(1)} - x_{2}^{(2)}\right\|^{2}$$

Step 5: apply extended ADMM

• Primal update at node 1

$$\begin{pmatrix} x_{1}^{(1)}, x_{2}^{(1)} \end{pmatrix} (t+1) = \operatorname{argmin}_{x_{1}, x_{2}} f_{1} (x_{1}, x_{2})$$

$$+ \langle \lambda_{1}^{(1,3)}(t), x_{1} \rangle + \frac{\rho}{2} \left\| x_{1} - x_{1}^{(3)}(t) \right\|^{2}$$

$$+ \langle \lambda_{2}^{(1,3)}(t), x_{2} \rangle + \frac{\rho}{2} \left\| x_{2} - x_{2}^{(3)}(t) \right\|^{2}$$

$$+ \langle \lambda_{2}^{(1,2)}(t), x_{2} \rangle + \frac{\rho}{2} \left\| x_{2} - x_{2}^{(2)}(t) \right\|^{2}$$

• Primal update at node 2

$$\begin{array}{rcl} x_{2}^{(2)}(t+1) & = & \operatorname{argmin}_{x_{2}} f_{2}\left(x_{2}\right) \\ & & -\langle \lambda_{2}^{(1,2)}(t), x_{2}\rangle + \frac{\rho}{2} \left\|x_{2}^{(1)}(t+1) - x_{2}\right\|^{2} \end{array}$$

• Primal update at node 3

$$\begin{split} \left(x_{1}^{(3)}, x_{2}^{(3)}\right)(t+1) &= & \operatorname{argmin}_{x_{1}, x_{2}} f_{3}\left(x_{1}, x_{2}\right) \\ &- \left\langle \lambda_{1}^{(1,3)}(t), x_{1} \right\rangle + \frac{\rho}{2} \left\|x_{1}^{(1)}(t+1) - x_{1}\right\|^{2} \\ &- \left\langle \lambda_{2}^{(1,3)}(t), x_{2} \right\rangle + \frac{\rho}{2} \left\|x_{2}^{(1)}(t+1) - x_{2}\right\|^{2} \end{aligned}$$

Key point: nodes 2 and 3 work in parallel (same color)

Step 6: dual update at all relevant nodes

$$\lambda_1^{(1,3)}(t+1) = \lambda_1^{(1,3)}(t) + \rho \left(x_1^{(1)}(t+1) - x_1^{(3)}(t+1) \right)
\lambda_2^{(1,3)}(t+1) = \lambda_2^{(1,3)}(t) + \rho \left(x_2^{(1)}(t+1) - x_2^{(3)}(t+1) \right)
\lambda_2^{(1,2)}(t+1) = \lambda_2^{(1,2)}(t) + \rho \left(x_2^{(1)}(t+1) - x_2^{(2)}(t+1) \right)$$

Convergence analysis:

- for 2 colors (bipartite network): classical ADMM results apply
- for \geq 3 colors⁸: convergence for strongly convex functions and suitable ρ

 $^{^{8}}$ D. Han and X. Yuan, "A note on the alternating direction method of multipliers," JOTA, 155(1), 2012

Numerical example

Consensus

minimize
$$\underbrace{\sum_{i=1}^{n} (x - \theta_i)^2}_{f_i(x)}$$

• $\theta_i = \text{measurement of agent } i \; (\theta_i \overset{\text{i.i.d.}}{\sim} \mathcal{N} \left(10, 10^4\right))$

Network	Model (parameters)	# Colors
1	Erdős-Rényi (0.12)	5
2	Watts-Strogatz $(4,0.4)$	4
3	Barabasi (2)	3
4	Geometric (0.23)	10
5	Lattice (5×10)	2

D-ADMM⁹ Others: A¹⁰. B¹¹. C¹²

⁹ J. Mota *et al.*, "D-ADMM: a communication efficient distributed algorithm for separable optimization," *IEEE TSP*, 61(10), 2013

¹⁰I. Schizas *et al.*, "Consensus in ad hoc WSNs with noisy links - part I: distributed estimation of deterministic signals," *IEEE TSP*, 56(1), 2008

¹¹H. Zhu et al., "Distributed in-network channel decoding," IEEE TSP, 57(10), 2009

¹²B. Oreshkin *et al.*, "Optimization and analysis of distributed averaging with short node memory," *IEEE TSP*, 58(5), 2010

Numerical example

LASSO

Column partition: node *i* holds $A_i \in \mathbb{R}^{200 \times 20}$

$$\begin{bmatrix} A_1 & A_2 & \cdots & A_n \end{bmatrix}$$

After regularization and dualization:

$$\underset{\lambda}{\operatorname{minimize}} \quad \sum_{i=1}^{n} \underbrace{\frac{1}{n} (b^{\top} \lambda + \sigma \|\lambda\|) - \inf_{x} \left\{ \|x\|_{1} + \lambda^{\top} A_{i} x + \frac{\delta}{2} \|x\|^{2} \right\}}_{f_{i}(\lambda)}$$

D-ADMM¹³ Others: A¹⁴, B¹⁵

¹³ J. Mota *et al.*, "D-ADMM: a communication efficient distributed algorithm for separable optimization," *IEEE TSP*, 61(10), 2013

¹⁴I. Schizas *et al.*, "Consensus in ad hoc WSNs with noisy links - part I: distributed estimation of deterministic signals," *IEEE TSP*, 56(1), 2008

¹⁵H. Zhu et al., "Distributed in-network channel decoding," IEEE TSP, 57(10), 2009

What if variables are not "connected"?

Example: variable x_2 is not "connected"

Propagate variable across a Steiner tree¹⁶

 $^{^{16}}$ J. Mota *et al.*, "Distributed optimization with local domains: applications in MPC and network flows," arXiv preprint, 2013

