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Multi-agent optimization

minimize  f(x) := A(x) + H(x) + - + fa(x)
subjectto xe€ X

/

/0
N

/\/ ¢

./
f; is convex, private to agent /
X C R? is closed, convex (hereafter, d = 1)
f* = infyex f(x) is attained at x*

network is connected and static

applications: distributed learning, cognitive radio, consensus, ...



Distributed subgradient method

Update at each agent / (with constant step size)

xi(t) = Px | D Wyx(t—1) - aVii(x(t - 1))
JEN;

N is neighborhood of node i (including /)
o W are weights

e « > 0 is stepsize

Vfi(x) is a subgradient of f; at x

e Py is projector onto X



Several variations exist and time-varying networks are supported

Small sample of representative work:

e J Tsitsiklis et al., “Distributed asynchronous deterministic and
stochastic gradient optimization algorithms,” IEEE TAC, 31(9), 1986

e A. Nedi¢ and A. Ozdaglar, “Distributed subgradient methods for
multi-agent optimization,” IEEE TAC, 54(1), 2009

e B. Johansson, “A randomized incremental subgradient method for
distributed optimization in networked systems,” SIAM J.
Optimization, 20(3), 2009

e A. Nedi¢ et al., “Constrained consensus and optimization in
multi-agent networks,” IEEE TAC, 55(4), 2010

e J. Duchi et al., "Dual averaging for distributed optimization:
convergence and network scaling,” IEEE TAC, 57(3), 2012



Convergence analysis: under appropriate conditions

Fxa(t)) = F* =0 <a + 1)

at

For optimized a, O(1/€?) iterations suffice to reach e-suboptimality

Distributed subgradient method in matrix form

x(t) =P (Wx(t—1)—aVF(x(t —1)))

x(t) == (xa(t), ..., xn(t)) is network state
F(xt,...,%n) = A(x1) + - + fo(xa)
VF(x1,. ., x0) = (VA(x1),. .., Vii(xs))

e P is projector onto X"



Interpretation:
e when W =1 — apl (L = network Laplacian, p > 0)

x(t) = P (x(t — 1) — aVV,,(x(t — 1))

e classical subgradient method applied to penalized objective

p € p
Vo) = () + SxTox =3 i) + £ 3 s — P
i=1

inj

Key idea: apply instead Nesterov's fast gradient method
x(t) = Py(t—1)—aVV,(y(t-1)))
V) = KO+ s (0~ x(e - 1)

e y(t) = ()a(t), ..., ya(t)) is auxiliary variable



Distributed Nesterov gradient method (D-NG)
with constant stepsize

x(t) = PWy(t—1)—aVF(y(t-1)))

t—1
y(t) = x(t)+ = () = x(t - 1))

Convergence analysis: if f;'s are differentiable, Vf;'s are Lipschitz
continuous, and X is compact

For optimized p, O(1/¢) iterations suffice to reach e-suboptimality

D. Jakoveti¢ et al., “Distributed Nesterov-like gradient algorithms”, IEEE
51st Annual Conference on Decision and Control (CDC), 2012



Proof

Step 1: plug-in Nesterov's classical analysis
o [[Vfi(x) = Vfi(y)l < L|x — y|| implies

VW, (x) = VW, ()] < Lo [|Ix =yl

for L, = L+ pAmax(L)
e notation: W* := inf,cx W,(x) is attained at x;

e with o :=1/L,, classical analysis yields

2L
V(D) - vy < S X0~ X[
< g 1)

for some B > 0 (since X is compact)



Step 2: relate f(x;) to W,(x), x = (x1,...,Xn)

f(xi) > filx)

Jj=1

n

p ‘ p
= Zlﬁ(&HEXT,cXJerG(Xi)*G'(XJ)*ngliX (2)
Jj= Jj=

Vo (x) A(x)

Step 3: upper bound A(x) < % for some C >0

e use Lipschitz continuity of f; to obtain

_Z’S'(Xf) —filx) < G_ZIIX,' =l (3)

for some G >0



e since L1 =0,

xLx = (x—x1)" £ (x—x1)

e combine (3) and (4) to obtain

A(x)

IN

Glx — x|, — g (x —x1)" £ (x - x1)
= GIRl, - 5xTLx
2
» X is x — x;1 with ith entry removed

» L is £ with ith row and ith column removed
> easy to see that £ is positive definite (network is connected)



e it follows

p o~
max G ||y|l; — EyTEy
y

P Tr
max max Gz'y—LyTC
VW ielag 2 Y T2

max max Gz 'y — ByTEAy
Izl <1 ¥ 2

1 G2 -~
2= max z'L7!z
p 2 zll.<1

C

e use f* > W7, and combine (1), (2) with (5) to conclude

1

p

C 1
+_O<+2+2
p p 2t

).



Numerical example

Distributed logistic regression

5
minimize Z?:lZQS(—bU(STa;j—i-r))
sr =

fi(s,r)
subject to ||s|| < R

e {(aj, bj) e R®*x R : j=1,...,5}: training data for agent /
o ¢(t)=log(l+e ")
e geometric graph, n = 20 nodes and 86 edges



Constant stepsize er(t) = %27:1 "(X(;#
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10 —dual averaging
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ID. Jakoveti¢ et al., “Distributed Nesterov-like gradient algorithms”, IEEE 51st
Annual Conference on Decision and Control (CDC), 2012

2A. Nedi¢ and A. Ozdaglar, “Distributed subgradient methods for multi-agent
optimization,” IEEE TAC, 54(1), 2009

3J. Duchi et al., “Dual averaging for distributed optimization: convergence and
network scaling,” IEEE TAC, 57(3), 2012
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Distributed Nesterov gradient method (D-NG)
with diminishing stepsize

Unconstrained problem

minimize  f(x) := A(x) + f(x) + - + f(x)
subject to x € R?

Diminishing stepsize o(t) = 5
X)) = Wyt-D-at-DVFO(-1) (6
V) = K0+ s (0~ x(e - 1) 7

D. Jakoveti¢ et al., “Fast cooperative distributed learning”, 46th Asilomar
Conference on Signals, Systems and Computers (ASILOMAR), 2012



Convergence analysis: if f;'s are differentiable, Vf;’s are bounded and
L-Lipschitz continuous, and W is symmetric, stochastic and pos.-def.

Fou(t)) — £ = O ('Ogt>

t

e dependence on network spectral gap ﬁz(w) also known

e agents may ignore L and X (W)

Sample of related work (different assumptions):

e K. Tsianos and M. Rabbat, “Distributed strongly convex
optimization,” 50th Allerton Conference on Communication, Control
and Computing, 2012

e E. Ghadimi et al., “Accelerated gradient methods for networked
optimization,” arXiv preprint, 2012



Sketch of proof

Step 1: look at network averages

X(0) = Yont) () =1 Y u(e)

x(t) = y(t—1) Zw (t—1))

h,—/l 1
=y Vi(y(t—1))

Yt = X(0)+ o (0~ x(e - 1)

e interpretation: inexact Nesterov's gradient method



using ideas from optimization with inexact oracles?,

_ L 2n . L2 (s+2)2
0) - £ < 2 (o) 7+ 530 CE g oy
s=0

where
y(t) —y(t)1

o,(t) =
n(t) = y(t),...

»yn(t) = ¥(t))

40. Devolder et al., “First-order methods of smooth convex optimization with

inexact oracle,” submitted, Mathematical Programming, 2011



—o()

Step 2: show 4, (t
7) as the time-varying linear system

)
e rewrite (6) and

)
Ox(t Ox(t—1
L&(t()l)} = A(t) L;Xg B 2;} +u(t —1), (9)
where
Ay = [T R TRy = [0 IVFU)

e u(t) = O (}) due to a(t) = ;55 and bounded gradient assumption



e Fact: if
x(t)=Xx(t-1)+0O (1)

with [A| < 1, then x(t) = O (3)

e “hand-waving" argument: upon approximating

20w —Aw

A = [P 5.

and diagonalizing, system (9) reduces to (10)

e since &,(t) = O (1),

Blt) + 15 (0:(6) = 6t — 1)

- of})

dy(t)



Step 3: relate f(x;) to f(X)

f) = Y fi(x)

e by the bounded gradient assumption
A(x) = Zf(x, )< Gnllx; — x| < Gn|lo]  (12)

e combine (8), (11) and (12) to conclude

F(xi(t)) — F* = O <'°gt>.

t



Numerical example

Acoustic source localization in sensor networks

e agent i measures
yi= % + noise
[[x = rill
r;i = position of agent i
e goal: determine source position x
e convex approach®:
minimize 3.7, dist? (x, G;)

X

: o . . 1
with G = {x Cx =] < ﬁ}
e geometric graph, n = 70 nodes and 299 edges

5A. O. Hero and D. Blatt, “Sensor network source localization via projection onto
convex sets (POCS)", IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2005
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5D. Jakoveti¢ et al., “Fast cooperative distributed learning”, 46th Asilomar
Conference on Signals, Systems and Computers (ASILOMAR), 2012

“A. Nedi¢ and A. Ozdaglar, “Distributed subgradient methods for multi-agent
optimization,” IEEE TAC, 54(1), 2009



Numerical example

Distributed regularized logistic regression

minimize S (=bi(s"a+r)) + Bl

fi(s,r)

e (a;, b;): training data for agent i

o ¢(t)=log(l+e ")
e geometric graph, n = 20 nodes and 67 edges
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Distributed Nesterov gradient method (D-NC)
with consensus iterations

(B = WO (e-1) - aVF((t - 1)
— o E L) - x(t—
A0 = WO (x(0)+ 1 (x(0) ~ x(e - 1)

2 lo log 3 2 lo
o a(t) = [y | 2nd B(8) = [ 15wy T e Do) |

o |A|2(W) must be known by all agents

D. Jakoveti¢ et al., “Fast distributed gradient methods”, arXiv preprint,
2011



Convergence analysis: if f;'s are differentiable, Vf;'s are bounded and
L-Lipschitz continuous, W is symmetric and stochastic, and o = 1/(2L)

1
fGate)) - 1 =0 ()
e t iterations involve O(tlog t) communication rounds

e dependence on network spectral gap also known

Similar rate guarantees in:

e A. Chen and A. Ozdaglar, “A fast distributed proximal gradient
method,” 50th Allerton Conference on Communication, Control and
Computing, 2012



Distributed optimization via ADMM (D-ADMM)

ADMM = Alternate Direction Method of Multipliers

Recent review:

e S. Boyd et al., "Distributed optimization and statistical learning via
the alternating method of multipliers,” Foundations and Trends in
Machine Learning, 2011

® O
N/
/O\
® O

Star network



ADMM, distributed optimization:

e |. Schizas et al., "Consensus in ad hoc WSNs with noisy links - part
I: distributed estimation of deterministic signals,” /EEE TSP, 56(1),
2008

e many others

N

Generic network

This talk:

e J. Mota et al.,, "D-ADMM: a communication efficient distributed
algorithm for separable optimization,” IEEE TSP, 61(10), 2013

e J. Mota et al., "Distributed optimization with local domains:
applications in MPC and network flows,” arXiv preprint, 2013



Illustrative example:

minimize fi(x1, x2) + f(x2) + f(x1, x2)
X1,X2,X3

e f;'s are proper, closed, convex functions with range R U {4+oc0}

e fi's may depend on different subsets of variables



minimize  fi(x1, x2) + f(x2) + f(x1, x2)
X1,%2,X3

Roadmap to obtain a distributed algorithm
Step 1: split each variable across associated nodes

x§1)7 x(21)

1_%3)7 l_g’i)

o

\

2

Lo

Step 2: introduce consistency constraints

minimize  f; (xil),xz(l)) +f (Xz(z)) +f (X1(3),X2(3))
1 3 1 3
RIENCINCIRNG

X2(1) _ X2(2)

subject to  x



Step 3: pass to augmented Lagrangian dual
maximize)\(ll,a) A1) 0.2 [:p (/\(11’3)7 )\51’3), /\21’2))

N2 072

with

£, (228 82) = 4 () 5 (52 5 ()
0 = 1)+ £ -
047 =) + 8 0 -0

2
L0 = )4 2 o0 o)



Step 4: color the network

fi(z1, z2)
0 fa(z1,w2)
\\9
fa(2)
£ (B8P 0) = () 4y () 1 6 (7 0)
R |
0 ) 5 4 o7

LD P 1 0 - o0



Step 5: apply extended ADMM

e Primal update at node 1

(xl(l),xz(l)> (t+1) = argmin,  fi (xi, %)
2
+O8I(E), ) + g HXl —x7() H
002+ 5 e =)

+<A£1’2>(r),xQ+ o =<2

1



e Primal update at node 2

(2)(t—|—1) = argminf (x2)

2
~083(0), ) + 2 |4V (¢ + 1) = e

e Primal update at node 3

(x1(3).,><2(3)> (t+1) = argmin,  f3(x1,x2)
2
—O8I(1), x) + 2 HXfl)(f +1) - XlH
2

—083(8) ) + £ |4V (4 1) =

Key point: nodes 2 and 3 work in parallel (same color)



Step 6: dual update at all relevant nodes

)\(11’3)(1.“ v = )\gl,s)(t) T (Xl(l)(t +1) - x1(3)(t + 1))
)\gl’B)(t + 1) — )\51»3)(1-) +p (xél)(t + 1) — X§3)(t + 1))
/\gl,z)(t 1) = Agl’z)(t) i (Xél)(t +1)— x§2)(t + 1))

Convergence analysis:
e for 2 colors (bipartite network): classical ADMM results apply

e for > 3 colors®: convergence for strongly convex functions and
suitable p

8D. Han and X. Yuan, “A note on the alternating direction method of multipliers,”
JOTA, 155(1), 2012



Numerical example

Consensus

n

minimize Z(X —6;)?

i=1

fi(x)

e 0; = measurement of agent i (6; N (10,10%))

Network Model (parameters) # Colors
1 Erdés-Rényi (0.12) 5
2 Watts-Strogatz (4,0.4) 4
3 Barabasi (2) 3
4 Geometric (0.23) 10
5 Lattice (5 x 10) 2



Communication steps

10*
103
A
102 £
D-ADMM
10?
10°
1 2 3 4 5

Network number

D-ADMM® Others: A0, B11 (12

9J. Mota et al., “D-ADMM: a communication efficient distributed algorithm for
separable optimization,” IEEE TSP, 61(10), 2013

10|, Schizas et al., “Consensus in ad hoc WSNs with noisy links - part |: distributed
estimation of deterministic signals,” IEEE TSP, 56(1), 2008

11H. Zhu et al., “Distributed in-network channel decoding,” IEEE TSP, 57(10), 2009

2B, Oreshkin et al., "Optimization and analysis of distributed averaging with short
node memory,” I[EEE TSP, 58(5), 2010




Numerical example
LASSO

minimize  ||x]|,

subject to ||[Ax —b|| <o

Column partition: node i holds A; € R200%x20

A A - A

After regularization and dualization:

no 1 :
miniAmize Yo ;(bT)\ +o||A]]) - |nf{||x||1 + AT Ax + 5

1)
x||2}

fi(A)



Communication steps

104
103 A

B
10°

D-ADMM

10t
10°

1 2 3 4 5

Network number

D-ADMM?13 Others: A, B1®

13, Mota et al., “D-ADMM: a communication efficient distributed algorithm for
separable optimization,” IEEE TSP, 61(10), 2013

14|, Schizas et al., “Consensus in ad hoc WSNs with noisy links - part I: distributed
estimation of deterministic signals,” IEEE TSP, 56(1), 2008

15H. Zhu et al., "Distributed in-network channel decoding,” IEEE TSP, 57(10), 2009



What if variables are not “connected”?
Example: variable x; is not “connected”
fi(z1)
fa(@1,22)
\\9

Ja(w2)

Propagate variable across a Steiner tree'®

16 ). Mota et al., “Distributed optimization with local domains: applications in MPC
and network flows,” arXiv preprint, 2013



Thank you!



