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Aim of these lectures

“To present some of the key techniques for decomposition and
distributed optimization in a coherent and comprehensible manner”

Focus on understanding, not all the details
— each lecture could be a full-semester course
— you will have to work with the material yourself!

Focus on fundamentals
— many techniques date back to 60's-80's, ...

— but some are very recent, and research frontier is not far away

References at end of presentation (will be posted on-line later this week)
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Why distributed optimization

Optimization on a “"Google scale”
— information processing on huge data sets

Coordination and control of large-scale systems
— power and water distribution
— vehicle coordination and planning
— sensor, social, and data networks

Theoretical foundation for communication protocol design

— Internet congestion control
— scheduling and power control in wireless systems
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Example: water distribution

Coordinated control of water distribution in city of Barcelona (WIDE)

TE R
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Example: multi-agent coordination

Cooperate to find jointly optimal controls and rendez-vous point

minimize ),y fi(0)
subject to 6 € ©

where
; T T T
f:(6) = min Zt:o(xt —0)" Q(zy — 0) + u; Ruy
¢ s.t. $t+1:AI‘t+But, tZO,,T—l
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Example: communication protocol design

Understand how TCP/IP shares network resources between users

maximize Y ui(x;)
subject to Ziep(l) i <¢, lelL
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Lecture overview

Lecture 1: first-order methods for convex optimization

Lecture 2: decomposition techniques, application to multi-agent optimization
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Part I:
Convex optimization using first-order methods

Aim: to understand
— properties and analysis techniques for basic gradient method
— the interplay between problem structure and convergence rate guarantees
— how we can deal with non-smoothness, noise and constraints
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Rationale

Convex optimization:
— minimize convex function subject to convex constraints
— local minima global, strong and useful theory

First-order methods:

— only use function and gradient evaluations (i.e. no Hessians)
— easy to analyze, implement and distribute, yet competitive
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Convex functions and convex sets

f)
f(x)
ar+(1-ajye X, acl0,1] af(@)+ (1 —a)f(y) = flaz+ (1 - a)y), a €[0,1]
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Affine lower bounds from convexity

Why?
af(@)+(1-a)f(y) > flaz+ (1 —a)y) =

F) 2 70 (o + (1= a)y) - af (@) =

= (@) + 12— (floz + (1~ a)y) - f(z)

= (&) + T (fa+ (1 - )y — ) ~ (=)

Letting o — 0 yields result. Can also go in other direction

~_ 7

fy) = f(@) +{Vf(z),y —x)
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Strong convexity — quadratic lower bounds

-@-
F) = f@) + (V(@)y =) + 5|y - o]
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Lipschitz continuous gradient — upper bounds

Lipschitz-continuous gradient: ||V f(z) — Vf(y)|| < L|jz — y||

. . L
Yields upper quadratic bound: f(y) < f(z) + (Vf(x),y — ) + §Hy —z|?
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Strongly convex functions with Lipschitz gradient

Bounded from above and below by quadratic functions

Condition number x = L/c impacts performance of first-order methods.
Note: limited function class when required to hold globally.
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The basic gradient method

Basic gradient method
z(t+1) = z(t) — a(@)Vf(2(1))

A descent method (for small enough step-size a(t)).

Convergence proof.

lo(t +1) = 2*[3 = lla(t) — 2% — 2a(O)(VF (2 (1)), 2(t) — 2*) + a(t)* |V f(2()]3
< [l (t) = 2*[I3 = 20(t) (f(2(2)) = £*) + @IV (1) 13

Where the inequality follows from convexity of f
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Gradient method convergence proof

Applying recursively, we find

l2(T) = 2*[|3 < [|=(0 —w*||2—2za +Z IV f(z
t=0
Since gradient method is descent and norms are non-negative
T-1
2(f(@(T)) = £*) > a(t) < [l2(0) — 2|5+ Z OV F(®)]3
t=0 t=0

Hence, with Ry = ||z(0) — z*||

RE+ 30, o2(t)||VF(=(t)13
2" a(t)

f@(T) =) <

Further assumptions needed to guarantee convergence!
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Gradient method discussion

If we assume that f is Lipschitz, i.e. [V f(z(t))| < Ly

L RE+I3 el
xz(T)) — <
S =17 = 23/ a(t)

Then,

— For fixed step-size a(t) = «
2

aly
lim f(z(T)) < f*+—=
T—o0 2
— For diminishing stepsizes Y o, a*(t) < 00, Y o a(t) = 00
Jim_f(a(T)) = f*
—00
— Accuracy € can be obtained in(RoLf)2 /&2 steps
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Example

Smaller residual error for smaller stepsize, convergence for diminishing

0 L N N RNy
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Strongly convex functions with Lipschitz gradient

As in the basic gradient method proof

ot +1) = 2|13 = |lz(t) — ™[5 — 2a(t)(V f(2(8), 2(t) — 2*) + @OV f ()3
For strongly convex functions with Lipschitz-continuous gradient, it holds

(V (), x(t) — ") =

cL N 1
S a(t) — o + —— VS )]

SO
2a(t)eL
c+L

Vet =1+ o) (a0 - 2 ) 197 )R

t+1)—a*3< (1
Jote+1) - a1 < 1+ 2
Hence, if a(t) < 2/(c+ L) we obtain linear convergence rate

2¢cL
c+ L

ot +1) - 2*]2 < (1 - a(t>) la(t) - 23
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Order-optimal methods

The basic gradient method is not the optimal first-order method.
— optimal first-order methods typically use memory, e.g.

a(t+1) =y(t) — LTV f(y(1)

LEVE 4 1) — (1)

y(t—i—l):w(t—i-l)—f—l_i_\/g

Particularly useful when f is convex and has Lipschitz-continuous gradient
— from O(1/e) to O(1/+/¢)
— achieves optimal rate (same as basic gradient) also in other cases
— not always fastest first-order method
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Gradient methods: limits of performance

Problem class First-order method Complexity e=1%
Lipschitz-continuous function Gradient (9(1/62) 10,000
Lipschitz-continuous gradient Gradient O(1/e) 100
Optimal gradient O(1/+/¢) 10
Strongly convex, Lipschitz gradient Gradient In(1/¢) 23
Optimal gradient In(1/e)
Hycon2 Workshop, ECC 2013 Mikael Johansson  mikaelj@ee.kth.se

Non-smooth convex functions: subgradients

Subgradient s, gives affine lower bound on convex function at x
fy) = f(@) + (50,2 — y)

Subdifferential: set of all subgradients

Hycon2 Workshop, ECC 2013 Mikael Johansson  mikaelj@ee.kth.se
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The subgradient method

As the gradient method, but using subgradients instead
w(t+1) =x(t) — a(t)st), s(t) € df(z(t))

Not a descent method.

Hence, cannot bound ZLO a(t)(f(z(t)) — f*) as before . Rather, we find

. R34+ a2(®)lIs(1)]13
inf f(z(t)) < f* 0 t=0
B ST )

If subgradients are bounded, then same conclusions as for gradient method.
(step-size, convergence rates, ...)

Hycon2 Workshop, ECC 2013 Mikael Johansson  mikaelj@ee.kth.se

Averages behave better...

The running averages of iterates

k=0
are often better-behaved than iterates themselves.

Specifically, if subgradients are bounded ||s;|| < L, then averages satisfy

V2R, L

f@E@) < f+ T

(note how “inf" is gone)

Hycon2 Workshop, ECC 2013 Mikael Johansson  mikaelj@ee.kth.se

7/16/13

12



Gradient method for constrained optimization

Constrained minimization problem

minimize  f(z)
subject to x € X

If projections onto X are easy to compute, can use projected gradient

z(t +1) = Px{z(t) — a()VF(z(t)}

Same convergence proof as before, since projections are non-expansive

1Px{z} = Px{y}lI* < |z -yl

Hycon2 Workshop, ECC 2013 Mikael Johansson  mikaelj@ee.kth.se

Beyond the basic methods

Smooth optimization of non-smooth functions
— epsilon-optimal solution to non-smooth problem requires many iterations
— often better to smooth function and apply order-optimal method

Exploiting structure
— when problem is smooth problem + easily-solvable non-smooth
— many current applications in compressed sensing, sparse optimization

Hycon2 Workshop, ECC 2013 Mikael Johansson  mikaelj@ee.kth.se
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Duality

Associated with every convex optimization problem

minimize  fy(z)
subject to  fi(z) <0
Ax =10

is an associated dual problem

maximize g(A, )
subject to A >0

where

g\, p) = ir%f {fo(w) + Z)\lfz(x) +pu" (Ax — b)}

Advantage: dual problem convex, has simple constraint set

Hycon2 Workshop, ECC 2013 Mikael Johansson  mikaelj@ee.kth.se

Key properties of dual function

Dual function g is always concave, may be non-smooth.

Dual function is a lower bound of optimal value when A = 0

g0 1) = nf folw) + 3 Nifilw) + p (Az = b) < fo(a")

For convex problems, primal optimal value agrees with dual optimal value

9" = sup g(A, 1) = g(\*, 1*) = fo(z")
AZ0,p
e.g. when there is a feasible point satisfying inequality constraints strictly
("Slater condition™)

Hycon2 Workshop, ECC 2013 Mikael Johansson  mikaelj@ee.kth.se
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Solving the dual problem

Dual function concave, but possibly non-smooth.

Dual problem often solved by projected (sub)-gradient method

At +1) = Py (A1) + a(t)sa ()} 51 € Drg(A(D), (1))
pu(t 1) = u(t + 1) + at)s, (1) 5 € Dug (A1), (1))

Can do better when dual function is strongly concave, has Lipschitz gradient!
(conditions for this will follow in next lecture...)

Hycon2 Workshop, ECC 2013 Mikael Johansson  mikaelj@ee.kth.se

Summary of Lecture 1

First-order methods for convex optimization:
— gradient method: convergence proof and convergence rate estimates
— optimal methods: more states, but still only gradient information
— easy to implement, strong performance for certain problem classes

Non-smooth optimization
— subgradient method

— not a descent method, averaging gives better properties

Duality and the dual optimization problem

Hycon2 Workshop, ECC 2013 Mikael Johansson  mikaelj@ee.kth.se
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Part II:
Decomposition techniques

Aim: to understand

— The basic idea of decomposition, coupling variables/constraints

— Dual decomposition: principle, advantages and challenges
— Application to multi-agent optimization

Hycon2 Workshop, ECC 2013 Mikael Johansson mikaelj@ee.kth.se

Basic idea of decomposition techniques

Decompose one complex problem into many small:

[ Coordinator ]

e 10 = 01 00
i J

Y
“Simple” subproblems

Hycon2 Workshop, ECC 2013 Mikael Johansson mikaelj@ee.kth.se
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The trivial case

Separable objectives and constraints

minimize Y. fi(x;)
subject to x; € X;

Trivially separates into n decoupled subproblems

minimize fiw;)
subject to x; € X;

that can be solved in parallel and combined.

Hycon2 Workshop, ECC 2013 Mikael Johansson  mikaelj@ee.kth.se

The more interesting ones

Problems with coupling constraints

minimize  f1(21) + fo(w2)
subject to  x1 +x2 < ¢

Problems with coupled objectives
minimize fl (.731, Ilg) + fg(ﬂ?lg, 332)

Coupled objectives can be cast as a problem of coupling constraints:

minimize fi(z1, z12) + fo(z21,22)
subject to 213 = 291

so this case will be our focus.

Hycon2 Workshop, ECC 2013 Mikael Johansson  mikaelj@ee.kth.se
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Dual decomposition

Basic idea: decouple problem by relaxing coupling constraints.

minimize  fi(z1) + f2(z2)
subject to  x1 + 22 < ¢

Formally, introduce Lagrange multiplier for the constraint, form Lagrangian

L(z,\) = fi(z1) + fa(z2) + AMz1 + 22 — ¢)
with associated dual function

g(A) = ir;fL(x, A) = —Ac+ i;lf{fl(xl) + Az} + iilf{f2($2) + Azo}

and solve the dual problem.

Hycon2 Workshop, ECC 2013 Mikael Johansson  mikaelj@ee.kth.se

Dual decomposition cont’d

Dual problem has the form

maximize g1 (A) + g2(A)
subject to A >0

additive (hence, can be evaluated in parallel) and simple constraints.

The dual function is always concave, and a subgradient of g is given by
T (N) +a5(N\) — ¢

Hence, dual problem is convex. Can solve using projected subgradient method.

Hycon2 Workshop, ECC 2013 Mikael Johansson  mikaelj@ee.kth.se
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Dual and distributed optimization

Dual decomposition often results in additive dual function

but might still need coordinator to solve dual optimization problem.

Dual problem fully distributed if (sub)gradient of dual locally available

Hycon2 Workshop, ECC 2013 Mikael Johansson  mikaelj@ee.kth.se

Dual decomposition example

Simple example:
minimize  |z; — 1| + |x2 — 1]
subject to x1 + 22 <1
T € [—10, 10]

Optimal value f3 =1 for 27 =1—x3%, %€][0,1]

Dual value

, ,
15 20 25 30 35 40 45 50
Iteration count

Hycon2 Workshop, ECC 2013 Mikael Johansson  mikaelj@ee.kth.se
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Drawback of dual decomposition

Optimizes dual variables, to find optimal value of dual function.

maximize  g(A) 3+ gr = (2%
subject to A >0 ’

In general, primal iterates might be suboptimal, violate constraints.

x*(\) = arginf L(x, \)

Under strong convexity of primal, and the existence of a Slater point:
— feasibility and primal optimality recovered in the limit.

=>» Constraints and demands on subsystem consistency should be “soft”

Hycon2 Workshop, ECC 2013 Mikael Johansson  mikaelj@ee.kth.se

Primal convergence in dual methods

Several techniques for enforcing primal convergence, e.g. averaging iterates
t
1
—% _ - *
T (t) = 5 kE_Ofc (A(®))

Under Slater, iterate average satisfies constraints asymptotically and

ad? | A(0)[3

fo@(e) < f+ 25+ 5

Hycon2 Workshop, ECC 2013 Mikael Johansson  mikaelj@ee.kth.se
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Simple example from before. Iterates and running averages:

2

[

Iterates
S L b

)
&

!
T

Running averages
b b
:

L
IS
T

!
&

Hycon2 Workshop, ECC 2013

Example

15 20 25 30 35 40
Iteration count

o -
T

15 20 25 30 35 40
Iteration count

Mikael Johansson  mikaelj@ee.kth.se

Primal convergence in dual methods

Stronger properties when dual function is differentiable, strongly concave.

Fact. Consider the linearly constrained convex optimization problem

minimize  fo(x)
subject to Ax =1b
Cx=<d

If objective is strongly convex w. modulus ¢, has Lipschitz-continuous gradient,

and there exists a Slater point. Then, if

A = [AT CT]T
has full row rank, iterates u = (A, 1) produced by dual projected gradient satisfy

lu(t) = vl < q'[Ju(0) — v

o™ (u(t)) — 27| < ¢ Z

Hycon2 Workshop, ECC 2013

max(A)

[u(0) — w||

Mikael Johansson  mikaelj@ee.kth.se
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Application to multi-agent optimization

A network of agents collaborate to solve the optimization problem
minimize ).y, fi()
Agents can only exchange information with neighbors in graph G = (V,€)
fi(z) fa(z)

©

f3(z)

Three techniques in some detail:
— dual decomposition, consensus-gradient, alternating direction of multipliers

Hycon2 Workshop, ECC 2013 Mikael Johansson  mikaelj@ee.kth.se

Method 1: dual decomposition

Introduce local copy z; of decision variable, re-write problem on the form

minimize ).y, fi(zs)
subject to  x; = x; V(i,j) €&

Relax consistency constraints using Lagrange multipliers, solve dual problem.

fi(x) fa(x) fi(z1) fa(22)

’
® (V=
| \

f3(x) \Ty =T

Hycon2 Workshop, ECC 2013 Mikael Johansson  mikaelj@ee.kth.se
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The dual decomposition approach

Convenient to write problem as
minimize ).y, fi(z;)
subject to Mx =10
where M is the edge-node incidence matrix of G,

1 if 4 is the start node of edge e

[M].; =< —1 ifi is the end node of edge e
0 otherwise
Hycon2 Workshop, ECC 2013 Mikael Johansson  mikaelj@ee.kth.se

The dual decomposition approach

Introducing Lagrange multiplier vector pu € RI€l form Lagrangian

L) =Y fiz) +p" Mz =" fiz)+ Y pijli — ;)

i€y % j:(i,5)€E

Dual decomposition updates become

z;(t + 1) = argmin L(z, p) = argmin {fi(wz') +Y (b - Mji(t)xi}
i J:Gii)ee

T T

i,j)EE

Data exchange only between neighbors.

Does iterations converge? Under what assumptions? Good stepsizes?

Hycon2 Workshop, ECC 2013 Mikael Johansson  mikaelj@ee.kth.se
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Method 2: consensus-gradients

Use same modeling idea, i.e. consider

minimize ),y fi(7;)
subject to Mx =0

Replace strict equalities with penalty term
minimize p(x) == Y,y fi(w) + 2| Mal3

Note: an optimality-consistency trade-off

Hycon2 Workshop, ECC 2013 Mikael Johansson  mikaelj@ee.kth.se

Gradient descent on penalty function

The gradient iterations become

0
8xip

a(t+1) = 2(t) — a(t) 5 —p(x) = z(t) — a@)(Vf(z(t) + M Mz)

which we can re-write as

wit+1) =z + Y alt)nz(t) - zi(t) —a)Vfilzi(t))

J:(4,4)€E

“consensus”

A combination of fixed-weight consensus and gradient descent.

Hycon2 Workshop, ECC 2013 Mikael Johansson  mikaelj@ee.kth.se
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Consensus-subgradient method

Originally proposed for non-smooth optimization

zi(t+1) = {Wiixi(t) + ) Wz‘jffj(t)} —ais(t),  s(t) € 0f(x(t))

FHOY)IS

Studied under general consensus weights, time-varying graphs.

For fixed step-sizes, iterations do not converge to true optimum
— need average iterates, use diminishing stepsizes

Hycon2 Workshop, ECC 2013 Mikael Johansson  mikaelj@ee.kth.se

Method 3: ADMM

Alternating direction of multipliers (ADMM) considers problem on the form

minimize  f(x) + g(z) o minimize  f(z) + g(2) + §||Ex + Fz — h||3
subject to FEx+ Fz=nh subject to FEx+ Fz=nh

Finds optimal solution by alternating minimization of augmented Lagrangian
Ly(z,z,p) = f(x) + g(2) + u* (Bx + Fz — h) + §||Ex + Fz—hl3

followed by Lagrange multiplier update, i.e.:
x(t+1) = argmin L,(x, 2(t), u(t))
z(t + 1) = argmin L,(z(t + 1), z, u(t))

wit+1) =pl)+p(Fxit+1)+ Fz(t+1)—h)

Hycon2 Workshop, ECC 2013 Mikael Johansson  mikaelj@ee.kth.se
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ADMM properties

Under mild conditions, ADMM converges for all values of p > 0
(in contrast to dual methods, where large step-size can cause divergence)

Convergence rates of ADMM is a topic of intense current research.

The penalty parameter p affects the convergence factors of the iterates.
— optimal parameter selection rules exist for some problem classes

Hycon2 Workshop, ECC 2013 Mikael Johansson  mikaelj@ee.kth.se

ADMM for quadratic problems

Quadratic programming problem

minimize %:L’TPLU +q7x
subject to Ax <b

re-written on ADMM standard form

minimize 27 Pz + ¢"x + T, (2)
subject to Axr—b+2z2=0

yields iterations

(t+1) = —~(Q+ pATA) " g + pAT (2(t) + u(t) — b)]
z(t + 1) = max{0, —A(t + 1) — u(t) + b}
ut+1)=u(t) + Az(t+1) —b+2(t+1)

What can we say about convergence, optimal p?

Hycon2 Workshop, ECC 2013 Mikael Johansson  mikaelj@ee.kth.se
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ADMM for quadratic problems

Fact. For all p > 0 ADMM iterations converge to optimum at linear rate.

Fact. If A is invertible or has full row rank, then
B 1
VAL(AQTAT) A, (AQ-1AT)

P

yields the smallest convergence factor (fastest convergence times).

(tends to work well also when A does not have these properties)

Hycon2 Workshop, ECC 2013 Mikael Johansson  mikaelj@ee.kth.se

ADMM for multi-agent optimization

Introduce “agreement variable” z(; ;) on each edge (i,j) € £, consider
minimize ),y fi(zs)
subject to  x; = 2(; ;) V(i,j) €&
Tj = 2(ij) V(Z,j) €€
Can be re-written as

minimize )y, fi(@;)

. My Iy
subject to [M_] T — L} z=0
S—— ~~

E F
where My = max{M,0}, M_ = —min{M, 0}
Hycon2 Workshop, ECC 2013 Mikael Johansson  mikaelj@ee.kth.se
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ADMM for multi-agent optimization

ADMM iterations become
: p
z;(t + 1) = argmin f;(x) + (ij + pgi)z + ) (($ - zij)2 + (z — Zji)g)
Zij (t + 1) = pxi(t + 1) + Hij (t)
pig(t+1) = pij(t) + p(ai(t +1) = 2z5(t + 1))

Converge for all values of penalty parameter.

Many variations, extensions (e.g. different penalty parameters per edge)

Hycon2 Workshop, ECC 2013 Mikael Johansson  mikaelj@ee.kth.se

Example: robust estimation

Nodes measure different noisy versions y;(t) of the same quantity.

Would like to agree on common estimate & that minimizes

minimize ), |y — 2llm
subject to x € X

g=(V, 5)
where || - ||z is the Huber loss
8 70
—Quadratic norm
7 == Huber norm 6oy
6 50+
b
5 40t
y' v * Data
4 4 7; 30+ |= = =Least squares
3 —— Huber
20
2 |
1
0 10 L . . " . .
-4 -3 -2 -1 0 1 2 3 4 ) 50 100 150 200 250
Samples
Hycon2 Workshop, ECC 2013 Mikael Johansson mikaelj@ee.kth.se
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Example: robust optimization

Representative results, 100-node ring network

x10°

25

- 8 - dual decomp.
O accelerated HB
¢ nesterov

admm

*

Ihx(t)—x" If

0 20 40 60 80 100 120 140 160 180 200
t
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Summary of Lecture 2

Dual decomposition: idea and properties.

Multi-agent optimization:
— collaborative optimization under information exchange constraints

Three techniques in (some) detail
— Dual decomposition
— ADMM

— Gradient/consensus method

Many alternative techniques not covered.

Hycon2 Workshop, ECC 2013 Mikael Johansson  mikaelj@ee.kth.se
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So what did we see?

Lecture 1: first-order methods for convex optimization

Lecture 2: dual decomposition and optimization over graphs

Hycon2 Workshop, ECC 2013 Mikael Johansson  mikaelj@ee.kth.se

References for Lecture 1

Lecture one is covered, at least in parts, in many textbooks. The books

B. Polyak, “Introduction to optimization”, 1987
Y. Nesterov, “Introductiory lectures on convex optimization: a basic course”, 2004

are particularly beautiful accounts. A good reference for duality theory is

Hycon2 Workshop, ECC 2013 Mikael Johansson  mikaelj@ee.kth.se
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References for Lecture 2
The material on dual decomposition is based on the chapter
B. Yang and M. Johansson, “Distributed optimization, a tutorial overview”

from the “Networked Control” book of an earlier Hycon Summer School. The book
covers many individual references to original work by a wide range of authors.

The lecture notes

has a nice introduction to modelling for distributed optimization.

Hycon2 Workshop, ECC 2013 Mikael Johansson mikaelj@ee.kth.se

References for lecture 2

The survey paper

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, "Distributed optimization
and statistical learning via the alternating direction method of multipliers”, 2010

covers theory and applications of ADDM. Optimal penalty parameter selection is
studied in

Subgradient-consensus techniques were proposed in
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