Random coordinate descent algorithms for huge-scale optimization problems

Ion Necoara

Automatic Control and Systems Engineering Depart.

University Politehnica Bucharest

Acknowledgement

Collaboration with

- Y. Nesterov, F. Glineur (Univ. Catholique Louvain)
- A. Patrascu, D. Clipici (Univ. Politehnica Bucharest)

Papers can be found at:

- ⇒ www.acse.pub.ro/person/ion-necoara
- ⇒ www.optimization-online.org

Outline

- Motivation
- Problem formulation
- Previous work
- Random coordinate descent alg. for smooth convex problems
- Random coordinate descent alg. for composite convex problems
- Random coordinate descent alg. for composite nonconvex problems
- Conclusions

Recent "Big Data" applications:

(a) internet (e.g. PageRank) (b) support vector machine

(c) truss topology design

(d) distributed control

...gave birth to many huge-scale optimization problems (dimension of variables

$$n \approx 10^6 - 10^9)$$

right, and you see the same location at midmorning, Internationally acclaimed photographer Stephen Wilkes's time-altering image of New The image was created by blending more than 1,400 separate photos taken over the course of 15 hours-a meticulous process that took him

BUT matrices defining the optimization problem are very sparse!

PageRank problem (Google ranking, network control, data analysis)

- Let $E \in \mathbb{R}^{n \times n}$ be adjacency matrix (column stochastic, sparse matrix)
- Find maximal unitary eigenvector satisfying Ex = x
- Number of variables (pages) $n \approx 10^6 10^9$
- ✓ Standard technique: power method ⇒ calculations of PageRank on supercomputers take about one week!
- √ Formulation as an optimization problem:

$$\min_{x \in \mathbb{R}^n} \ \frac{1}{2} \|Ex - x\|^2$$
 s.t. $e^T x = 1, \quad x \geq 0.$

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} x^T Z^T Z x + q^T x$$

s.t. $a^T x = b$, $l \le x \le u$ $(\Rightarrow Z \text{ sparse!})$

Linear SVM problem

- Let $z_i \in \mathbb{R}^m$ $i=1,\ldots,n$ be a set of training data points, m << n
- Two classes of data points z_i
- Find hyperplane $a^Ty = b$ which separates data points z_i in two classes
- √ Formulation as optimization problem:

$$\min_{a \in \mathbb{R}^m, b \in \mathbb{R}} \frac{1}{2} ||a||^2 + Ce^T \xi$$

s.t.
$$\alpha_i(a^T z_i - b) \ge 1 - \xi_i, \ \xi_i \ge 0 \ \forall i = 1, ..., n$$

 $\Rightarrow \alpha_i \in \{-1,\ 1\}$ the id (label) of the class corresponding to z_i

 $\Rightarrow n \text{ very big} \approx 10^6 - 10^9 \text{ (many constraints)}$

The *dual* formulation for linear SVM:

$$\min_{x \in \mathbb{R}^n} \ \frac{1}{2} x^T (Z^T Z) x - e^T x$$

s.t.
$$\alpha^T x = 0$$
, $0 \le x \le Ce$.

 $\Rightarrow Z \in \mathbb{R}^{m \times n}, m << n \text{ depends on training}$ points z_i (columns of Z are $\alpha_i z_i$) or

 \Rightarrow $Z \in \mathbb{R}^{n \times n}$ with sparse columns

Primal solution is recovered via: $a = \sum_i \alpha_i x_i z_i$ & $b = \sum_i (a^T z_i - \alpha_i)/n$

$$b = \sum_{i} (a^T z_i - \alpha_i)/n$$

$$\min_{x \in \mathbb{R}^n} \ \frac{1}{2} x^T Z^T Z x + q^T x$$
 s.t. $a^T x = b, \quad l \leq x \leq u$ $(\Rightarrow Z \text{ sparse!})$

State-of-the-art:

- 1. Second-order algorithms (Newton method, Interior point method):
- ⇒ solve at least one linear system per iteration

	Second-order methods		
Complexity per iteration	$pprox \mathcal{O}(n^3)$		
Worst-case no. of iterations	$\mathcal{O}(\ln \ln \frac{1}{\epsilon})/\mathcal{O}(\ln \frac{1}{\epsilon})$		

where ϵ is the desired accuracy for solving the optimization problem

 \checkmark Let $n=10^8$, a standard computer with 2GHz processor takes:

10⁷ years to finish only 1 iteration!

2. First-order algorithms (Gradient method, Fast-Gradient method) perform at least one matrix-vector multiplication per iteration (in quadratic case)

	First-order methods		
Complexity per iteration	$\approx \mathcal{O}(n^2)$		
Worst-case no. of iterations	$\mathcal{O}(\frac{1}{\epsilon})/\mathcal{O}(\frac{1}{\sqrt{\epsilon}})$		

For $n=10^8$, a standard computer with 2GHz processor takes 23.14 hours per iteration and 100 days to attain $\epsilon=0.01$ accuracy!

Conclusion: for $n\approx 10^6-10^9$ we require algorithms with low complexity per iteration $\mathcal{O}(n)$ or even $\mathcal{O}(1)!$

Coordinate Descent Methods

Problem formulation

$$F^* = \min_{x \in \mathbb{R}^n} F(x) \quad (= f(x) + h(x))$$
 s.t. $a^T x = b$ (or even $Ax = b$) \Rightarrow coupling constraints

Define decompositions:

•
$$n = \sum_{i=1}^{N} n_i, I_n = [E_1 \dots E_N] \text{ with } n \approx 10^6 - 10^9$$

•
$$x = \sum_{i=1}^{N} E_i x_i \in \mathbb{R}^N$$
 and $x_{ij} = E_i x_i + E_j x_j$, $x_i \in \mathbb{R}^{n_i}$

- (i) $A \in \mathbb{R}^{m \times n}, m << n$
- (ii) f has block-component Lipschitz continuous gradient, i.e.

$$\|\nabla_i f(x + E_i s_i) - \nabla_i f(x)\| \le L_i \|s_i\| \quad \forall x \in \mathbb{R}^n, s_i \in \mathbb{R}^{n_i}, \ i = 1, \dots, N$$

(iii) h nonsmooth, convex and componentwise separable, i.e.

$$h(x) = \sum_{i=1}^{n} h_i(x_i)$$
 \Rightarrow e.g. : $h = 0$ or $h = 1_{[l,u]}$ or $h = \mu ||x||_1...$

Previous work - Greedy algorithms

Tseng (2009) developed coordinate gradient descent methods with greedy strategy

$$\min_{x \in \mathbb{R}^n} F(x) \quad (= f(x) + h(x))$$
 s.t. $a^T x = b$ (or $Ax = b$)

Let $\mathcal{J} \subseteq \{1, \dots, N\}$ be set of indices at current iteration x, then define direction:

$$d_{H}(x; \mathcal{J}) = \arg \min_{s \in \mathbb{R}^{n}} f(x) + \langle \nabla f(x), s \rangle + \frac{1}{2} \langle Hs, s \rangle + h(x+s)$$
s.t. $a^{T}s = 0, \quad s_{j} = 0 \quad \forall j \notin \mathcal{J},$ (1)

where $H \in \mathbb{R}^{n \times n}$ is a positive definite matrix chosen at initial step of algorithm

Tseng & Yun, A Block-Coordinate Gradient Descent Method for Linearly Constrained Nonsmooth Separable Optimization, J. Opt. Theory Applications, 2009

Previous work - Greedy algorithms

Algorithm (CGD):

- 1. Choose set of indices $\mathcal{J}^k \subset \{1,\ldots,N\}$ w.r.t. Gauss-Southwell rule
- 2. Solve (1) with $x=x^k,~\mathcal{J}=\mathcal{J}^k,~H=H_k$ to obtain $d^k=d_{H_k}(x^k;\mathcal{J}^k)$
- 3. Choose stepsize $\alpha^k > 0$ and set $x^{k+1} = x^k + \alpha^k d^k$

Procedure of choosing \mathcal{J}^k (Gauss-Southwell rule):

- (i) decompose projected gradient direction d^k into low-dimensional vectors
- (ii) evaluate function (1) in each low-dim. vector
- (iii) choose the vector with smallest evaluation and assign to $\mathcal J$ its support
- \Rightarrow Alg. (CGD) takes $\mathcal{O}(n)$ operations per iteration (for quadratic case & A=a)
- ⇒ An estimate for rate of convergence of objective function values is:

$$\mathcal{O}\left(\frac{nL\|x^0 - x^*\|^2}{\epsilon}\right), \qquad L = \max_i L_i$$

Recently Beck (2012) developed a greedy coordinate descent algorithm (approx. same complexity) for singly linear constrained models with h box indicator function

Previous work - Random algorithms

Nesterov (2010) derived complexity estimates of random coordinate descent methods

$$\min_{x \in Q} f(x)$$

$$\Rightarrow Q = Q_1 \times \cdots \times Q_N \text{ convex} \Rightarrow h(x) = 1_Q(x)$$

 $\Rightarrow f$ convex and block-component Lipschitz gradient

 $\Rightarrow a = 0$ (no coupling constraints)

Algorithm (RCGD):

- 1. Choose randomly and index i_k with respect to given probability p_{i_k}
- 2. Set $x^{k+1} = x^k + E_{i_k} \nabla_{i_k} f(x_k)$.
- \Rightarrow We can choose Lipschitz dependent probabilities $p_i = L_i / \sum_{i=1}^N L_i$
- \Rightarrow For structured cases (sparse matrices with p << n number of nonzeros per row) has complexity per iteration $\mathcal{O}(p)$!

Previous work - Random algorithms

√ An estimate for rate of convergence for the expected values of objective function for Nesterov's method (RCGD) is

$$\mathcal{O}\left(\frac{\sum_{i=1}^{N} L_i ||x^0 - x^*||^2}{\epsilon}\right)$$

✓ Richtarik (2012), Lu (2012) extended complexity estimates of Nesterov's random coordinate descent method to composite case

$$\min_{x \in \mathbb{R}^n} F(x) \quad (= f(x) + h(x))$$

- $\Rightarrow f$ convex and has block-component Lipschitz gradient
- $\Rightarrow h$ nonsmooth, convex, block-separable

parallel implementations & inexact implementations were also analyzed

Y. Nesterov, Efficiency of coordinate descent methods on huge-scale optimization problems, SIAM J. Opt., 2012

Random coordinate descent - smooth & constrained case

$$\min_{x\in\mathbb{R}^n} f(x) \Rightarrow f \text{ convex \& has block-component Lipschitz gradient}$$
 s.t. $\mathbf{a}^T x = \mathbf{b}$ (or $Ax = \mathbf{b}$) \Rightarrow communication via connected graph $G = (V, E)$

Algorithm (RCD): given x^0 , $a^T x^0 = b$

- 1. Choose randomly a pair $(i_k, j_k) \in E$ with probability $p_{i_k j_k}$
- 2. Set $x^{k+1} = x^k + E_{i_k} d_{i_k} + E_{j_k} d_{j_k}$,

$$d_{ij} = (d_i, d_j) = \arg \min_{s_{ij} \in \mathbb{R}^{n_i + n_j}} f(x) + \langle \nabla_{ij} f(x), s_{ij} \rangle + \frac{L_i + L_j}{2} ||s_{ij}||^2$$
s.t. $a_i^T s_i + a_j^T s_j = 0$

each iteration requires approximately $\mathcal{O}(p)$ operations (quadratic case)!

- √ Necoara, Nesterov & Glineur, A random coordinate descent method on large optimization problems with linear constraints, ICCOPT, 2013
- √ Necoara, Random coordinate descent algorithms for multi-agent convex optimization over networks, IEEE Trans. Automatic Control, 2013

(RCD) smooth case - convergence rate

Characteristics:

- only 2 components (in E) of x are updated per iteration (distributed!)
- alg. (RCD) needs only 2 components of gradient \Rightarrow complexity per iteration $\mathcal{O}(p)$!
- closed-form solution \Rightarrow e.g. $d_i = -\frac{1}{L_i + L_j} \left(\nabla_i f(x) \frac{a_{ij}^T \nabla_{ij} f(x)}{a_{ij}^T a_{ij}} a_i \right)$

Theorem 1 Let x^k generated by Algorithm (RCD). Then, the following estimates for expected values of objective function can be obtained

$$\mathcal{E}[f(x^k)] - f^* \le \frac{\|x^0 - x^*\|^2}{\lambda_2(Q)k}$$

If additionaly, function f is σ -strongly convex, then

$$\mathcal{E}[f(x^k)] - f^* \le \left(1 - \lambda_2(Q)\sigma\right)^k (f(x^0) - f^*)$$

where
$$Q = \sum_{(i,j) \in E} \frac{p_{ij}}{L_i + L_j} \left(I_{n_i + n_j} - \frac{a_{ij} a_{ij}^T}{a_{ij}^T a_{ij}} \right)$$
 (Laplacian matrix of the graph)

Selection of probabilities

I. uniform probabilities:

$$p_{ij} = \frac{1}{|E|}$$

II. probabilities dependent on the Lipschitz constants L_i

University Politehnica Bucharest

$$p_{ij}^{lpha}=rac{L_{ij}^{lpha}}{L^{lpha}}, \qquad ext{ where } L^{lpha}=\sum_{(i,j)\in E}L_{ij}^{lpha}, \; lpha\geq 0.$$

III. optimal probabilities obtained from $\max_{Q \in \mathcal{M}} \lambda_2(Q) \Leftrightarrow \mathsf{SDP}$

$$[p_{ij}^*]_{(i,j)\in E} = \arg\max_{t,\ Q} \left\{ t: \quad Q + t \frac{aa^T}{a^T a} \succeq tI_n, \ Q \in \mathcal{M} \right\}.$$

$$\mathcal{M} = \{ Q \in \mathbb{R}^{n \times n} : Q = \sum_{(i,j) \in E} \frac{p_{ij}}{L_{ij}} Q_{ij}, \ p_{ij} = p_{ji}, \ p_{ij} = 0 \ \text{if} \ (i,j) \not \in E, \ \sum_{(i,j) \in E} p_{ij} = 1 \}.$$

Comparison with full projected gradient alg.

Assume:

$$a=e$$
 and Lipschitz dependent probabilities $p_{ij}^1=rac{L_i+L_j}{L^1}$

then

$$Q = \frac{1}{\sum_{i=1}^{n} L_i} \left(I_n - \frac{1}{n} e e^T \right) \Rightarrow \lambda_2(Q) = \frac{1}{\sum_{i=1}^{n} L_i}$$

Alg. (RCD)

$$\mathcal{E}[f(x^k)] - f^* \le \frac{\sum_i L_i \|x^0 - x^*\|^2}{k} \qquad f(x^k) - f^* \le \frac{L_f \|x^0 - x^*\|^2}{k}$$

Alg. full projected grad.

iter. complexity $\mathcal{O}(p)$ iter. complexity $\mathcal{O}(n \cdot p)$

$$f(x^k) - f^* \le \frac{L_f \|x^0 - x^*\|^2}{k}$$
$$\nabla^2 f(x) \le L_f \cdot I_n$$

Remark: maximal eigenvalue of a symmetric matrix can reach its trace!

worst case: rate of convergence of (RCD) met. is the same as of full gradient met.!

However:

- (RCD) method has cheap iteration
- (RCD) method has more chances to accelerate

Numerical tests (I) - Google problem

- Google problem: $\min_{e^T x = 1} ||Ex x||^2$
- accuracy $\epsilon = 10^{-3}$, full iterations: $x^0, x^{\frac{n}{2}}, x^n, \cdots, x^{\frac{kn}{2}} \cdots$

Equivalent number of full iterations versus $||Ex^k - x^k|| / ||x^k||$

Left: n=30 using probabilities p_{ij}^0, p_{ij}^1 and p_{ij}^\ast

Right: $n=10^6$ using probabilities p_{ij}^0 and p_{ij}^1

Random coordinate descent - composite case

$$\min_{x \in \mathbb{R}^n} f(x) + h(x)$$
 $\Rightarrow f$ convex with block-component Lipsch. gradient $\Rightarrow h$ convex, nonsmooth and separable: $h(x) = \sum_{i=1}^n h_i(x_i)$ (e.g. $h = 1_{[l,u]}$ or $h = \mu ||x||_1...$)

Algorithm (CRCD): $a^T x^0 = b$

- 1. Choose randomly a pair (i_k,j_k) with probability $p_{i_kj_k}$ 2. Set $x^{k+1}=x^k+E_{i_k}d_{i_k}+E_{j_k}d_{j_k}$,

$$d_{ij} = (d_i, d_j) = \arg \min_{s_{ij} \in \mathbb{R}^{n_i + n_j}} f(x) + \langle \nabla_{ij} f(x), s_{ij} \rangle + \frac{L_i + L_j}{2} ||s_{ij}||^2 + h(x + s_{ij})$$
s.t. $a_i^T s_i + a_j^T s_j = 0$

each iteration requires approximately $\mathcal{O}(p)$ operations (quadratic case)!

Random coordinate descent - composite case

Characteristics:

- only 2 components of x are updated per iteration
- alg. (CRCD) needs only 2 components of the gradient and is using only 2 functions h_i & h_j of h
- if N=n and h is given by ℓ_1 norm or indicator function for box, then the direction d_{ij} can be computed in closed form
- if N < n and h is coordinatewise separable, strictly convex and piece-wise linear/quadratic with $\mathcal{O}(1)$ pieces (e.g. h given by ℓ_1 norm), then the direction d_{ij} can be computed in linear-time (i.e. $\mathcal{O}(n_i + n_j)$ operations).
- the complexity of choosing randomly a pair (i, j) with a uniform probability distribution requires $\mathcal{O}(1)$ operations

(CRCD) composite case - convergence rate

Theorem 2 Let x^k be generated by Algorithm (CRCD) and $L = \max_i L_i$. If the index pairs are selected with uniform distribution, then we have

$$\mathcal{E}[F(x^k)] - F^* \le \frac{N^2 L \|x^0 - x^*\|^2}{k}.$$

If additionaly, function f is σ -strongly convex, then

University Politehnica Bucharest

$$\mathcal{E}[F(x^k)] - F^* \le \left(1 - \frac{2(1-\gamma)}{N^2}\right)^k (F(x^0) - F^*),$$

where γ is defined by:

$$\gamma = \begin{cases} 1 - \frac{\sigma}{8L}, & if \ \sigma \le 4L \\ \frac{2L}{\sigma}, & otherwise. \end{cases}$$

Necoara & Patrascu, Random coordinate descent algorithm for optimization problems with composite objective function and linear coupled constraints, Computational Opt. Appl., 2013

Arithmetic complexity - comparison

$$\Rightarrow N = n$$
 (scalar case) & sparse QP

$$\Rightarrow R^2 = ||x^* - x^0||^2$$

$$\Rightarrow L_f \leq \sum_i L_i$$
 & $L = \max_i L_i$ & $L_{av} = \frac{\sum_i L_i}{n}$

metoda	grad. Lipsc.	model	complexity per iteration	
GM (Nesterov)	$\mathcal{O}(\frac{L_f R^2}{\epsilon})$	h & a	full gradient - $\mathcal{O}(n)$	
CGM (Tseng)	$\mathcal{O}(rac{nLR^2}{\epsilon})$	h & a	partial gradient - $\mathcal{O}(n)$	
RCGM (Nesterov)	$\mathcal{O}(\frac{nL_{av}R^2}{\epsilon})$	h & a = 0	partial gradient - $\mathcal{O}(1)$	
RCD	$\mathcal{O}(\frac{nL_{av}R^2}{\epsilon})$	h=0 & a	partial gradient - $\mathcal{O}(1)$	
CRCD	$\mathcal{O}(\frac{n^2 L_{av} R^2}{\epsilon})$	h & a	partial gradient - $\mathcal{O}(1)$	

- our methods RCD & CRCD have usually better (N < n) or comparable (N = n) arithmetic complexity than (or with) existing methods
- adequate for parallel or distributed architectures
- robust and have more chances to accelerate (due to randomness)
- easy to implement (closed-form solution)

Numerical tests (II) - SVM problem

Data set	n/m	(CRCD) full-iter/obj/time(s)	(CGD) iter/obj/time(s)	
а7а	16100/122 (p = 14)	11242/-5698.02/2.5	23800/-5698.25/21.5	
a9a	32561/123 (<i>p</i> = 14)	15355/-11431.47/7.01	45000/-11431.58/89.0	
w8a	49749/300 (p = 12)	15380/-1486.3/26.3	19421/-1486.3/27.2	
ijcnn1	49990/22 (p = 13)	7601/-8589.05/6.01	9000/-8589.52/16.5	
web	350000/254 (p = 85)	1428/-69471.21/29.95	13600/-27200.68/748	
covtyp	581012/54 (p = 12)	1722/-337798.34/38.5	12000/-24000/480	
test1	$2.2 \cdot 10^6 / 10^6 \ (p = 50)$	228/-1654.72/51	4600/-473.93/568	
test2	$10^7/10^3 \ (p=10)$	500/-508.06/142.65	502/-507.59/516,66	

real test problems taken from LIBSVM library

Our alg. (CRCD) - by a factor of 10 faster than (CGD) method (Tseng)!

Numerical tests (III) - Chebyshev center problem

Chebyshev center problem: given a set of points $z^1, \ldots, z^n \in \mathbb{R}^m$, find the center z_c and radius r of the smallest enclosing ball of the given points

Applications: pattern recognition, protein analysis, mechanical engineering Formulation as an optimization problem:

$$\min_{r,z_c} r$$
 s.t.: $\|z^i - z_c\|^2 \le r \quad \forall i = 1, \dots, n,$

where r is the radius and z_c is the center of the enclosing ball.

Dual problem:

$$\min_{x \in \mathbb{R}^n} \|Zx\|^2 - \sum_{i=1}^n \|z^i\|^2 x_i + \mathbf{1}_{[0,\infty)}(x)$$
s.t. $e^T x = 1$, (2)

where Z contains the given points z^i as columns

Numerical tests (III) - Chebyshev center problem

Simple recovery of primal optimal solution from dual x^* :

$$r* = \left(-\|Zx^*\|^2 + \sum_{i=1}^n \|z^i\|^2 x_i^*\right)^{1/2}, \qquad z_c^* = Zx^*.$$
 (3)

Two sets of numerical experiments:

- all alg. start from $x^0 = e_1$: observe that Tseng's algorithm has good performance and Gradient Method is worst
- starting from $x^0=e/n$: observe that Gradient Method has good performance and Tseng is worst
- algorithm (CRCD) is very robust w.r.t. starting point x^0

Numerical tests (III) - Chebyshev center problem

Random coordinate descent - nonconvex & composite

$$\min_{x \in \mathbb{R}^n} \ f(x) + h(x)$$

 \Rightarrow f nonconvex with block-component Lip. gradient & a=0 (no coupling constraints) \Rightarrow h is proper, convex and block separable \Rightarrow e.g.: h=0 or $h=1_{\lceil l,u\rceil}$ or $h=\mu \|x\|_1...$

If $x^* \in \mathbb{R}^n$ is a local minimum, then the following relation holds

$$0 \in \nabla f(x^*) + \partial h(x^*)$$
 (stationary points)

Algorithm (NRCD):

- 1. Choose randomly an index i_k with probability p_{i_k}
- 2. Compute $x^{k+1} = x^k + E_{i_k} d_{i_k}$

$$d_i = \arg\min_{s_i \in \mathbb{R}^{n_i}} f(x) + \langle \nabla_i f(x), s_i \rangle + \frac{L_i}{2} ||s_i||^2 + h(x + s_i).$$

Each iteration is cheap, complexity $\mathcal{O}(p)$, where p << n (even closed-form solution)!

Patrascu & Necoara, Efficient random coordinate descent algorithms for large-scale structured nonconvex optimization, submitted J. Global Opt., 2013

(NRCD) nonconvex & composite - convergence rate

We introduce the following map (here $L = [L_1 \dots L_N]$ and $D_L = \text{diag}(L)$):

$$d_L(x) = \arg\min_{s \in \mathbb{R}^n} f(x) + \langle \nabla f(x), s \rangle + \frac{1}{2} ||s||_L^2 + h(x+s)$$

We define optimality measure: $M_1(x,L) = \|D_L \cdot d_L(x)\|_L^*$, where $\|s\|_L^2 = s^T D_L s$ and $\|u\|_L^*$ its dual norm (observe that $M_1(x,L) = 0 \iff x$ stationary point)

Theorem 3 Let the sequence x^k be generated by Algorithm (NRCD) using the uniform distribution, then the following statements are valid:

- (i) The sequence of random variables $M_1(x^k, L)$ converges to 0 a.s. and the sequence $F(x^k)$ converges to a random variable \bar{F} a.s.
- (ii) Any accumulation point of the sequence x^k is a stationary point Moreover, in expectation

$$\min_{0 \le l \le k} \mathcal{E}\left[\left(M_1(x^l, L)\right)^2\right] \le \frac{2N\left(F(x^0) - F^*\right)}{k} \qquad \forall k \ge 0$$

Random coordinate descent - nonconvex & constrained

$$\min_{x \in \mathbb{R}^n} f(x) + h(x) \qquad \Rightarrow f \text{ nonconvex with block-component Lip. gradient}$$

$$\text{dient}$$

$$\text{s.t. } a^T x = b, \qquad \Rightarrow h \text{ is proper, convex and separable}$$

If x^* is a local minimum, then there exists a scalar λ^* such that:

$$0 \in \nabla f(x^*) + \partial h(x^*) + \lambda^* a$$
 and $a^T x^* = b$.

Algorithm (NCRCD):

- 1. Choose randomly a pair (i_k,j_k) with probability $p_{i_kj_k}$
- 2. Compute $x^{k+1} = x^k + E_{i_k} d_{i_k} + E_{j_k} d_{j_k}$,

$$d_{ij} = (d_i, d_j) = \arg \min_{s_{ij} \in \mathbb{R}^{n_i + n_j}} f(x) + \langle \nabla_{ij} f(x), s_{ij} \rangle + \frac{L_i + L_j}{2} ||s_{ij}||^2 + h(x + s_{ij})$$
s.t. $a_i^T s_i + a_j^T s_j = 0$

Each iteration is cheap, complexity $\mathcal{O}(p)$ (even closed-form solution)!

(NCRCD) nonconvex & constrained - convergence rate

We introduce the following map:

$$d_{\bar{T}}(x) = \arg\min_{s \in \mathbb{R}^n : a^T s = 0} f(x) + \langle \nabla f(x), s \rangle + \frac{1}{2} ||s||_{\bar{T}}^2 + h(x+s).$$

We define the *optimality measure*: $M_2(x,T) = \|D_T \cdot d_{NT}(x)\|_T^*$, where $T_i = \frac{1}{N} \sum_j L_{ij}$ (observe that $M_2(x,T) = 0 \iff x$ stationary point)

Theorem 4 Let the sequence x^k be generated by Algorithm (NCRCD) using the uniform distribution, then the following statements are valid:

- (i) The sequence of random variables $M_2(x^k, T)$ converges to 0 a.s. and the sequence $F(x^k)$ converges to a random variable \bar{F} a.s.
- (ii) Any accumulation point of the sequence x^k is a stationary point Moreover, in expectation

$$\min_{0 \le l \le k} \mathcal{E}\left[\left(M_2(x^l, T)\right)^2\right] \le \frac{N\left(F(x^0) - F^*\right)}{k} \quad \forall k \ge 0.$$

Numerical tests (IV) - eigenvalue complementarity problem

Eigenvalue complem. prob. (EiCP): given matrices $A, B \in \mathbb{R}^{n \times n}$, find $\lambda \in \mathbb{R}$ & $x \neq 0$

$$\begin{cases} w = (\lambda B - A)x, \\ w \ge 0, \ x \ge 0, \ w^T x = 0 \end{cases}$$

Applications of EiCP: optimal control, stability analysis of dynamic systems, electrical networks, quantum chemistry, chemical reactions, economics...

If A, B are symmetric, then we have *symmetric (EiCP)*. Symmetric (EiCP) is equivalent with finding a stationary point of a *generalized Rayleigh quotient* on the simplex:

$$\min_{x \in \mathbb{R}^n} \frac{x^T A x}{x^T B x} \quad \text{s.t.: } e^T x = 1, \ x \ge 0.$$

Equivalent *nonconvex logarithmic* formulation (for $A, B \ge 0$, with $a_{ii}, b_{ii} > 0 \Rightarrow \text{e.g.}$ stability of positive dynamical systems):

$$\max_{x \in \mathbb{R}^n} f(x) \quad \left(= \ln x^T A x - \ln x^T B x \right)$$

s.t.: $e^T x = 1, \ x \ge 0 \qquad \Rightarrow h(x) = 1_{[0,\infty)}(x)$

 \Rightarrow Perron-Frobenius theory for A irreducible and $B = I_n$ implies global maximum!

Numerical tests (IV) - eigenvalue complementarity problem

- ⇒ Compare with DC (Difference of Convex functions) algorithm (Thi et al. 2012), equivalent in some sense with Projected Gradient method
- \Rightarrow Hard to estimate Lipschitz parameter μ in DC alg., but crucial for convergence of DC

$$\max_{x: e^T x = 1, x > 0} \left(\frac{\mu}{2} \|x^2\| + \ln x^T A x - \ln x^T B x \right) - \left(\frac{\mu}{2} \|x^2\| \right)$$

	DC				NCRCD		
n	μ	CPU (sec)	Iter	F^*	CPU (sec)	Iter	F^*
$7.5 \cdot 10^5$	0.01n	0.44	1	3.11	37.59	38	177.52
	n	0.81	2	143.31			
	1.43n	72.80	181	177.52			
	50n	135.35	323	177.54			
10^{6}	0.01n	0.67	1	3.60	49.67	42	230.09
	n	1.30	2	184.40			
	1.43 <i>n</i>	196.38	293	230.09			
	50n	208.39	323	230.11			
10 ⁷	0.01n	4.69	1	10.83	49.67	42	230.09
	n	22.31	2	218.88			
	1.45n	2947.93	325	272.37			
	50 <i>n</i>	2929.74	323	272.38			

University Politehnica Bucharest

Conclusions

- usually full first/second-order methods are inefficient for huge-scale optimization
- for sparse problems coordinate descent methods are adequate for their low complexity per iteration $(\mathcal{O}(p))$
- randomized coordinate descent methods have simple strategy for choosing the working set $\mathcal{O}(1)$ operations for index choice
- usually randomized methods outperform greedy methods
- we provide rates of convergence and arithmetic complexities for randomized coordinate descent methods
- randomized methods are easy to implement and adequate for modern parallel and distributed architectures

References

- A. Beck, The 2-coordinate descent method for solving double-sided simplex constrained minimization problems, Technical Report, 2012.
- Y. Nesterov, Efficiency of coordinate descent methods on huge-scale optimization problems, SIAM Journal on Optimization 22(2), 341–362, 2012.
- P. Richtarik and M. Takac, Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function, Mathematical Programming, Series A, DOI 10.1007/s10107-012-0614-z, 2012.
- P. Tseng and S. Yun, A Coordinate Gradient Descent Method for Nonsmooth Separable Minimization, Mathematical Programming, 117, 387–423, 2009.
- P. Tseng and S. Yun, A Block-Coordinate Gradient Descent Method for Linearly Constrained Nonsmooth Separable Optimization, Journal of Optimization Theory and Applications, 140, 513–535, 2009.

References

- I. Necoara, Y. Nesterov and F. Glineur, *A random coordinate descent method on large optimization problems with linear constraints*, Technical Report, University Politehnica Bucharest, 2011, http://acse.pub.ro/person/ion-necoara.
- I. Necoara, Random coordinate descent algorithms for multi-agent convex optimization over networks, IEEE Transactions on Automatic Control, 58(7), 1-12, 2013.
- I. Necoara and A. Patrascu, A random coordinate descent algorithm for optimization problems with composite objective function and linear coupled constraints, Computational Optimization and Applications, in press, 2013, http://acse.pub.ro/person/ion-necoara/.
- A. Patrascu and I. Necoara, Efficient random coordinate descent algorithms for large-scale structured nonconvex optimization, submitted to Journal of Global Optimization, 2013.

