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Motivation

Recent “Big Data” applications:

(a) internet (e.g. PageRank) (b) support vector machine
(c) truss topology design (d) distributed control
...gave birth to many huge-scale optimization problems (dimension of variables

n ~ 10% — 109)
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THE AVERAGE PERSON TODAY PROCESSES MORE DATAIN A SHGLE ks OTADARE OO o
DAY THAN A PERSON IN THE 1500°S DID IN AN ENTIRE LIFETIME  CONPLE s STURAE -

LOOK TO THE LEFT, and you see Times Souare at dusk, Lookfothe  The image was created by blending more than 1,400 separate photos WIIE ﬂ FlLITY SH s {MHFLES m
right, and you see the same location at midmorning. Intemationally taken over the course of 15 hours—a meticulous process that took him 15 F

acclaimed photographer Stephen Wilkes's ime-atering image of New  neary thres monihs.

York's Times Sauare s part of his bod of work tled Day to Night S,

BUT matrices defining the optimization problem are very sparse!
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Motivation

PageRank problem (Google ranking, network control, data analysis)
® Let £ € R™X"™ be adjacency matrix (column stochastic, sparse matrix)
® Find maximal unitary eigenvector satisfying Ex = «
® Number of variables (pages) n ~ 106 — 10°

v Standard technique: power method =- calculations of PageRank on supercomputers
take about one week!

v/ Formulation as an optimization problem:

1

min —||Exz — z||?
xER™ 2
st. elz = 1, x>0.

= F has at most p << n nonzeros on each row

1
min —z! ZT Zx + qT:B
xER™ 2

T

st.acx=0b, I <zx<u (= Z sparse!)
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Motivation

Linear SVM problem
® Letz; e R™ ¢=1,...,n be asetof training data points, m << n
® Two classes of data points z;

® Find hyperplane o’y = b which separates data points z; in two classes

v/ Formulation as optimization problem: A

{ay-b=1
i .+~ ay-b=0

1 2 T
' — C
aelénmlgER 2 ||a|| et

S.L ai(aTzi—b)Zl—ﬁi, &20 Vi=1,...,n

= «; € {—1, 1} the id (label) of the class corre-
sponding to z;
= n very big ~ 109 — 10° (many constraints)
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Motivation

The dual formulation for linear SVM:

1
min —2? (ZTZ)x — el
T ERM 2 3t

st. alz = 0, 0<zxz<C(Ce.
= Z € R™*™ 'm << n depends on training

points z; (columns of Z are «;2;)
or

= Z € R™"*™ with sparse columns

Primal solution is recovered via: a = >, a;ziz; & b= .(aT2 —a;)/n

1
min —z! ZT Zz + qT:c
xER™ 2
st. alz=b, I1<z<u (= Z sparse!)

g,
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Motivation

State-of-the-art:

1. Second-order algorithms (Newton method, Interior point method):
= solve at least one linear system per iteration

Second-order methods

Complexity per iteration ~ O(n3)

Worst-case no. of iterations O(lnln 2)/O(In 2)

where ¢ is the desired accuracy for solving the optimization problem

v Let n = 108, a standard computer with 2GHz processor takes:
107 years to finish only 1 iteration!
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Motivation

2. First-order algorithms (Gradient method, Fast-Gradient method) perform at least one
matrix-vector multiplication per iteration (in quadratic case)

First-order methods
Complexity per iteration ~ O(n?)
Worst-case no. of iterations O(%)/(’)(%)

For n = 108, a standard computer with 2GHz processor takes 23.14 hours per iteration
and 100 days to attain e = 0.01 accuracy!

Conclusion: for n ~ 10% — 10° we require algorithms with low complexity per iteration
O(n) or even O(1)!
4

Coordinate Descent Methods
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Problem formulation

F* = min F(@) (= @)+ h())

T

st.atx=5b (oreven Az = b) = coupling constraints

Define decompositions:

N
® n=> ny I, =[FE... En]withn ~ 10° — 10°
1=1

N
® = Z FE,x; € R and Tij = E,x; + Ejibj, x; € R™
=1

(i) A€eR™X" m<<n
(i) f has block-component Lipschitz continuous gradient, i.e.
[Vif(z + Eisi) — Vif(o)|| < Lil[si|]| Vo €R", s e R™, i=1,...,N

(i) h nonsmooth, convex and componentwise separable, i.e.
mn
h(z) =) hi(z) =eg.: h=0 or h=1p, or h=p|zi..
i=1

.
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Previous work - Greedy algorithms

Tseng (2009) developed coordinate gradient descent methods with greedy strategy

min F@) (= f(z) + h(@))

st.alz=5b (or Az = b)

Let 7 C {1,..., N} be set of indices at current iteration x, then define direction:

1y (23 7) = arg min () + (VI(2),5) + 2 (Hs, ) + h(z + )

(1)
st als=0, s; =0 Vj&J,

where H € R™"*"™ s a positive definite matrix chosen at initial step of algorithm

Tseng & Yun, A Block-Coordinate Gradient Descent Method for Linearly Constrained Nonsmooth Separable Optimization, J. Opt. Theory Applications, 2009
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Previous work - Greedy algorithms

Algorithm (CGD):
1. Choose set of indices 7% ¢ {1,..., N} w.r.t. Gauss-Southwell rule
2. Solve (1) with z = 2, 7 = 7%, H = Hy, to obtain d* = dy, (z*; T¥)

3. Choose stepsize o* > 0 and set 2"+ = 2% + oFdF

Procedure of choosing 7% (Gauss-Southwell rule):
() decompose projected gradient direction d* into low-dimensional vectors
(i) evaluate function (1) in each low-dim. vector
(i) choose the vector with smallest evaluation and assign to 7 its support

= Alg. (CGD) takes O(n) operations per iteration (for quadratic case & A = a)
= An estimate for rate of convergence of objective function values is:

L 0 __ .x]2
O(n |z JZH)) L = max L;

€ 1
Recently Beck (2012) developed a greedy coordinate descent algorithm (approx.

same complexity) for singly linear constrained models with A box indicator function
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Previous work - Random algorithms

Nesterov (2010) derived complexity estimates of random coordinate descent methods

min f (z)

= Q =Q1 X X Qn convex = h(x) =1g(x)
= f convex and block-component Lipschitz gradient
= a = 0 (no coupling constraints)

Algorithm (RCGD):
1. Choose randomly and index ¢, with respect to given probability p;

2. Setz* T =2F + B,V f(xp).

= We can choose Lipschitz dependent probabilities p; = L;/ Z,f\le L;

= For structured cases (sparse matrices with p << n number of nonzeros per row)
has complexity per iteration O(p)!
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Previous work - Random algorithms

v" An estimate for rate of convergence for the expected values of objective function for
Nesterov’'s method (RCGD) is

- (zﬁilunxo —m*n?)

€

v Richtarik (2012), Lu (2012) extended complexity estimates of Nesterov’s random
coordinate descent method to composite case

min F(z) (= f(z) + ()

= f convex and has block-component Lipschitz gradient
= h nonsmooth, convex, block-separable

U

parallel implementations & inexact implementations were also analyzed

Y. Nesterov, Efficiency of coordinate descent methods on huge-scale optimization problems, SIAM J. Opt., 2012
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Random coordinate descent - smooth & constrained case

min  f(x) = f convex & has block-component Lipschitz

T ER™ gradient

st. alz =50 (or Az = b) = communication via connected graph G =
(V, E)

Algorithm (RCD) : given z°, a%2z% =5
1. Choose randomly a pair (ix, jx) € E with probability p;, ;.
2. Set 2Ft1 = F + Eik d’ik + Ejkd'

JEk>

L; + L;

dij = (di,dj) =arg min  f(z) + (Vi f(x), sij)+ 2535117

s;;€R™ITT 2

s.t. al s; + a?sj =0
each iteration requires approximately O(p) operations (quadratic case)!

v Necoara, Nesterov & Glineur, A random coordinate descent method on large optimization problems with linear constraints, ICCOPT, 2013

v" Necoara, Random coordinate descent algorithms for multi-agent convex optimization over networks, IEEE Trans. Automatic Control, 2013
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(RCD) smooth case - convergence rate

Characteristics:
® only 2 components (in E) of x are updated per iteration (distributed!)

® alg. (RCD) needs only 2 components of gradient = complexity per iteration O(p)!
g y P g plexity p

a;iaij

TV, f(x
® closed-form solution = e.g. d; = 2+L (V f(z) — 2 wa( )ai)

Theorem 1 Let z* generated by Algorithm (RCD). Then, the following estimates for
expected values of objective function can be obtained

|2 — 2* ||

A2(Q)k

E[f ()] = f* <
If additionaly, function f is o-strongly convex, then

ey - 1 < (1= 2e(@0) (F) - £)

al
where Q = Z(M)GE LZ+L (Inﬁnj — %) (Laplacian matrix of the graph)

ij g
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Selection of probabilities

|. uniform probabilities:
1

pijzﬁ

ll. probabilities dependent on the Lipschitz constants L;

(6%
ij
Lo’

where L* = ) L%, o
(t,J)eE

(6 2
Pi; =

l1l.  optimal probabilities obtained from maxge aq A2(Q) < SDP

T
[pfj](i,j)EEZarggn%{t: Q+t—a =t QEM}.

)

Dij
M:{QERnxn:Q: Z LJQU,pw—pﬂ,pw:OIf’L])QE Z pzjzl}
(i,j)eE " (i,)€E
e Y A

ACSE
University Politehnica Bucharest ’%ﬁﬁ lon Necoara

systems englowering




Comparison with full projected gradient alg.

Assume:
a = e and Lipschitz dependent probabilities p,}j = Li ;Lj
then
“- Z;-“;ll L (I” B %€€T> 7 Ael@)= Zi:-;ll L;
Alg. (RCD) Alg. full projected grad.
iter. complexity O(p) iter. complexity O(n - p)

Ly |z

ENf(ah)] - fr < Zalillsw T pipky g < Lalle
V2f(x) < Ly -1y

Remark: maximal eigenvalue of a symmetric matrix can reach its trace!
worst case: rate of convergence of (RCD) met. is the same as of full gradient met.!

However:
- (RCD) method has cheap iteration
- (RCD) method has more chances to accelerate
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Numerical tests (l) - Google problem

® Google problem: min_r__, ||[EFz — z|?

. . n kn
® accuracy e = 1073, full iterations: 2%, 22 ,z™,--- ,2 2 ---

10

=
(=]
©

*_
1A%, %, V1%l
-

1A%, X, IVl

10

1 1 1 1 1 1 107 1
0 20 40 60 80 100 120 140 0 50 100 150 200
k

Equivalent number of full iterations versus | Ex* — || /||=* ||
Left: n = 30 using probabilities pgj,p,}j and p;;

Right: n = 10° using probabilities p?j and p,}j
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Random coordinate descent - composite case

min f(z) + h(z) = f convex with block-component Lipsch. gradient

n n
ek =- h convex, nonsmooth and separable: h(x) = > h;(z;)
i=1

st.alz=0b
(9. h=1;, or h=upy|z:..)

Algorithm (CRCD): a?2% =1b

1. Choose randomly a pair (i, ji) with probability p;, ;,

k41 k
2.Setx" ! =2+ E; d;, +Ej d;,,

Li—I—Lj

dij = (di,d;) =arg  min  f(x) 4+ (Vi f(x),s:)+ 1555 11° + h(z + s45)

S.t. a,TsZ- + a?sj =0

7

each iteration requires approximately O(p) operations (quadratic case)!
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Random coordinate descent - composite case

Characteristics:

only 2 components of x are updated per iteration

alg. (CRCD) needs only 2 components of the gradient and is using only 2
functions h; & h; of h

if N =n and h is given by ¢; norm or indicator function for box, then the direction
d;; can be computed in closed form

if N < n and h is coordinatewise separable, strictly convex and piece-wise
linear/quadratic with O(1) pieces (e.g. h given by ¢; norm), then the direction d;;
can be computed in linear-time (i.e. O(n; + n;) operations).

the complexity of choosing randomly a pair (i, j) with a uniform probability
distribution requires O(1) operations

=g,
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(CRCD) composite case - convergence rate

Theorem 2 Let z* be generated by Algorithm (CRCD) and L = max; L;. If the index
pairs are selected with uniform distribution, then we have

N?L[a® — 2|

EIFER) - F* <~

If additionaly, function f is o-strongly convex, then

_ M)k (F(z9) — F*),

E[F(zF)] — F* < (1 3

where ~ is defined by:
1— 2, ifo<A4L

== otherwsise.

Necoara & Patrascu, Random coordinate descent algorithm for optimization problems with composite objective function and linear coupled constraints, Computational Opt. Appl., 2013
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Arithmetic complexity - comparison

= N = n (scalar case) & sparse QP
= R? = |]z* — 20||2

= L;<¥,Li & L=max;L; & Lg ==X
metoda grad. Lipsc. model complexity per iteration
2

GM (Nesterov) O( LfeR ) h&a full gradient - O(n)
CGM (Tseng) O( ”L€R2 ) h&a partial gradient - O(n)
RCGM (Nesterov) (’)(“LGTURQ) h&a=0 | partial gradient- O(1)
RCD (’)(“LGTURQ) h=0&a | partial gradient- O(1)
CRCD O(M) h&a partial gradient - O(1)

® our methods RCD & CRCD have usually better (N < n) or comparable (N = n)
arithmetic complexity than (or with) existing methods

® adequate for parallel or distributed architectures
® robust and have more chances to accelerate (due to randomness)

® easy to implement (closed-form solution)
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Numerical tests (ll) - SVM problem

Data
set

n/m

(CRCD) full-iter/obj/time(s)

(CGD) iter/obj/time(s)

ar’a

16100/122 (p = 14)

11242/-5698.02/2.5

23800/-5698.25/21.5

a9a

32561/123 (p = 14)

15355/-11431.47/7.01

45000/-11431.58/89.0

w8a

49749/300 (p = 12)

15380/-1486.3/26.3

19421/-1486.3/27.2

jjcnnl

49990/22 (p = 13)

7601/-8589.05/6.01

9000/-8589.52/16.5

web

350000/254 (p = 85)

1428/-69471.21/29.95

13600/-27200.68/748

covtyp

581012/54 (p = 12)

1722/-337798.34/38.5

12000/-24000/480

testl

2.2-109/10°8 (p = 50)

228/-1654.72/51

4600/-473.93/568

test?

107/103 (p = 10)

500/-508.06/142.65

502/-507.59/516,66

real test problems taken from LIBSVM library
Our alg. (CRCD) - by a factor of 10 faster than (CGD) method (Tseng)!
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Numerical tests (lll) - Chebyshev center problem

Chebyshev center problem: given a set of points 2!, ..., 2” € R™, find the center z. and
radius r of the smallest enclosing ball of the given points

Applications: pattern recognition, protein analysis, mechanical engineering
Formulation as an optimization problem:

min 7
T, Zc

st |28 —z |2 <r Vi=1,...,n,

where r is the radius and z.. is the center of the enclosing ball.

Dual problem:

n

min (| Zz|* = 3 [|2"]*2: + 1po,00) (@) @
1=1

where Z contains the given points z* as columns

s
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Numerical tests (lll) - Chebyshev center problem

Simple recovery of primal optimal solution from dual x*:

n 1/2
T* = <—||Zas*||2 +> IIZiIIQw?> ,  Ze =2z (3)
i=1
Two sets of numerical experiments:

® all alg. start from 29 = e;: observe that Tseng’s algorithm has good performance
and Gradient Method is worst

® starting from 2 = e/n: observe that Gradient Method has good performance
and Tseng is worst

® algorithm (CRCD) is very robust w.r.t. starting point z°
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Numerical tests (lll) - Chebyshev center problem
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Random coordinate descent - nonconvex & composite

= f nonconvex with block-component Lip. gra-
min f(z) + h(x) dient & a = 0 (no coupling constraints)

= h is proper, convex and block separable =

eg.: h=0 or h =1y, or h= plz|;..

If z* € R™ is a local minimum, then the following relation holds

0 € Vf(z™)+ Oh(z™) (stationary points)

Algorithm (NRCD):

1. Choose randomly an index i, with probability p;,

2. Compute z**t1 = 2% + B, d;,

L;
d; = arg min f(@) + (Vif (@), s5)+ 7 lls:ll” + h(z + s1).

S, € 7

Each iteration is cheap, complexity O(p), where p << n (even closed-form solution)!

Patrascu & Necoara, Efficient random coordinate descent algorithms for large-scale structured nonconvex optimization, submitted J. Global Opt., 2013

Hivgg,

_ ACSE
%} University Politehnica Bucharest ’%ﬁﬁ lon Necoara

systems englowering



(NRCD) nonconvex & composite - convergence rate

We introduce the following map (here L = [L;y ... Ly] and Dy, = diag(L)):
1
dp(z) = arg min f(z) +(Vf(2),s) + S lIs|7 + h(z + s)

We define optimality measure: M (z, L) = || Dy, - dr,(x)||%, where ||s||2 = sT'Dps and
|u||7 its dual norm (observe that M (z, L) = 0 <= x stationary point)

Theorem 3 Let the sequence z* be generated by Algorithm (NRCD) using the uniform
distribution, then the following statements are valid:

(i) The sequence of random variables M (z*, L) converges to 0 a.s. and the
sequence F(z*) converges to a random variable F a.s.

(i) Any accumulation point of the sequence z* is a stationary point

Moreover, in expectation

e {(Ml(ml,L))Q] CON(FE)-F)

0<I<k k
s A
= ACSE
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Random coordinate descent - nonconvex & constrained

: = f nonconvex with block-component Lip. gra-
2 () + he) dient
st.alz =0, = h is proper, convex and separable

If £* is a local minimum, then there exists a scalar A* such that:

0 Vf(x*)+0h(z*)+A*a and alz* =0

Algorithm (NCRCD):

1. Choose randomly a pair (i, ji) with probability p;, ;,

2. Compute ="t = 2% + B, d;, + Ej, dj, ,

: L; + L;
dij = (d;,dj) =arg  min  f(z) + (V4 f(x),s:)+ /

Isijll* + h(z + si5)
Si GRni—f—nj 9 (] 1]

S.L. agsi + afsj =0
Each iteration is cheap, complexity O(p) (even closed-form solution)!
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(NCRCD) nonconvex & constrained - convergence rate

We introduce the following map:

dp(e) =arg _min  f(z)+ (VF(),5)+ 5 lsl% + he + ).

s€R™: T s=0

We define the optimality measure: M (x,T') = || Dt - dny1 ()5, where
T; = % Zj L;; (observe that M>(z,T) = 0 <= z stationary point)

Theorem 4 Let the sequence z* be generated by Algorithm (NCRCD) using the
uniform distribution, then the following statements are valid:

(i) The sequence of random variables My (z*, T') converges to 0 a.s. and the
sequence F(z*) converges to a random variable F a.s.

(i) Any accumulation point of the sequence z* is a stationary point

Moreover, in expectation

min &£ (MQ(:IJ ,T)) < vk > 0.
0<I<k k
e
= ACSE
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Numerical tests (IV) - eigenvalue complementarity problem

Eigenvalue complem. prob. (EiCP): given matrices A, B € R™"*", find A€ R &z # 0

w = (AB — A)x,
w>0, >0 wlz=0

Applications of EiCP: optimal control, stability analysis of dynamic systems, electrical
networks, quantum chemistry, chemical reactions, economics...

If A, B are symmetric, then we have symmetric (EiCP). Symmetric (EiCP) is equivalent
with finding a stationary point of a generalized Rayleigh quotient on the simplex:

2T Ax
min

st:elz = 1, x > 0.
zeR™ xT B

Equivalent nonconvex logarithmic formulation (for A, B > 0, with a;;,b;; > 0 = e.qg.
stability of positive dynamical systems):

max f(x) (: Inz? Az —In xTBx)
zeR™

stielz=1, >0 = h(z) = 1[0,00)(T)
= Perron-Frobenius theory for A irreducible and B = I,, implies global maximum!
.
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Numerical tests (IV) - eigenvalue complementarity problem

= Compare with DC (Difference of Convex functions) algorithm (Thi et al. 2012),

equivalent in some sense with Projected Gradient method
= Hard to estimate Lipschitz parameter p in DC alg., but crucial for convergence of DC

max (g||az2|| +Inz? Az — lnasTBas) — (gHaz )

x: elx=1, >0

DC NCRCD
n I CPU (sec) | lter F* CPU (sec) | lter F*
7.5-10% | 0.01n 0.44 1 3.11 37.59 38 | 177.52
n 0.81 2 143.31
1.43n 72.80 181 | 177.52
50n 135.35 323 | 177.54
106 0.01n 0.67 1 3.60 49.67 42 | 230.09
n 1.30 2 184.40
1.43n 196.38 293 | 230.09
50n 208.39 323 | 230.11
107 0.01n 4.69 1 10.83 49.67 42 | 230.09
n 22.31 2 218.88
1.45n 2947.93 325 | 272.37
50n 2929.74 323 | 272.38

e,
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Conclusions

® usually full first/second-order methods are inefficient for huge-scale optimization

® for sparse problems coordinate descent methods are adequate for their low
complexity per iteration (O(p))

® randomized coordinate descent methods have simple strategy for choosing the
working set - O(1) operations for index choice

® usually randomized methods outperform greedy methods

® we provide rates of convergence and arithmetic complexities for randomized
coordinate descent methods

® randomized methods are easy to implement and adequate for modern parallel
and distributed architectures
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