
Progettazione di sistemi di controllo 2012-13 – 18/02/2013 –

Unsupervised Real-Time Visual Tracking
Via Support Vector Classification

Giacomo Baggio ∗, Gianluca Giorgini † and Marco Michielan ‡ DEI, University of Padua
∗giacomo.baggio@studenti.unipd.it, †gianluca.giorgini@studenti.unipd.it, ‡marco.michielan.1@studenti.unipd.it

V
isual tracking has become one of the most
promising and extensively studied topic in Com-
puter Vision. Due to real-time constraints, envi-

ronment conditions, cluttered background and other
practical limitations, tracking an object is usually a
challenging and nontrivial task to achieve. Follow-
ing a tracking-by-detection approach (see e.g. Avidan’s
seminal work in [1]), in our work we present visual
tracking as a problem of binary classification between
foreground (i.e. the target object) and background.
In this framework we propose an unsupervised track-
ing algorithm which exploits Support Vector Classi-
fication (here considered as a penalization problem),
Kalman filtering, to ensure reliability and robustness,
and an adaptive threshold, to improve computational
performance. The good compromise between adaptiv-
ity, robustness and real-time processing of our solution
makes it a simple and attractive alternative to the strate-
gies already listed in literature. The comparison with
the CamShift algorithm [10], in particular, has shown
interesting results and seems to confirm its validity.

Index Terms – Support Vector Machines, Detection-based tracking,
Kalman filter, Newton-Raphson minimization.

F

1. Introduction

The proliferation of affordable high-end computers, the
availability of high definition video cameras, and the in-
creasing need for automated video analysis, in the field
of video surveillance in particular, have generated a great
deal of interest in visual tracking algorithms in the last
decades. In this introductory section we briefly review
the most striking applications of visual tracking, we try
to outline the evolution and recent advances of tracking
algorithms and, finally, we describe the proposed algo-
rithm, defining where our approach can be located in the
general framework of object tracking.

1.1. Object tracking: statement of the
problem and relevant applications

In its simplest form, tracking can be defined as the prob-
lem of estimating the trajectory of an object in the image
plane as it moves around a scene. There are a lot of rel-
evant applications of object tracking. For example it is
used in these fields:

F motion-based recognition, that is, human identifi-
cation based on the movement of an object in the
space [12, 20];

F automated surveillance, that is, monitoring a scene
to detect suspicious activities or unlikely events [24];

F video indexing, that is, the retrieval of videos in
multimedia databases [35];

F human-computer interaction, that is, gesture recog-
nition, eye gaze tracking for data input to computers,
etc. [13];

F traffic monitoring, that is, real-time gathering of traf-
fic statistics to direct traffic flow [27];

F vehicle navigation, that is, video-based path planning
and obstacle avoidance capabilities [25].

Tracking objects can be complex due to:

F loss of information caused by projection of the 3D
world on a 2D image,

F noise in images,

F complex object motion,

F nonrigid or articulated nature of objects,

F partial and full object occlusions,

F complex object shapes,

F scene illumination changes, and

F real-time processing requirements.

One can simplify tracking by imposing constraints on
the motion and/or appearance of objects. For example,
almost all tracking algorithms assume that the object mo-
tion is smooth with no abrupt changes. One can further

G. Baggio, G. Giorgini, M. Michielan Page 1 of 21

mailto:giacomo.baggio@studenti.unipd.it
mailto:gianluca.giorgini@studenti.unipd.it
mailto:marco.michielan.1@studenti.unipd.it

Progettazione di sistemi di controllo 2012-13 – 18/02/2013 –

constrain the object motion to be of constant velocity or
constant acceleration based on a priori information. Prior
knowledge about the number and the size of objects, or
the object appearance and shape, can also be used to
simplify the problem. Numerous approaches for object
tracking have been proposed. These primarily differ from
each other based on the way they approach the follow-
ing questions: Which object representation is suitable for
tracking? Which image features should be used? How
should the motion, appearance, and shape of the object be
modeled? The answers to these questions depend on the
context/environment in which the tracking is performed
and the end use for which the tracking information is
being sought. A large number of tracking methods have
been proposed which attempt to answer these questions
for a variety of scenarios.

1.2. State-of-the-art of tracking algorithms

Visual tracking is a research topic in constant evolution
and trying to delineate a detailed map of visual tracking
state-of-the-art and/or a trait d’union between different
strategies goes beyond the aim of this work (for an exhaus-
tive tractation we refer the reader to [41], [40], [23]). Thus
in the following we dramatically simplify the complex
dynamic of this state-of-the art by assuming that tracking
strategies can be divided into four main categories. These
are:

F Point tracking or prediction-based tracking: objects
detected in consecutive frames are represented by
points, and the association of the points is based
on the previous object state which can include ob-
ject position and motion. In this category it can be
distinguished:

� Deterministic methods;

� Statistical or Probabilistic methods;

F Kernel tracking or 2-D image region tracking: ker-
nel refers to the object shape and appearance. For
example, the kernel can be a rectangular template or
an elliptical shape with an associated color histogram.
Objects are tracked by computing the motion of the
kernel in consecutive frames;

F Silhouette tracking or moving blob tracking: track-
ing is performed by estimating the object region in
each frame. Silhouette tracking methods use the
information encoded inside the object region. This
information can be in the form of appearance density
and shape models which are usually in the form of
edge maps. Given the object models, silhouettes are
tracked by either shape matching or contour evolu-
tion;

F Online learning tracking: this approach is based on
tracking algorithms that are able to learn continu-
ously, updating and improving incrementally their
representations of foreground and background. Gen-
erally speaking, these algorithms can be divided into
two subcategories:

� Generative methods;

� Discriminative methods also termed as tracking-
by-detection or object detection based tracking.

A caveat might be necessary: the aforementioned division
is not meant to be tight, in fact some of the tracking
algorithms could be placed in more than one group. A
graphical representation of this classification is depicted
in Fig.1. In the next subsections we review, more in detail,
some tracking strategies for each of the categories devised
above.

1.2.1. Point tracking

Visual tracking can be formulated as the correspondence
of detected objects represented by points across frames.
Point correspondence is a complicated problem, specially
in the presence of occlusions, misdetections, entries, and
exits of objects.

In this category the deterministic methods use qual-
itative motion heuristics (see [39]) to constrain the cor-
respondence problem. More specifically, these methods
define a cost of associating each object in frame k− 1 to a
single object in frame k using a set of motion constraints
(usually a combination of constraints related to proxim-
ity, maximum velocity, small velocity change, common
motion, rigidity, proximal uniformity). Minimization of
the correspondence cost is formulated as a combinatorial
optimization problem.

On the other hand, statistical or probabilistic methods
explicitly take the object measurement and their uncer-
tainties into account to establish point correspondence.
This statistical correspondence methods use the state-
space approach to model the object properties such as
position, velocity, and acceleration. In this case, if we
suppose that information representing the object (e.g. po-
sition and/or velocity) is defined by a sequence of states
{xk; k = 1, 2, . . . } and the sequence {yk; k = 1, 2, . . . } rep-
resents the measurement process, the evolution of state
over time is governed by the state-space model,

xk+1 = fk+1(xk) + wk (1)
yk = hk(xk, vk) (2)

where {wk; k = 1, 2, . . . } and {vk; k = 1, 2, . . . } are in-
dipendent white noises. For the single object case, if fk+1
and hk are linear functions and the initial state x1 and
noises have a Gaussian distribution, then the optimal state
estimate is given by the Kalman filter. If the assumption of
Gaussianity is not verified and/or the functions fk+1 and
hk are not linear, state estimation can be performed using
a non linear filtering tecnique, e.g. the Extended Kalman
Filter or the Unscented Kalman Filter (which typically
work well if the posterior p.d.f. p(xk|yk) is still unimodal)
or particle filters (for non-unimodal posterior p.d.f.). Par-
ticle filtering, which is based on Monte Carlo integration
methods, recently became very popular in Computer Vi-
sion and it is worth to briefly illustrate how it works (for
the details refer to [22]). In particle filtering, the con-
ditional state density p(xk|yk) at time k is represented
by a set of samples (particles) {s(n)k ; n = 1, ..., N} with

G. Baggio, G. Giorgini, M. Michielan Page 2 of 21

Progettazione di sistemi di controllo 2012-13 – 18/02/2013 –

Visual Tracking Point
Tracking

Determi-
nistic

Statistical

Kernel
Tracking

Mult-view
based

Template
based

Silhouette
Tracking

Contour
evolution

Shape
matching

Online
Learning
Tracking

Generative

Discrimi-
native

Figure 1: Taxonomy of tracking methods.

weights π
(n)
k (sampling probability). The weights define

the importance of a sample, that is, its observation fre-
quency. To decrease computational complexity, for each
tuple (s(n), π(n)), a cumulative weight c(n) is also stored,
where c(N) = 1. The new samples at time k are drawn
from the set Sk−1 = {(s(n)k−1, π

(n)
k−1, c(n)k−1); k = 1, . . . , N} at

the previous time k− 1 step based on different sampling
schemes (the most common is importance sampling). Using
the new samples Sk , one can estimate the new object
position by εk = ∑N

n=1 π(n)g(s(n)k , n), where n is a zero
mean Gaussian error and g(·) is a non-negative function
used in the sampling procedure. In addition to keep track
of the best particles, an additional resampling technique
is usually employed to eliminate samples with very low
weights (the most quoted ones are multinomial, residual
and sistematic resampling).

Generally, prediction-based trackers provides robust
performance; particle filter tracking, in particular, is used
in several applications, see for instance [43], [7]. However
there are two main drawbacks in using this approach:

1. point trackers are suitable for tracking very small
objects which can be represented by a single point.
Multiple points are needed to track larger objects. In
the context of tracking objects using multiple points,
automatic clustering of points that belong to the same
object is an important problem because there is not a
discriminative model of the object class;

2. these trackers (particle filters especially) can become
impractical and computationally expensive (in par-
ticle filtering this can be due to the size of the state
vector and the large number of particles).

1.2.2. Kernel tracking

Kernel tracking is typically performed by computing the
motion of the object, which is represented by a primi-

tive object region, from one frame to the next. These
trackers can be divided into two subcategories based on
the appearance representation used, namely, templates
and density-based appearance models, and multiview
appearance models.

In the template-based subcategory a computationally
efficient and very popular approach is mean-shift track-
ing [15]. The mean-shift tracker maximizes the appear-
ance similarity iteratively by comparing the histograms
of the object, Q, and the window around the hypothe-
sized object location, P. Histogram similarity is defined
in terms of the Bhattacharyya coefficient, ∑b

u=1 P(u)Q(u),
where b is the number of bins in histograms. At each
iteration, the mean-shift vector is computed such that
the histogram similarity is increased and this process is
repeated until convergence is achieved. The CamShift
algorithm [10] is basically a variant of the mean-shift.
CamShift applies mean-shift to find the best-matching re-
gion for a target, then updates the size of the object accord-
ing to the zero-th moment, i.e. the sum of probability con-
tributions of the current window. Another approach to
track a region defined by a primitive shape is to compute
its translation by use of an optical flow method.1 The well-
known KLT (Kanade-Lucas-Tomasi) feature-tracker [34],
based on the Lucas and Kanade pioneer work [28], it-
eratively computes the translation (du, dv) of a region
centered on an interest point:[

∑ I2
x ∑ Ix Iy

∑ Iy Ix ∑ I2
y

] [
du
dv

]
=

[
∑ Ix It
∑ Iy It

]
, (3)

where I(x(t), y(t), t) denotes image intensity at time t,
and Iθ := ∂I

∂θ , θ = x, y, t. If the sum of square difference

1Optical flow of the image intensity at time t, I(x(t), y(t), t), is a dense
field of displacement vectors which defines the translation of each
pixel in a region. It is computed using the brightness constraint,
which assumes brightness constancy of corresponding pixels in
consecutive frames, i.e. I(x, y, t)− I(x + dx, y + dy, t + dt) = 0.

G. Baggio, G. Giorgini, M. Michielan Page 3 of 21

Progettazione di sistemi di controllo 2012-13 – 18/02/2013 –

between the current patch and the projected patch is
substantial, the features will be eliminated, because the
differences indicate that the selected object is not the same
object from the previous frame.

Using template-based strategies, the objects may appear
different from different views, and if the object view
changes dramatically during tracking, the appearance
model may no longer be valid, and the object track might
be lost. To overcome this problem, multi-view appareance
tracking methods can be used, in which different views
of the object can be learned offline and used for tracking.
An example of this approach is given by the eigentracking
algorithm proposed in [6].

The greatest advantage of kernel tracking relies in his
simplicity and real-time applicability. On the other hand,
the main problem in these tracking methods is that many
of these algorithms (mean-shift and CamShift in partic-
ular) fail in the case of occlusions and quick appearance
changes, when the color distribution of the background is
too similar to that of the target object or when the object
moves outside of the kernel search area.

1.2.3. Silhouette tracking

Silhouette-based methods provide an accurate shape de-
scription for objects that cannot be well described by
simple geometric shapes. The goal of a silhouette-based
object tracker is to find the object region in each frame
by means of an object model generated using the pre-
vious frames. This model can be in the form of a color
histogram, object edges or the object contour. Silhouette
trackers can be divided into two subcategories, namely,
shape matching and contour tracking.

Shape matching approaches search for the object silhou-
ette in the current frame and its underlying philosophy is
similiar to that of kernel template-based trackers. In this
case, silhouette detection is usually carried out by back-
ground subtraction. In [21] a edge-based representation
is used as shape matching criterion and the Hausdorff
distance is adopted to construct a correlation surface from
which the minimum is selected as the new object position.

Contour tracking approaches, on the other hand, evolve
an initial contour to its new position in the current frame
by either using the state space models or direct mini-
mization of some energy functional. In the paper [5] is
proposed an algorithm that computes the motion vectors
in the edge of the silhouette iteratively for each contour
position using level set representation.

The most important advantage of silhouette tracking
is the ability to track objects of various shapes, which
can evolve in time. However the complexity of these
algorithms are usually high.

1.2.4. Online learning tracking

Recently, online learning tracking methods (and the so-
called tracking-by-detection approach, in particular) have
gathered momentum in the visual tracking scenario since
Avidan’s paper on Support Vector Tracking [1]. The pe-
culiarity of this approach relies in its adaptivity, that is,
online learning algorithms can handle, in principle, both

intrinsic (i.e. pose variation, and/or shape deformation)
and extrinsic (i.e. changes resulting from different illumi-
nation, camera motion, camera viewpoint, and occlusion)
appearance variations of the tracked object. Indeed, these
adaptive methods are able to incrementally update their
information on foreground and background representa-
tions. These methods can be split into two subcategories,
called, generative methods and discriminative methods.

Generative methods have been exploited to handle the
variability of a target. These methods learn a model to
represent the appearance of an object. This model is then
udpated online. Tracking is then expressed as finding the
most similar object appearance to the model. It is worth
noting that traditional generative tracking methods are
trained based on object appearance without considering
background information. This approach shares many
similarities with the multi-view based kernel tracking
approach discussed in §1.2.2.

Discriminative tracking methods instead aim to find a
decision boundary that can best separate the object from
the background. In these methods a classifier is trained
and updated online to distinguish the object from the
background. This method is also termed as tracking-by-
detection, in which a target object identified by the user
in the first frame is described by a set of features. A
separate set of features describes the background, and
a binary classifier separates target from background in
successive frames. To handle appearance changes, the
classifier is updated incrementally over time. In other
words, the philosophy behind tracking-by-detection is
very simple and can be formulated as: optimally discrim-
inate the target object (foreground) from the background
at each video frame using ad-hoc binary classification
methods, e.g. Support Vector Classification (this intuition
is graphically represented in Fig.2). Two examples of this
approach can be found in [2] and [14]. In the first paper,
Avidan proposes to use an ensemble of online learned
weak classifiers to label a pixel as belonging to either the
object or the background. To accommodate object appear-
ance changes, at every frame, new weak classifiers replace
part of old ones that do not perform well or have existed
longer than a fixed number of frames. In the second
paper, Collins and Liu described a method to adaptively
select color features that best discriminate the object from
the current background.

Despite the good premises, these trackers present three
possible disadvantages:

1. the detection performance is usually a trade-off be-
tween the detection rate and the false alarm rate. The
missed detections and false alarms provide mislead-
ing information to the tracking algorithms;

2. trackers suffer from the drifting problem, i.e. ampli-
fying small errors and adaptating to other objects.

3. typically the online training samples are collected in
supervised manner; this may not fit well with the
real-time constraints.

In Fig.3 it is illustrated a indicative scheme of tracking
algorithms performance focused on three fundamental

G. Baggio, G. Giorgini, M. Michielan Page 4 of 21

Progettazione di sistemi di controllo 2012-13 – 18/02/2013 –

••
•

• •

•

•
•

data
foreground

background
data

Figure 2: Tracking-by-detection methods or discriminative methods
deal with the issue of optimally distinguish at each video frame be-
tween the foreground (i.e. the target) and the background exploiting
classifiers.

aspects: robustness, adaptivity and real-time processing.
Our solution, partially inspired by tracking-by-detection
strategy, aims to solve the “tertium non datur” paradigm
in tracking algorithms, providing a balance between the
above listed characteristics. In the next section a prelimi-
nary description of this strategy will be reported.

Adaptivity

Robustness

Real-time

•

••

• ?

? our solution

• silhouette trackers

• online learning trackers

• point trackers

• kernel trackers

Figure 3: A graphical representation of general characteristic of track-
ing algorithms compared to our solution. Our strategy aims to be a
good compromise between adaptivity, robustness and real-time require-
ments.

1.3. Our contribution

Following previous work in [18] and [3], in our paper we
propose and refine an unsupervised tracking method
which combines two theoretical tools: linear Support
Vector Machines (briefly SVM) theory and Kalman filter.
Coupling binary class SVMs with Kalman filter gives the
advantage of taking into account the dynamics of the
SVM separating hyperplane, consequently increasing
tracking algorithm reliability and robustness. Broadly
speaking the core of the algorithm can be described
as follows (c f . Fig.4): the first step consists in the
acquisition of a video frame (N pixels of resolution),
then, after SVM foreground/background classification,
a loss function `i(·) is assigned to each pixel of the
frame which represents the error committed in the
classification, hence using a minimization algorithm the
total loss function L(·) = ∑N

i=1 `i(·) is minimized and a
new optimal separating hyperplane is computed; in the

final step the Kalman filter gives an estimation of the
separating hyperplane whereby next frame pixels will be
classified.

Our contribution, presented in this paper, is twofold:

F we improved the overall computational efficiency of
the algorithm:

� using OpenCV libraries [9] and C++ program-
ming language;

� adopting a dynamic bounding box and an adap-
tive threshold to discard uninformative data in
the classification.

F we increased the accuracy in detection and the adap-
tivity of the solution choosing HSV instead of RGB
values as tracking features.

Frame Aquisition

Linear

support vector

classification

Loss function

L(·) minimization

and computation

of the new SH

Kalman filtering

and final SH

estimation

Figure 4: Schematic representation of the proposed tracking strategy.

The rest of this paper is organised as follows: in section
2 we review the mathematical tools we used in our
algorithm, section 3 presents a description of the solution
we implemented, section 4 shows video simulations and
a comparison with the CamShift algorithm, finally, in
section 5 we point out the pros and cons of our approach.

A word on notations. In the following we let bold
fonts indicate vectors and random variables, depending
on context, normal fonts indicate scalars.

G. Baggio, G. Giorgini, M. Michielan Page 5 of 21

Progettazione di sistemi di controllo 2012-13 – 18/02/2013 –

2. Theoretical background

In this section we provide a description of the mathe-
matical tools used in our algorithm, namely, SVM theory,
Newton-Raphson minimization and Kalman filter in in-
formation form.

2.1. Support Vector Machine Theory: a brief
review

The support vector machine framework is currently one
of the most popular strategy for supervised machine
learning and classification. According to the theory of
SVMs [37, 38], while traditional techniques for pattern
recognition are based on the minimization of the empirical
risk that is, on the attempt to optimize the performance on
the training set, SVMs minimize the structural risk, that is,
the probability of misclassifying yet-to-be-seen patterns
for a fixed but unknown probability distribution of the
data. What makes SVMs attractive is:

F the ability to condense the information contained in
the training set (stored in few Support Vectors);

F the use of families of decision surfaces of relatively
low VC-dimension.2

In the following, we restrict the tractation focusing on the
linear SVM case which is the version used in our algo-
rithm. The interested reader can find a good introduction
of SVMs theory in [11], while more advanced references
are [17, 30].

2.1.1. Linear SVM: the separable case

Consider the problem of binary classication also termed
dichotomization. We define the training set as

T := {(xi, yi) : xi ∈ Rn, yi ∈ {−1,+1}, i = 1, . . . , N} ,
(4)

where xi are the training data and yi their correspond-
ing labels. First of all we give the definition of linearly
separable training set.

Definition 1. A training set T as defined in (4) is called
linearly separable if

∃β ∈ Rn, β0 ∈ R : yi(x>i β + β0) ≥ 1, ∀i = 1, . . . , N. (5)

Otherwise T is said to be non-linearly separable.

Relation (5) implicitly defines a Separating Hyperplane
(SH) of equation:

fSH(x) := x>β + β0 = 0 (6)

In the case of linearly separable data, Linear Support
Vector Classification – among all the SHs that minimize
the training error (i.e., empirical risk) – finds the one with
the largest margin.

2VC (Vapnik-Chervonenkis) dimension is a measure of the capacity of
a statistical classification algorithm, defined as the cardinality of the
largest set of points that the algorithm can shatter.

Consider now the points for which the equalities in
(5) holds.3 For yi > 0 these points lie on hyperplane
H+ : x>i β + β0 = 1 with normal β and perpendicular
distance from the origin |1− β0|/‖β‖. Similarly for yi <
0, these points lie on the hyperplane H− : x>i β + β0 =
−1, with normal again β and perpendicular distance
from the origin | − 1− β0|/‖β‖. Hence the minimum
Euclidean distance of positive and negative samples from
SH is, respectively, d± := 1/‖β‖ and the margin is simply
2/‖β‖. Note that H+//H− and that no training points
fall between the two hyperplanes. Thus we can find the
margin maximizer SH by minimizing ‖β‖2, subject to
constraints (5). A mathematical model for the problem is
hence the following:

min
β,β0

1
2
‖β‖2, (7)

s.t. yi(x>i β + β0) ≥ 1, ∀i = 1, . . . , N,
(β, β0) ∈ Rn ×R

Consider the Lagrangian relaxation of problem (7)

min
β,β0

L (β, β0; λ), (8)

where,

L (β, β0; λ) :=
1
2
‖β‖2 +

N

∑
i=1

λi(1− yi(x>i β + β0)) (9)

is the Lagrangian and λ := (λ1, . . . , λN) ∈ RN
+ is the

vector of Lagrangian multipliers. From convex program-
ming theory [8, Chap.5], we know that the Lagrangian
has a saddle point in (β∗, β∗0; λ∗) if and only if (β∗, β∗0)
is a solution of problem (7). Computing the gradient of
the Lagrangian with respect to β and β0 and setting it to
zero, gives:

∂L (β, β0; λ)

∂β
= β−

N

∑
i=1

λiyixi = 0, (10)

∂L (β, β0; λ)

∂β0
=

N

∑
i=1

λiyi = 0, (11)

So in correspondence of an optimal solution (β∗, β0) it
must exist an optimal vector λ∗ such that,

β∗ =
N

∑
i=1

λ∗i yixi, (12)

N

∑
i=1

λ∗i yi = 0. (13)

Using these conditions, the Lagrangian (9) could be
rewritten as a function of the only λi’s variables:

L (β, β0; λ) =
N

∑
i=1

λi −
1
2

N

∑
i=1

N

∑
j=1

λiλjyiyjx>i xj

=
N

∑
i=1

λi −
1
2

λ>Θλ := `(λ), (14)

3By assumption, such points always exist up to a normalization factor
for β and β0.

G. Baggio, G. Giorgini, M. Michielan Page 6 of 21

Progettazione di sistemi di controllo 2012-13 – 18/02/2013 –

where Θ ∈ RN×N , [Θ]ij = yix>i xjyj. Therefore the prob-
lem of finding the optimal value λ∗ can be traced back to
that of solving the dual version of Lagrangian problem
in (8)

max
λ≥0

inf
β,β0

L (β, β0; λ) = max
λ≥0

`(λ), (15)

s.t.
N

∑
i=1

λiyi = 0.

In addition to (12) and (13), the Karush-Kuhn-Tucker
(KKT) conditions (see [29, Thm 12.1]) give the additional
constraints

λ∗i (1− yi(x>i β∗ + β∗0)) = 0, i = 1, . . . , N (16)
λ∗i ≥ 0, i = 1, . . . , N (17)

yi(x>i β∗ + β∗0) ≥ 1, i = 1, . . . , N. (18)

For condition (16) in particular it must be: yi(x>i β∗ +
β∗0) = 1 for points with λ∗i > 0 (Support Vectors) and
λ∗i = 0 for points satisfying yi(x>i β∗ + β∗0) > 1. Conse-
quently the only points that give a non-zero contribution
to the calculation of β∗ are the Support Vectors (SVs), i.e.
those points nearest to the Optimal Separating Hyper-
plane (OSH). This is also shown in Fig.5. Once computed
the optimal vector of multipliers λ∗ the OSH is defined
as

β∗ =
N

∑
i=1

λ∗i yixi,

(19)

β∗0 = −1
2

(
min

i:λ∗i >0
(x>i β∗ − yi) + max

i:λ∗i >0
(x>i β∗ − yi)

)
,

(20)

and the classificator for a new datum x̂ is

fOSH(x̂) := sgn(β∗x̂ + β∗0). (21)

data +

data −
SVs

H+

H−

x>β∗ + β∗0 = 0

1
‖β‖

Figure 5: OSH and SVs in the linearly separable case.

2.1.2. Linear SVM: the non separable case

If the training set T is non-linearly separable, instead
of using a hard-margin linear classifier we can use a
soft-margin linear classifier. Therefore, to handle non-
separable datasets, we relax the constraints by making
the inequalities easier to satisfy. This is done with slack
variables ξi ≥ 0 one for each constraint:

yi(x>i β + β0) ≥ 1− ξi, i = 1, . . . , N. (22)

In this way the previous model (7) can be generalized as
follows:

min
β,β0

{
1
2
‖β‖2 + C

N

∑
i=1

ξi

}
, (23)

s.t. yi(x>i β + β0) ≥ 1− ξi, ∀i = 1, . . . , N
ξi ≥ 0, ∀i = 1, . . . , N
(β, β0) ∈ Rn ×R

where C is a parameter to be carefully chosen by the user,
a larger C corresponding to assigning a higher penalty to
errors. We can similarly look at the dual problem of (23)
by introducing Lagrange multipliers. We arrive at

max
λ

{
N

∑
i=1

λi −
1
2

N

∑
i=1

N

∑
j=1

λiλjyiyjx>i xj

}
, (24)

s.t.
N

∑
i=1

λiyi = 0,

0 ≤ λi ≤ C, i = 1, . . . , N.

As before, when λi = 0 the i-th point is not a Support
Vector and can be ignored. When 0 < λi < C, it can
be shown using KKT complementarity conditions that
ξi = 0, i.e., the i-th point is on the margin. When λi = C,
the i-th point is inside the margin if ξ ≤ 1, or on the
wrong side of the decision boundary if ξ > 1. An example
is illustrated in Fig.6. The discriminant for a new datum
x̂ is again of the form in (21) and the offset β∗0 can be
computed on Support Vectors with 0 < λi < C.

data +

data −
SVs

x>β∗ + β∗0 = 0

ξ∗i

(xi ,−1)

Figure 6: OSH and SVs in the non-linearly separable case.

G. Baggio, G. Giorgini, M. Michielan Page 7 of 21

Progettazione di sistemi di controllo 2012-13 – 18/02/2013 –

2.1.3. Non linear SVM and the kernel trick

In practice, linear classifiers generally do not provide
an acceptable classification in presence of a non-linearly
separable dataset. To improve the goodness of pat-
tern classification, different non-linear criteria have to
be adopted, even if this could deteriorate the compu-
tational performance of the classification strategy. An
efficient method to perform non-linear classification us-
ing SVMs consists in exploiting kernel functions. The
idea behind the use of kernel functions can be explained
by an example. Consider the following training dataset
T1D = {(xi, yi), i = 1, . . . , 3} = {(−1, 1), (0,−1), (1, 1)},
where x ∈ R. This is not a linearly separable dataset.
However, if we map x to a three dimensional vector (Fig.
7)

φ(x) = [1,
√

2x, x2]> (25)

the dataset becomes linearly separable in the three dimen-
sional space (equivalently, we have a non-linear decision
boundary in the original space). The map does not actu-
ally increase the intrinsic dimensionality of x: φ(x) lies
on a one dimensional manifold in R3. Nonetheless, this
suggests a general way to handle linearly non-separable
data: map x to some higher dimensional space (the feature-
space) by the function φ(x). However, if φ(·) is very high
dimensional, representing it and computing the inner
product becomes an issue. Kernel theory [32] provides an
efficient solution to this problem. Note the dual problem
(24) and its solution involves inner product of feature
vectors φ(xi)

>φ(xj) only. Thus it might be possible to
use a feature representation φ(x) without explicitly rep-
resenting it, as long as we can compute the inner product
using an adequate kernel function. For instance, the inner
product of (25) can be computed as

K(xi, xj) = φ(xi)
>φ(xj) = (1 + xixj)

2. (26)

0−1 1

x

data +

data −

φ(x)

0
1

2

−1
0

1
0

1

xy

z

Figure 7: Toy example of feature-space method: the training data,
initially non-linearly separable, become linearly separable in a higher
dimensional space.

Not all functions K are suitable kernel functions. The
following theorem, due to Mercer, gives a sufficient and
necessary condition to estabilish whether a certain func-
tion can be a kernel function.

Theorem 1 (Mercer - 1909). Let X a compact subspace of Rn,
a symmetric function K(x, y) : X×X→ R can be expressed
as an inner product K(x, y) = 〈φ(x), φ(y)〉 for some function
φ(·) if and only if K(x, y) is positive semidefinite, i.e.∫

K(x, y)g(x)g(y) dx dy ≥ 0, ∀g ∈ L2(X), (27)

or equivalenty, if X is a finite input space, the Gram matrix
K is positive semidefinite, i.e. for any finite sequence of input
vectors (x1, . . . , xn)

K =

K(x1, x1) K(x1, x2) · · ·

K(x2, x1)
. . .

...

 � 0. (28)

Proof. Can be found in [16, Chap. III §5]. �

Commonly used kernels include:

F Polynomial kernels: K(xi, xj) = (1 + x>i xj)
p;

F Radial Basis Function (RBF) or Gaussian kernels:

K(xi, xj) = exp
(
− ‖xi−xj‖γ

2σ2

)
;

F Sigmoid kernels: K(xi, xj) = tanh
(
γ x>i xj + δ

)p
.

2.1.4. SVM as a penalization problem

There is a perfectly equivalent formulation of the SVM
problem previously reviewed. SVM classification can be
considered as a unconstrained minimization problem in
the form “loss+penalty”.

Theorem 2. The SVM problem can be equivalenty replaced
with the problem of minimizing the quantity w.r.t. β, β0:

L :=
N

∑
i=1

`(yi, f (xi)) + λ‖β‖2, (29)

here the loss function L(·) is the Hinge Loss function, defined
as

`(yi, f (xi)) := [1− yi f (xi)]+ , (30)

where operation [·]+ sets all negative values equal to zero. The
loss function weighs the error committed in the classification of
the point xi and the second term in the sum (29) is a regulariza-
tion term (quadratic penalty) which takes the value λ := 1

2C .

Proof. See Appendix A. �

Notice that Hinge Loss function (30) has a non-
differentiable point at 1. Many numerical minimization
algorithms requires that minimizing function is a C2 class
function. Therefore it is convenient to replace the Hinge
Loss with an approximating function, e.g. the Binomial
Deviance,

`BD(yi, f (xi)) = log(1 + e−yi f (xi)), (31)

Binomial Deviance and other approximating function
are plotted in Fig.8, a detailed analysis of properties of

G. Baggio, G. Giorgini, M. Michielan Page 8 of 21

Progettazione di sistemi di controllo 2012-13 – 18/02/2013 –

these functions can be found in [19]. Among these the
(negative) log-likelihood or Binomial Deviance has the
relevant properties of being a smooth function and a “mar-
gin maximizing loss function”. Finally, the minimization
problem (29) using Binomial Deviance as loss function
can be rewritten as

min
β,β0

LBD, (32)

where,

LBD :=
N

∑
i=1

log
(

1 + e−yi(x>i β+β0)
)
+ λ‖β‖2. (33)

Lo
ss

−3 −2 −1 0 1 2 3

0

1

2

3

y · f (·)

Hinge Loss
Binomial Deviance

Squared Error
Class Huber

Figure 8: Comparison of approximating loss functions.

2.2. Minimization algorithms: Newton’s
method

The formulation we adopted inherently reveals a prob-
lem of unconstrained convex optimization, such as
min f (x), x ∈ Rn, where f : Rn → R is a continuous
convex function. It is usually hard to solve such non-
linear optimization problems using only the first and
second order conditions, i.e.

∇ f (x∗) = 0, (34)

d>∇2 f (x∗)d ≥ 0, ∀d ∈ Rn. (35)

To accomplish this task there are some iterative algo-
rithms known as line search algorithms, the most note-
worthy among those ones are: the gradient method, the
Newton-Raphson method and the Quasi-Newton meth-
ods. This kind of algorithms need to be initialized, choos-
ing a starting point reasonably close to the objective func-
tions minimum. Then they generate a sequence of points
that asymptotically approach to the optimal solution.
Given the current point, the following one is determined
by choosing an appropriate descent direction of the objec-
tive function and the length of the step along this one. The
main differences among the mentioned three methods re-
gard the way the direction and the step length are chosen.
This is a crucial decision because it influences the algo-
rithms performances, such as convergence to a stationary
point and convergence speed. The gradient method is

very intuitive, it is based on the idea that the minimum of
a function must be a stationary point, as confirmed by the
first order condition (34). Hence, the algorithm checks at
every iteration if the current solution sets the gradient to
zero and terminates if such condition is satisfied within
a tolerance range, otherwise it takes as descent direction
dk = −∇ f (xk) which is that one that guarantees the
highest descent rate. Along the found direction it always
exists a value αk ∈ R+ for which f (xk + αkdk) < f (xk) is
satisfied. The determination of an appropriate value for
αk leads to an optimization problem in a single variable
which, with exception for particular cases, for example if
f (·) is a quadratic function, is computationally expensive
to solve with an exact algorithm. It is for this reason
that it is usually accepted an approximated solution for
αk. The most efficient method consists of increasing itera-
tively the value of αk, initially set to a small value, since
it satisfies the Wolfe conditions, reported below:

f (xk + αkxk) ≤ f (xk) + c1αk∇ f (xk)
>dk, (36)

∇ f (xk + αkdk)
>dk ≥ c2∇ f (xk)

>dk, (37)

where 0 < c1 < c2 < 1 are fixed coefficients. The con-
vergence of the gradient method is guaranteed and rigor-
ously demonstrated and the convergence speed is linear
and therefore quite slow. Unlike the gradient method, the
Newton-Raphson method computes the descent direction
and the step length with a single calculation, using a local
approximation of the function f (·) provided by the Taylor
series in the current point, up to second order terms

f̃ (xk + ∆xk) = f (xk) +∇ f (xk)
>∆xk +

1
2

∆x>k ∇
2 f (xk)∆xk

(38)

If the Hessian of f (·) is definite and non-singular in the
current point the new solution at k + 1 iteration, can be
determined as follows:

xk+1 = xk − (∇2 f (xk))
−1∇ f (xk) (39)

It is noteworthy that the function f (·) we are treating
for our purposes is convex, this guarantees the positive-
definiteness of the hessian and the validity of the above
equation (39). In a possible interpretation of this algo-
rithm the descent direction can be identified by

dk = −(∇2 f (xk))
−1∇ f (xk) (40)

and the step length is always unitary. However for the
real application we implemented an adaptive step length
in order to avoid eventual undesidered behaviours.

The Quasi-Newton method is the most common alter-
native to the Newton-Raphson method. It identifies a de-
scent direction and a non unitary step length, determined
with a line search algorithm. It usually guarantees better
performances in terms of convergence speed. The descent
direction is identified using an approximation of the hes-
sian matrix in the current point. This approximation
is improved every iteration in order to maintain certain
properties (such as symmetry and definite-positiveness).
The Newton-Raphson method could result more compu-
tationally expensive due to the inversion of the hessian

G. Baggio, G. Giorgini, M. Michielan Page 9 of 21

Progettazione di sistemi di controllo 2012-13 – 18/02/2013 –

matrix, needed every iteration, however this is not guar-
anteed because the Quasi-Newton method needs to solve
every iteration an optimization problem to find the step
length.

2.3. Kalman Filter in information form

In this section we briefly describe the Kalman filter in
information form. It is a set of equations that are only
a transformation of the usual Kalman filter equations
but they can be considered computationally better than
standard equations because it is required the inversion of
a n× n matrix instead of a m×m matrix (usually m, the
number of measures, is very larger than n, the dimension
of state space). Relately to the model

xt+1 = Axt + wt (41)
yt = Cxt + vt (42)

with vt ∼ N (0, R), E[vtvs] = Rδ(t − s), wt ∼
N (0, Q), E[wtws] = Qδ(t − s), x0 ∼ N (x̄0, P0) and
vt, wt, x0 are uncorrelated each other, the Kalman equa-
tions in information form are:

x̂t+1|t+1 = Pt+1|t+1(P−1
t+1|tx̂t+1|t + C>R−1yt+1) (43)

Pt+1|t+1 = (P−1
t+1|t + C>R−1C)−1 (44)

used updating and

x̂t+1|t = Ax̂t|t (45)

Pt+1|t = APt|t A> + Q (46)

used for prediction.
We can notice that while in standard Kalman equations

we have to invert the matrix

(CPt+1|tC
> + R) ∈ Rm×m (47)

that is a m×m matrix, in equations number (44) we have
to invert a n × n matrix. Since that to invert a square
matrix the complexity is O(n3) where n is its dimension,
the computational complexity using Kalman equations
in information form is clearly inferior than the case of
standard Kalman equations.

3. SVC tracking algorithm

For the implementation of our algorithm we used C++
programming language with OpenCV libraries, fre-
quently used in Computer Vision applications. Moreover
we chose the values of HSV scale as features for tracking
instead of RGB values because HSV scale is more suitable
for image processing and analysis (our case) than RGB
values (more used in computer graphics).

3.1. Description of the algorithm

The first part of the algorithm is the initialization step,
the only supervised part of the whole algorithm. When
the program grabs the first video frame, user selects the
area where the object lies dragging the mouse and then
he sets the thresholds of HSV values. The pixels of this
frame are classified with label +1 if they belong to object
and −1 if they belong to the background. This operation
is realized by a built-in function of OpenCV libraries. Af-
ter the inizialization, the algorithm works unsupervised
until the end of the video. When t-th frame is grabbed, its
pixels are classified using the hyperplane estimated at the
previous frame. Then uninformative data are discarded
using an adaptive threshold since they do not contribute
to determination of the new SH parameters. Then pix-
els within the threshold are used by Newton-Raphson
algorithm to find the SH parameters which minimize the
Binomial Deviance. At the end Kalman filter in informa-
tion form combines these SH parameters and those ones
of the previous frame to compute the new optimal hyper-
plane. A schematic representation of the whole algorithm
is depicted in Fig.9.

1st Frame

Target area

selection

HSV initial

ranges

OSH

computed

by OPENCV

Another

Frame?

Classifi-

cation +

Adaptive

threshold

NR min-

imization

Kalman

estimation

Stop

SU
PE

R
V

IS
ED

U
N

SU
PE

RV
IS

ED

yes

no

Figure 9: Scheme of the algorithm.

G. Baggio, G. Giorgini, M. Michielan Page 10 of 21

Progettazione di sistemi di controllo 2012-13 – 18/02/2013 –

3.2. Implementative aspects

3.2.1. Feature selection

For the sake of simplicity, in our algorithm we chose three
features based on colors as tracking features. Instead of
using the standard RGB (Red-Green-Blue) scale, we opted
for the HSB/HSV (Hue-Saturation-Brightness/Value)
color scale, often used in Computer Vision applications.
The reason of this choice is that HSV (as well as other
colorspaces, e.g. YCbCr, Lab, etc.) separates luma, or the
image intensity, from chroma or the color information.

In general the color of a picture can be represented
by a model, that is a tool which can specify, create and
visualize the color itself without ambiguity. Color models
can be classified in:

F Hardware dependent, that is, used to reproduce col-
ors in videos, computers and printers (RGB, CMY,
YUV, YIQ); for the user it is difficult dealing with
these models because they do not directly refer to
the notions of tint, saturation and brightness;

F User oriented, that is, based on the human perception
of colors (HLS, HSV) and they are more intuitive and
uniform

RGB model is based on 3 colors: R = red (wavelength
= 700 nm), G = green (wavelength = 546.1 nm) and B =
blu (wavelength = 435.8 nm). If these colors are summed,
they produce white. RGB model is inefficient for the
characteristics of human eye because human eye is not
sensible in the same way to red, green and blue and
it is more sensible to luminosity differences than color
differences. The most significant defect of RGB scale is
that there is a high correlation among the three channels
(for example changing intensity of color, changes all the
three components). On the other hand, HSV model is
closer to the way we “see” colors and it is usually rep-
resented by a cylinder or a cone (see Fig.10). It is based
on 3 parameters: H = hue (angle between 0◦ and 360◦),
S = saturation (value between 0 and 1) and V = value
(value between 0 and 1). Hue represents the color itself,
saturation is the distance of the color from the nearest
grey and value represents how much white there is in the
color. HSV space is very used in image processing and
presents some benefits: in fact, for example, hue is very
robust when illumination changes and it is invariant to
shadows and highlights. This space also presents some
disadvantages: for example when V has a value near to 0,
H and S are not defined and when S is near to 0, H is not
defined. In this problematic cases we can even observe
some discontinuities in the representations of colors. For
further information on this topic we refer to [26].

A comparison of RGB classification vs. HSV classifica-
tion carried out using our algorithm is provided in Fig.11.
Although in both cases the background and foreground
data are not tightly clustered (we deal with non-separable
data sets), in the HSV case we can see that brightness
variations (V axis) not lead to wrong classification due to
the particular shape of the separating hyperplane.

H
S

V

(a)

0◦
30◦

60◦

90◦

120◦

150◦
180◦

210◦

240◦

270◦

300◦

330◦

red

yellow

green

cyan

blue

magenta

(b)

Figure 10: (a) HSV scale, (b) this illustration shows samples of the
HSV color space and how they relate to the RGB color model (the
saturation and value parameters are set to S = V = 1).

3.2.2. Newton-Raphson implementation

The Binomial Deviance function is a C2 class approxima-
tion of the Hinge Loss function and therefore guarantees
the existence of the first and second order derivatives. It
is possible thus to apply the Newton-Raphson iterative
scheme which adapted to our case results:

xk+1 = xk − ε[∇2L(xk)]
−1∇L(xk), k = 1, . . . , kmax

(48)
where xk := [βk β0,k]

> and ε is an adaptive coefficient
which varies the step length in case of pathological behav-
iors such as cycles due to the function shape where the
optimization get stuck to a value that does not improve
every iteration. To unlock this unfortunate situation it is
sufficient to vary the step length to a smaller value. The
algorithm ends when norm of the gradient ‖∇L(xk)‖ lies
within a fixed range [0, τ]. It was convenient to impose
a limit number of iterations kmax in case the selected tol-
erance is not reached within an adequate time. The best
results have been obtained imposing a limit of thirty iter-
ations. This guarantees the real time functioning and a
sufficient precision for the approximate solution.

G. Baggio, G. Giorgini, M. Michielan Page 11 of 21

Progettazione di sistemi di controllo 2012-13 – 18/02/2013 –

5
0

1
0
0

1
5
0

2
0
0

2
5
0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

50

100

150

200

250

B G

R

(a) RGB colorspace

0

3
0

6
0

9
0

1
2
0

1
5
0

1
8
0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

50

100

150

200

250

H
S

V

Data object/background not considered

Data object threshold

Data background threshold

Separating hyperplane

(b) HSV colorspace

Figure 11: Comparison of HSV and RGB color features: Frame #4 of Terzo.avi. In OpenCV the HSV ranges are: H ∈ [0, 180],
S ∈ [0, 256], V ∈ [0, 256].

3.2.3. Implementation of Kalman filter

In our case the Kalman equations are

x̂t+1|t+1 = Pt+1|t+1(P−1
t+1|tx̂t+1|t + Hk∗yt+1) (49)

Pt+1|t+1 = (P−1
t+1|t + Hp∗)

−1 (50)

used for updating and

x̂t+1|t = x̂t|t (51)

Pt+1|t = Pt|t + Q (52)

used for prediction.
Here we use the following hypothesis: first of all we

refer to a state space model (41)-(42) where matrices A
and C are the identity matrices and the state is formed
by the coefficients of the hyperplane which divides the
object points from the background ones. Then we model
the noises w and v as white Gaussian noises with zero
mean and with Q and R as variance matrices. We choose
Q as a diagonal matrix where the first three elements take
“small” values (our conjecture refers to a slow dynamics
for the first three coefficients of the hyperplane) while the
last one is “big” (fast dynamics).

The matrix R is replaced by the inverse of the Hessian
matrix Hk∗ of the function Binomial Deviance computed
at final iteration k∗ of Newton-Raphson algorithm.

This choice hinges on the fact (explained in [33,36]) that
Binomial Deviance LBD (33) (as any other loss function)
can be regarded as defining a (negative) log-posterior
probability for the state x = [β β0]

> of the SVM given
a training set D of N points. If we make the further
assumption that this posterior density p(x | D) can be
approximated by a Gaussian density (Laplace approxima-
tion), i.e. p(x | D) ∼ N (xk∗ , R), the covariance matrix is
derived from the Hessian matrix of the loss function. In
fact, under Gaussianity assumption, we have

LBD(x) = − log p(x | D) =

=
N
2

log 2π +
1
2

log det(R) +
1
2
(x− xk∗)

>R−1(x− xk∗)

(53)

which is a quadratic function of the components in x. By
taking partial differentiations with respect to (xi, xj), the
(i, j) component of the Hessian matrix can be obtained as

H(i,j)(xk∗) =
∂2LBD(x)

∂xi∂xj

∣∣∣∣
x=xk∗

= (R−1)(i,j) (54)

so the covariance matrix is equal to the inverse of the
Hessian matrix computed at point xk∗ :

R = H(xk∗)
−1 =: H−1

k∗ . (55)

As measure yt we use the estimate calculated in NR
algorithm. The matrix variance P of the state at the first
step is zero because we make the assumption that the
coefficients are precise at the beginning and there is no
uncertainty. The Kalman filter is a very important math-
ematical tool used for a correct working of the whole
algorithm and for its robustness because to calculate the
new coefficients of hyperplane for the new classification
of the points of the successive frame, it considers not only
the coefficients estimated by NR algorithm but also con-
siders the dynamics of the past history of the coefficients
of the previous frames. With the updating equation rela-
tive to the state we can notice that the new estimate is a
sort of combination of the contribute due to NR algorithm
and to the state of the previous frame weighed by the
variance matrices.

3.2.4. Adaptive threshold

To further improve algorithm computational speed we
consider in the minimization step and in the Kalman
equations only a subset of object and background data.
We tackled the problem of choosing the optimal subset
of data at each step using the solution described below.
Other adaptive threshold solutions have also been im-
plemented and compared, the results are analyzed in
Appendix C.

G. Baggio, G. Giorgini, M. Michielan Page 12 of 21

Progettazione di sistemi di controllo 2012-13 – 18/02/2013 –

The “nearest-hyperplane” data threshold

An intuitive method of setting the threshold is that of
considering only those points nearest the hyperplane.
This intuition is confirmed by the following proposition
and by its subsequent corollary.

Proposition 1. The best single point approximation of the
minimizing argument in (32) can be found choosing that point
which satisfy

arg min
i=1,...,N

yix>i β. (56)

Proof. See Appendix A. �

Corollary 1. The best approximating quantity of the argument
in (29) under k points cardinality constraint can be found
selecting those k points nearest (with respect to the Euclidean
metric) to the separating hyperplane (SH) described by equation
x>i β + β0 = 0.

Proof. See Appendix A. �

Since | f (x)| ∝ dist(xi, SH) the problem of selecting
those k+ object points and k− background points nearer
to SH can be formally stated as a Integer Linear Program-
ming (ILP) problem

min
N

∑
i=1
| f (xi)|χi (57)

s.t.
N

∑
i=1

χi = k,

∑
i:xi∈D+

χi ≥ κ+, ∑
i:xi∈D−

χi ≥ κ−,

χi ∈ {0, 1}, ∀i = 1, . . . , N.

The first constraint in (57) expresses the cardinality con-
straint, the second states that for each data set it must be
taken at least κ± ∈N, κ± ≥ 1 data.

In order to adaptively update the threshold based
on video conditions at each frame we implement the
Algorithm 1.

The algorithm can be split in four blocks:

1. Separate data according to label values (O(N));

2. Sort the data in decreasing order for
D+ and in increasing order for D−
(O(max{|D+|, |D−|} log{|D+|, |D−|}) using quick-
sort algorithm);

3. save the first k± data per set in S±
(O(max{k+, k−}));

4. update the value of k±: if the average distance from
SH of points in D± is greater than the average dis-
tance computed in the previous cycle then decrease
k± of δ ∈ N else increase of the same quantity
(max{|D+|, |D−|}).

Algorithm 1 Adaptive Threshold

// Divide data according to label values
1: D+ = ∅, D− = ∅;
2: for i = 1 to N do
3: if yi = +1 then
4: D+ = D+ ∪ {xi};
5: else
6: D− = D− ∪ {xi};
7: end if
8: end for

// Sort by distance data saved in D+ and D−
9: D+ → D+,sorted↓, D− → D−,sorted↑

// Save the first k+-th data in S+

10: S+ = ∅;
11: for i = 1 to k+ do
12: S+ = S+ ∪ {xi ∈ D+,sorted↓};
13: end for

// Save the first k−-th data in S−
14: S− = ∅;
15: for i = 1 to k− do
16: S− = S− ∪ {xi ∈ D−,sorted↑};
17: end for

// Compute average dist. of points in D+ from SH
18: dist+ = dist(xi, SH), xi ∈ D+;
19: if dist+ < dist+,prev then
20: k+ = k+ + δ;
21: else
22: k+ = k+ − δ;
23: end if

// Compute average dist. of points in D− from SH
24: dist− = dist(xi, SH), xi ∈ D−;
25: if dist− < dist−,prev then
26: k− = k− + δ;
27: else
28: k− = k− − δ;
29: end if

The utility of updating the number of data (and there-
fore the threshold) described in the 4-th block, can be
explained by a simple and straightforward argument: if
the points, on average, move away from hyperplane then
there are more points likely considered well-classified
and we can take into account a fewer number of points
in the minimization, vice versa otherwise.

It is worth noting that since we have split the data in
two subset S± each with cardinality k± problem formu-
lation (57) still holds defining k = k+ + k−, imposing
κ± = k± and replacing inequalities of the second con-
traint with equalities.

This algorithm can be seen as a good compromise
between overall computational complexity, number of
points considered at each step and accuracy in the classi-
fication. A possible disadvantage can be found in how to
choose empirically the δ parameter and how to initialize
k± values.

A comparison between algorithm processing time using

G. Baggio, G. Giorgini, M. Michielan Page 13 of 21

Progettazione di sistemi di controllo 2012-13 – 18/02/2013 –

both adaptive threshold and a fixed threshold is depicted
in Fig.12. The use of the adaptive threshold makes it
possible to greatly reduce the processing time of initial
frames.

0 20 40 60 80
0

0.2

0.4

0.6

Frame

Ti
m

e
(s

ec
)

Fixed threshold
Adaptive threshold

Figure 12: Fixed threshold (| f (x)| ≤ 20) vs. adaptive threshold, test
performed on video Terzo.avi.

3.2.5. Dynamic bounding-box

In order to reduce the computational burden of the al-
gorithm and to partially avoid the drifting problem, we
considered in foreground/background classification only
a portion of the total number of frame pixels. This is
achieved using a “smart” dynamic bounding box. The
bounding box behavior is illustrated in Algorithm 2 and
its main properties can be summarized as follows:

F the position of the bounding box is updated at each
frame in order to follow the target (line 16);

F the dimension of the box can slightly change dur-
ing time, proportionally – according to coefficients
cw, ch ∈ (0, 1] – to the speed variations of the tracked
object (line 10);

F if the object disappears from the search region (this
can be due to abrupt changes of speed and/or sud-
den illumination variations), the box increases its
area until the object is recovered (line 12).

3.2.6. Misdetection alarm

Since we use a linear classifier based on color features, if
the original data are not linearly separable (background
and foreground share some color features) it is probable
that the tracking algorithm wrongly classifies the back-
ground as target object or vice versa. A possible way
to eliminate the drifting problem, is to use a non-linear
classifier, as described in §2.1.3. This solution, however,
negatively affects the algorithm real time performances,
therefore to avoid excessive complexity we use a linear
classifier (i.e. a hyperplane), as discussed in previous
sections. In order to limit the drifting problem, we imple-
mented a sort of automatic fault-detection strategy which
informs the user when the algorithm might fail in the
tracking task. This strategy is actually very simple and
it is based on the variations of number of object pixels,

Algorithm 2 Dynamic Bounding Box

// Initialization of upper left corner box coords
1: xbox := x0; ybox := y0;

// Initialization of box height and width
2: wbox := w0; hbox := h0;

// Initialization of object coords and velocity
3: xobj,prev := 0; vx,obj,prev := 0;
4: yobj,prev := 0; vy,obj,prev := 0;

5: while Another Frame do
// Compute object centroid coords and velocity

6: x̄obj := 1
Nobj

∑i xobj,i;

7: ȳobj := 1
Nobj

∑i yobj,i;

8: vx,obj :=
x̄obj−x̄obj,prev

tproc
;

9: vy,obj :=
ȳobj−ȳobj,prev

tproc
;

// Update box width and height
10: wbox = wbox + cw(vx,obj − vx,obj,prev);
11: hbox = hbox + ch(vy,obj − vy,obj,prev);

// If tracked object is lost then increase box area
12: if x̄obj = 0 and ȳobj = 0 then
13: wbox = c`,w·Frame width;
14: hbox = c`,h·Frame height;
15: end if

// Update box coords
16: xbox = x̄obj − wbox/2;
17: ybox = ȳobj − hbox/2;

// Update previous values
18: xobj,prev = xobj; vx,obj,prev = vx,obj;
19: yobj,prev = yobj; vy,obj,prev = vy,obj;
20: end while

∆nobj, during two subsequent video frames: in the case of
a significant variation (∆nobj > ∆Nmax or ∆nobj < ∆Nmin)
the alarm is setted on. This function is reported in Algo-
rithm 3.

Algorithm 3 Misdetection Alarm

// Initialization of number of object pixels
1: nobj,prev := n0;

2: while Another Frame do
// Initialization of alarm state

3: alarm:=off;
// Compute number of object pixels and ∆nobj

4: nobj := ∑ pixelobj;
5: ∆nobj := nobj − nobj,prev;

// If ∆nobj is relevant alarm is setted on
6: if ∆nobj < ∆Nmin or ∆nobj > ∆Nmax then
7: alarm=on;
8: end if

// Update previous value
9: nobj,prev = nobj;

10: end while

G. Baggio, G. Giorgini, M. Michielan Page 14 of 21

Progettazione di sistemi di controllo 2012-13 – 18/02/2013 –

4. Simulations and performance
evaluation

In order to prove the validity of our algorithm we tested it
on a dozen of videos in which the target is a red ball with
black spots. In this paper we present the most significant
ones. A relevant case is video Terzo.avi. Looking at the
three frames depicted in Fig.16, it is worth to point out
three facts:

1. we deal with non linearly separable data sets, this is
indeed usually the case in real life situations;

2. the separating hyperplane adapts itself according to
the variation of the dynamics of the two clusters of
points;

3. the number of points selected by the adaptive thresh-
old decreases over time since the average distance
from SH of the foreground/background clusters in-
creases over time.

From Fig.13, 14 and 15 representing the dynamics expe-
rienced by hyperplane parameters β and β0 in three differ-
ent videos, one can observe how the values of hyperplane
coefficients tend to settle to some optimal “equilibrium”
values.

0 100 200 300 400
0

0.5
1

1.5

2

Frame

β1

β2

β3

0 100 200 300 400
−300

−200

−100

0

Frame

β0

Figure 13: Dynamics of hyperplane parameters β = [β1 β2 β3]
>, β0,

video Primo.avi.

We then compared our strategy to the CamShift algo-
rithm [10], since the C++ program that implements this
strategy is directly available in OpenCV libraries. In most
cases the two algorithms share similar performances, even
if the CamShift algorithm is on average faster than SVC.
Nevertheless in two videos in particular the SVC tracking
algorithm performs better in terms of adaptivity and ro-
bustness. These videos are Quinto.avi and Video 3.avi.
Comparison results on those two videos are illustrated in
Fig.17 and Fig.18. The first frames sequence shows that,
as a result of a sudden change of brightness, CamShift
crashes since it loses the tracked object. SVC tracking

0 100 200 300 400 500
0

0.5

1

1.5

Frame

β1

β2

β3

0 100 200 300 400 500

−200

−100

0

Frame

β0

Figure 14: Dynamics of hyperplane parameters β = [β1 β2 β3]
>, β0,

video Secondo.avi.

0 100 200 300 400 500 600 700

0

1

2

Frame

β1

β2

β3

0 100 200 300 400 500 600 700

−300

−200

−100

0

Frame

β0

Figure 15: Dynamics of hyperplane parameters β = [β1 β2 β3]
>, β0,

video Terzo.avi.

algorithm instead is able to adapt to this abrupt bright-
ness variation. It is worth noting that, immediately after
the change of brightness, SVC tracking algorithm can not
distinguish well the object from the background and the
misdetection alarm (represented by the upper right red
warnings in central frames) is on. Frames sequence of
Fig.18 shows another particular situation: here the red
ball undergoes sudden changes in speed and direction.
We can see that between 2nd and 3rd frame Camshift al-
gorithm confounds the target with a human hand. This
however is not the case of SVC tracking algorithm which
is capable to distinguish and track correctly the object.

G. Baggio, G. Giorgini, M. Michielan Page 15 of 21

Progettazione di sistemi di controllo 2012-13 – 18/02/2013 –

separating hyperplane equation:

−0.001H + 0.090V + 0.005S− 14.528 = 00

3
0

6
0

9
0

1
2
0

1
5
0

1
8
0

5
01
0
01
5
02
0
02
5
0

50

100

150

200

250

HS

V

Data object/background not considered

Data object threshold

Data background threshold

Separating hyperplane

(a) Frame # 4

separating hyperplane equation:

0.35H + 1.75S + 0.41V − 296.30 = 00

3
0

6
0

9
0

1
2
0

1
5
0

1
8
0

5
01
0
01
5
02
0
02
5
0

50

100

150

200

250

HS

V

Data object/background not considered

Data object threshold

Data background threshold

Separating hyperplane

(b) Frame # 378

separating hyperplane equation:

0.35H + 2.04S + 0.48V − 351.90 = 00

3
0

6
0

9
0

1
2
0

1
5
0

1
8
0

5
01
0
01
5
02
0
02
5
0

50

100

150

200

250

HS

V

Data object/background not considered

Data object threshold

Data background threshold

Separating hyperplane

(c) Frame # 555

Figure 16: Video sequence Terzo.avi

G. Baggio, G. Giorgini, M. Michielan Page 16 of 21

Progettazione di sistemi di controllo 2012-13 – 18/02/2013 –

(a) SVC

(b) CamShift

Figure 17: Comparison SVC vs. CamShift Quinto.avi.

(a) SVC

(b) CamShift

Figure 18: Comparison SVC vs. CamShift Video 3.avi.

5. Conclusions

To sum up our work, we can point out the most two
significant results: first, we improved the computational
efficiency (we reduced it up to three orders for the first
frames of the video respect the previous work [3]) us-
ing OpenCV libraries, C++ programming language, the
adaptive threshold and the bounding box; second, we in-
creased the accuracy in detection using HSV scale instead
of RGB scale.

The good results obtained from the comparison with
the CamShift algorithm, a very popular and computation-
ally efficient approach in tracking applications, enforce
the idea that our strategy could be a valid alternative
to the others proposed in nowadays scientific literature.
Nevertheless there are still some weaknesses in our algo-
rithm due specifically to the color based feature targeting.
It is inherent for a linear classifier to encounter some diffi-
culties to classify objects with similar features. It is there-
fore difficult for the problem structure itself to correctly
classify an object of a similar color of the background.
The most intuitive improvement would be adding some
features or finding some relations between the current

features to make the algorithm more selective. Nowadays
some cameras are capable of depth recognition (for ex-
ample the Microsoft Kinect

R©) this would be a great
feature to add to our algorithm without deeply modifying
the core we built. Another more elegant approach would
be to use some suitable kernel functions to generate a
non-linear classifier.

Acknowledgements

The authors would like to acknowledge Piero Donaggio
for the useful suggestions, Luca Schenato and Gianluigi
Pillonetto for fruitful discussions and Nicholas Felicini
for the help given in videos realization.

G. Baggio, G. Giorgini, M. Michielan Page 17 of 21

Progettazione di sistemi di controllo 2012-13 – 18/02/2013 –

Appendix A Extensive proofs

Proof of Thm 2. Consider the generalized SVM problem in
the primal form as represented in (23). The first constraint
can be rewritten as

ξi ≥ 1− yi f (xi). (58)

Now we note that in the minimization problem inequal-
ity (58) can be written as an equality. Hence from the
positivity of the ξi’s imposed by the second constraint in
(23), we have

min
β,β0

C
[
1− yi(x>i β + β0)

]
+
+

1
2
‖β‖2. (59)

For the non-linearly separable case the result come
straightforwardly dividing by C > 0 and by definition of
λ. For the linearly separable case C = ∞ and prove the
correspondence between (29) and (59) becomes tricky. It
can be demonstrated that Hinge Loss function (and other
loss function among which the Binomial Deviance) are
“margin maximizing loss function” i.e. the limit of βλ in
(29) as λ→ 0 defines the optimal separating hyperplane.
For a formal proof of this fact we refer to [31]. �

Proof of Prop 1. The result follows by a direct calculation

arg min
i=1,...,N

{
N

∑
i=1

log
(

1 + e−yi f (xi)
)

︸ ︷︷ ︸
=constant

+λ‖β‖2−

− log
(

1 + e−yi f (xi)
)
− λ‖β‖2

}
=

=arg min
i=1,...,N

{
− log

(
1 + e−yi f (xi)

)}

=arg max
i=1,...,N

{
log
(

1 + e−yi f (xi)
)}

since logarithm is a strictly increasing monotonic func-
tion,

= arg max
i=1,...,N

{
1 + e−yi f (xi)

}

since exp(·) is a strictly increasing monotonic function,

=arg max
i=1,...,N

{−yi f (xi)}

=arg min
i=1,...,N

{yi f (xi)}

=arg min
i=1,...,N

yix>i β.

�

Proof of Corollary 1. The distance of a point xi from the
separating hyperplane is

dist(xi, SH) =
yi(x>i β + β0)

‖β‖ . (60)

We now note that

arg min
i=1,...,N

dist(xi, SH) = arg min
i=1,...,N

yi(x>i β + β0)

‖β‖

=
yiβ0

‖β‖ + arg min
i=1,...,N

yix>i β

‖β‖ . (61)

Hence thesis immediately follows from Proposition 1,
noting that the contribution of every point to the Binomial
Deviance is strictly positive. �

Appendix B Collins-Liu feature
selection method

Another approach to select color features f := [f1, f2, f3]
>

consists of choosing a linear combination of the color
features in order to increase the separability of data, i.e.,

f = A · c, (62)

where A ∈ S 3×3 ⊆ R3×3 and c ∈ R3 are the original col-
orspace coords, e.g. in our case c := [H, S, V]>. Moreover,
for the sake of simplicity, we took S := {−2,−1, 0, 1, 2}.
A possible method to choose the optimal combination of
color features is the one discussed in [14]. This approach
can be summarized as follows

1. choose a candidate feature f ;

2. compute histogram of that feature’s values for pixels
on the object and background, respectively, H+(i) be
a histogram of that features values for pixels on the
object and H−(i) be a histogram for pixels from the
background sample, where index i ranges from 1 to
2b, b the number of histogram buckets;

3. form an empirical discrete probability density p(i)
for the object, and density q(i) for the background,
by normalizing each histogram by the number of
elements in it:

p(i) =
H+(i)

n+
(63)

q(i) =
H−(i)

n−
(64)

with n+ and n− being the number of object and
background samples, respectively.

4. compute the log likelihood of a feature value f :

L(i) := log
max{p(i), δ}
max{q(i), δ} , (65)

where δ is a small value that prevents dividing by
zero or taking the log of zero;

5. compute the variance ratio VR(L; p, q) of L in order to
quantify the separability of object and background
classes under feature f ,

VR(L; p, q) :=
Var(L; (p + q)/2)

Var(L; p) + Var(L; q)
, (66)

G. Baggio, G. Giorgini, M. Michielan Page 18 of 21

Progettazione di sistemi di controllo 2012-13 – 18/02/2013 –

which is the total variance of L over both object and
background pixels, divided by the sum of the within
class variances of L when object and background
pixels are treated separately. It is worth pointing out
that given a discrete probability density function a(i),
it can be used the equality Var(x) := Ex2 − (Ex)2 to
define the variance of L(i) with respect to a as

Var(L; a) = ∑
i

a(i)L2(i)−
(

∑
i

a(i)L(i)

)2

. (67)

The intuition behind the variance ratio is that we would
like log likelihood values of pixels on the object and back-
ground to both be tightly clustered (low within class
variance), while the two clusters should ideally be spread
apart as much as possible (high total variance). The de-
nominator enforces that the within class variances should
be small for both object and background classes, while the
numerator rewards cases where values associated with
object and background are widely separated.

We exploit this approach to select the three most dis-
criminative features that maximize the variance ratio. We
note that using these features in some cases the discrim-
inability of data slightly increases, sometimes, however,
this improvement is not so significant. An example of
application of Collins-Liu method is depicted in Fig.19,
here the matrix A is

A =

 0 −1 0
−1 1 0
0 1 1

 . (68)

Appendix C Other adaptive
threshold solutions

In this appendix we review some of the strategies we im-
plement to realize an adaptive threshold. A comparison
of the various solutions is also provided.

A simple heuristic adaptive threshold

Noting that the algorithm slows down during the first
frames, a really simple and naı̈ve approach to update the
adaptive threshold is to change threshold value according
to a suitable monotonic increasing function, e.g.

h(xth) = A
(

1− B
A

e−
xth
τ

)
. (69)

Using this method in the initial frames the threshold takes
small values while as the number of frames increases the
transient term disappears and xth → A. There are many
drawbacks in using such a strategy, first of all the thresh-
old is not genuinely adaptive since in function h(xth)
there are parameters to tune on a experimental basis
(A, B coefficients and τ time constant in (69)) to optimize
the trade-off between computational speed and good clas-
sification of object/background points. Maybe the only
advantage of this strategy lies on its simplicity and par-
ticularly it does not increment the overall complexity of
the algorithm.

The “convex-hull” threshold

In this strategy we use two results. The first can be seen
as a corollary of Theorem 2.

Corollary 2 (Thm 2). Since the equivalence of primal SVM
problem (23) and penalization formulation of SVM (29) the
only terms that influence the solution of the minimization
problem in (29) are the Support Vectors.

Proof. Writing down the terms in SVM penalization prob-
lem (29) explicitely

min
β,β0

{
N

∑
i=1

[
1− yi(x>i β + β0)

]
+
+ λ‖β‖2

}
, (70)

we notice that the minimizing hyperplane parametres β∗

and β∗0 correspond to quantities β̄ and β̄0 which minimize
primal SVM problem (23), since these two problem are
equivalent and the solutions are in one-to-one correspon-
dence. Hence proof follows immediately knowing that
the only terms which give a non-zero contribution to the
determination of β̄ and β̄0 are Support Vectors. �

The other mentioned result is a well-known result in
SVM theory.

Proposition 2. Consider the linearly-separable SVM problem
stated in (7). The interior points in the convex hulls (here
denoted as H(·)) of the two data set D+ = {xi, yi = +1} and
D− = {xj, yj = −1} are not Support Vectors.

Proof. Since Support Vectors in the linearly separable case
are characterized as the nearest point to Optimal Sepa-
rating Hyperplane, these points lie on the margin of the
convex hull and satisfy yi(x>i β + β0) = 1. Thus they can
not be interior points of the convex hull of the two data
training sets. �

Now we note that in our case,

F during the unsupervised part of the algorithm, we
dealt with a linearly-separable SVM problem, since
before minimization the data are classified using the
hyperplane computed in the previous step;

F the result stated in Corollary 2 it is likely to apply
in an approximate way if we replace Hinge Loss
function with Binomial Deviance in (29).

Under these assumptions, a strategy used in order to
make threshold adaptive is described by Algorithm 4.

The algorithm can be summarized as follows:

1. Separate data according to label values (O(N));

2. Compute the convex hull for each data sets
(O(max{|D+|, |D−|}) using quick-hull algorithm [4]
or worse using other algorithms);

3. Consider in the final reduced data set S only those
data whose distance from hyperplane is lower than
a fixed maximum value (O(|H(D+) ∪H(D−)|)).

G. Baggio, G. Giorgini, M. Michielan Page 19 of 21

Progettazione di sistemi di controllo 2012-13 – 18/02/2013 –

-
2
5
0

-
2
0
0

-
1
5
0

-
1
0
0

-
5
0

0

-1
5
0-5

0

5
01
5
02
5
0

50

150

250

350

450

−S
S− H

S
+

V

(a) Collins-Liu features

0

3
0

6
0

9
0

1
2
0

1
5
0

1
8
0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

50

100

150

200

250

H
S

V

Data object/background not considered

Data object threshold

Data background threshold

Separating hyperplane

(b) standard HSV features

Figure 19: Features selected using Collins-Liu method (a) vs. standard HSV features (b).

Algorithm 4 Convex-hull threshold

1: D+ = ∅, D− = ∅;
2: for i = 1 to N do
3: if yi = +1 then
4: D+ = D+ ∪ {xi};
5: else
6: D− = D− ∪ {xi};
7: end if
8: end for

9: Compute H(D+) and H(D−);
10: S = ∅;
11: for all i ∈ H(D+) ∪H(D−) do
12: if | f (xi)| < MAX then
13: S = S ∪ {xi};
14: end if
15: end for

The main adavantage of this algorithm consists in
considering only a very small number of data in the
minimization (and in particular only those that are
more “informationally relevant”). However this method
increases the computational complexity of the algorithm
(due in particular to the computation of the convex hull)
and in case of a high number of data could deteriorate
the algorithm computational speed. Moreover since the
Binomial Deviance is an approximation of the Hinge Loss
function the Corollary 2 approximately holds and the
result in the classification of data could not be acceptable.

A general comparison of various threshold solutions
based on C++ tests is illustrated in Tab.1. It can be seen
that the best solution is the “nearest-hyperplane” data-
threshold, which actually is the solution adopted in the
SVC tracking algorithm.

Few # Points Low complexity Accuracy

Nearest-hyperplane tunable 3 33
Convex-hull 33 8 8

Heuristic 3 33 8

Table 1: Comparisons of performance of different adaptive threshold
solutions.

G. Baggio, G. Giorgini, M. Michielan Page 20 of 21

Progettazione di sistemi di controllo 2012-13 – 18/02/2013 –

References
[1] S. Avidan. Support vector tracking. Pattern Analysis and Machine

Intelligence, IEEE Transactions on, 26(8):1064 –1072, aug. 2004.

[2] Shai Avidan. Ensemble tracking. In In CVPR, pages 494–501, 2005.

[3] F. Baldo and L. Carozza. Real-time visual tracking: applicazioni
del filtraggio alla Kalman e ottimizzazione mediante Newton-
Raphson, 2011-12. Available online at http://automatica.dei.
unipd.it/tl_files/utenti/lucaschenato/Classes/PSC11_

12/Projects/PSC_11-12_Visual%20Tracking_relazione.pdf.

[4] C. Bradford Barber, David P. Dobkin, and Hannu Huhdanpaa. The
quickhull algorithm for convex hulls. ACM Trans. Math. Softw.,
22(4):469–483, December 1996.

[5] Marcelo Bertalmı̀o, Guillermo Sapiro, and Gregory Randall. Mor-
phing active contours. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 22(7):733–737, 2000.

[6] Michael J. Black and Allan D. Jepson. Eigentracking: Robust
matching and tracking of articulated objects using a view-based
representation. In International Journal of Computer Vision, pages
329–342, 1998.

[7] N. Bouaynaya, Wei Qu, and D. Schonfeld. An online motion-
based particle filter for head tracking applications. In Acoustics,
Speech, and Signal Processing, 2005. Proceedings. (ICASSP ’05). IEEE
International Conference on, volume 2, pages 225 – 228, 18-23, 2005.

[8] Stephen Boyd and Lieven Vandenberghe. Convex Optimization.
Cambridge University Press, New York, NY, USA, 2004.

[9] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software
Tools, 2000.

[10] Gary R. Bradski. Computer vision face tracking for use in a
perceptual user interface, 1998.

[11] Christopher J. C. Burges. A tutorial on support vector machines for
pattern recognition. Data Min. Knowl. Discov., 2(2):121–167, June
1998.

[12] Claudette Cedras and Mubarak Shah. Motion-based recognition:
A survey. Image and Vision Computing, 13:129–155, 1995.

[13] A. Chella, H. Dindo, and I. Infantino. A system for simultaneous
people tracking and posture recognition in the context of human-
computer interaction. In Computer as a Tool, 2005. EUROCON
2005.The International Conference on, volume 2, pages 991 –994, nov.
2005.

[14] Robert Collins, Yanxi Liu, and Marius Leordeanu. On-line selection
of discriminative tracking features. IEEE Transaction on Pattern
Analysis and Machine Intelligence, 27(10):1631 – 1643, October 2005.

[15] Dorin Comaniciu, Peter Meer, and Senior Member. Mean shift: A
robust approach toward feature space analysis. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 24:603–619, 2002.

[16] Richard Courant and David Hilbert. Methods of Mathematical
Physics, volume 1. Interscience Publishers, Inc., New York, NY,
1953.

[17] Nello Cristianini and John Shawe-Taylor. An introduction to support
Vector Machines: and other kernel-based learning methods. Cambridge
University Press, New York, NY, USA, 2000.

[18] G. Gottardo, A. Lanzini, and C. Zanin. Applicazioni di tecniche
di machine learning per problemi di real-time tracking in
reti di videosorveglianza, 2010-11. Available online at http:

//automatica.dei.unipd.it/tl_files/utenti/lucaschenato/

Classes/PSC10_11/PSC11_Gruppo6_relazione.pdf.

[19] T. Hastie, R. Tibshirani, and J. H. Friedman. The Elements of Statisti-
cal Learning. Springer, corrected edition, July 2003.

[20] B. Heisele and C. Woehler. Motion-based recognition of pedestri-
ans. In Pattern Recognition, 1998. Proceedings. Fourteenth International
Conference on, volume 2, pages 1325 –1330 vol.2, aug 1998.

[21] D. P. Huttenlocher, J. J. Noh, and W. J. Rucklidge. Tracking non-
rigid objects in complex scenes. In Proceedings IEEE International
Conference on Computer Vision, pages 93–101, 1993.

[22] Michael Isard and Andrew Blake. Condensation - conditional
density propagation for visual tracking. International Journal of
Computer Vision, 29:5–28, 1998.

[23] Anand Singh Jalal and Vrijendra Singh. The state-of-the-art in
visual object tracking. Informatica, 36:227–248, 2012.

[24] Omar Javed and Mubarak Shah. Tracking and object classification
for automated surveillance. In Proceedings of the 7th European
Conference on Computer Vision-Part IV, ECCV ’02, pages 343–357,
London, UK, UK, 2002. Springer-Verlag.

[25] Zhen Jia, A. Balasuriya, and S. Challa. Recent developments in
vision based target tracking for autonomous vehicles navigation.
In Intelligent Transportation Systems Conference, 2006. ITSC ’06. IEEE,
pages 765 –770, sept. 2006.

[26] H. Levkowitz. Color Theory and Modeling for Computer Graphics,
Visualization, and Multimedia Applications. International Series in
Engineering and Computer Science. Kluwer Academic Publishers,
1997.

[27] Ching-Po Lin, Jen-Chao Tai, and Kai-Tai Song. Traffic monitoring
based on real-time image tracking. In Robotics and Automation, 2003.
Proceedings. ICRA ’03. IEEE International Conference on, volume 2,
pages 2091 – 2096 vol.2, sept. 2003.

[28] Bruce D. Lucas and Takeo Kanade. An iterative image registration
technique with an application to stereo vision. In Proceedings of the
7th international joint conference on Artificial intelligence - Volume 2,
IJCAI’81, pages 674–679, San Francisco, CA, USA, 1981. Morgan
Kaufmann Publishers Inc.

[29] Jorge Nocedal and Stephen J. Wright. Numerical Optimization.
Springer, August 2000.

[30] Massimiliano Pontil and Alessandro Verri. Properties of support
vector machines. Neural Computation, 10:955–974, 1998.

[31] Saharon Rosset, Ji Zhu, and Trevor Hastie. Margin maximizing loss
functions. In In Advances in Neural Information Processing Systems
(NIPS) 15, page 16. MIT Press, 2003.

[32] Bernhard Scholkopf and Alexander J. Smola. Learning with Kernels:
Support Vector Machines, Regularization, Optimization, and Beyond.
MIT Press, Cambridge, MA, USA, 2001.

[33] Anton Schwaighofer and Volker Tresp. The bayesian committee
support vector machine. In Proceedings of the International Conference
on Artificial Neural Networks, ICANN ’01, pages 411–420, London,
UK, UK, 2001. Springer-Verlag.

[34] Jianbo Shi and Carlo Tomasi. Good features to track. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR’94),
pages 593–600, 1994.

[35] Cees G.M. Snoek and Marcel Worring. Multimodal video indexing:
A review of the state-of-the-art. Multimedia Tools and Applications,
25:5–35, 2003.

[36] P. Sollich. Probabilistic interpretations and bayesian methods for
support vector machines. In Artificial Neural Networks, 1999. ICANN
99. Ninth International Conference on (Conf. Publ. No. 470), volume 1,
pages 91 –96 vol.1, 1999.

[37] Vladimir Vapnik. Estimation of dependencies based on empirical data.
Springer Series in Statistics. Springer-Verlag, New York, 1982.

[38] Vladimir N. Vapnik. The nature of statistical learning theory. Springer-
Verlag New York, Inc., New York, NY, USA, 1995.

[39] C. J. Veenman, M.J.T. Reinders, and E. Backer. Resolving motion
correspondence for densely moving points. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 23:54–72, 2001.

[40] Hanxuan Yang, Ling Shao, Feng Zheng, Liang Wang, and Zhan
Song. Recent advances and trends in visual tracking: A review.
Neurocomput., 74(18):3823–3831, November 2011.

[41] Alper Yilmaz, Omar Javed, and Mubarak Shah. Object tracking: A
survey. ACM Comput. Surv., 38(4), December 2006.

[42] Huiyu Zhou, Yuan Yuan, Yi Zhang, and Chunmei Shi. Non-rigid
object tracking in complex scenes. Pattern Recogn. Lett., 30(2):98–
102, January 2009.

[43] Shaohua Zhou, Rama Chellappa, and Baback Moghaddam. Visual
tracking and recognition using appearance-adaptive models in
particle filters. IEEE Transactions on Image Processing, 13:1434–1456,
2004.

G. Baggio, G. Giorgini, M. Michielan Page 21 of 21

http://automatica.dei.unipd.it/tl_files/utenti/lucaschenato/Classes/PSC11_12/Projects/PSC_11-12_Visual%20Tracking_relazione.pdf
http://automatica.dei.unipd.it/tl_files/utenti/lucaschenato/Classes/PSC11_12/Projects/PSC_11-12_Visual%20Tracking_relazione.pdf
http://automatica.dei.unipd.it/tl_files/utenti/lucaschenato/Classes/PSC11_12/Projects/PSC_11-12_Visual%20Tracking_relazione.pdf
http://automatica.dei.unipd.it/tl_files/utenti/lucaschenato/Classes/PSC10_11/PSC11_Gruppo6_relazione.pdf
http://automatica.dei.unipd.it/tl_files/utenti/lucaschenato/Classes/PSC10_11/PSC11_Gruppo6_relazione.pdf
http://automatica.dei.unipd.it/tl_files/utenti/lucaschenato/Classes/PSC10_11/PSC11_Gruppo6_relazione.pdf

	Introduction
	Object tracking: statement of the problem and relevant applications
	State-of-the-art of tracking algorithms
	Point tracking
	Kernel tracking
	Silhouette tracking
	Online learning tracking

	Our contribution

	Theoretical background
	Support Vector Machine Theory: a brief review
	Linear SVM: the separable case
	Linear SVM: the non separable case
	Non linear SVM and the kernel trick
	SVM as a penalization problem

	Minimization algorithms: Newton's method
	Kalman Filter in information form

	SVC tracking algorithm
	Description of the algorithm
	Implementative aspects
	Feature selection
	Newton-Raphson implementation
	Implementation of Kalman filter
	Adaptive threshold
	Dynamic bounding-box
	Misdetection alarm

	Simulations and performance evaluation
	Conclusions
	Appendices
	Appendix Extensive proofs
	Appendix Collins-Liu feature selection method
	Appendix Other adaptive threshold solutions

