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I. INTRODUCTION

A. Pratcal relevanceof theproblem

The widely useof distributedenergygeneation (sola pan-
els, wind turbines, etc), the presenceof loads with significant
energyconsumption (eledric cars)andthe needfor reliakility
of energysupplyin critica area& hasled the emergene of
SmartGrid (SG), which canactin red time to maragethe
power grid in an efficient manrer, conarning various aspets
and featues. Several studiesin this area have been made
and are still under progress (optimization of consunption,
reduction of waste energy detetion of faults and malicius
attacls, etc), neverthelessthe knowledge of the physial grid
strudure is a basicingrediert in all thesestudies.
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Figure 1. Hierachy in eremy dispdching from trarsmisson high-voltage
power to distribution mediun-low voltage power netvork.

As a matter of fact, knowing the arrangenent of
loads/gneators on trarsmissionlines is essentihin order to
makeefficient electicity dispatciment,avoiding energywaste
andvoltagedrops. In addition, through the knowledge of this
grgph is possibleto implement a schedling of conrected
devices to avoid overload of the lines. Dependnhg on the
context, the knowledge we have on grid topology is not
always exhaustre. Surely the low voltage grid topolagy is
in genegal not known, and nowadaysthere is no need of
this knowledge since there is no pradical interest due to
the fact that it is not propelly monitared Since in future
grid developmen PMUs devices will probably beenwidely
used, the knowledge of grid topology will give important
information for the optimization of electicity dispatdhiment.
Moreovwer the network knowledgeis even more relevant with
the increasingcomgexity of networks,in which agens are
not consiceredexclusiely passve loadsbut can corstitute a
source of energythrough commnon microgereratian devices.

B. Objective andtransgation of theproblem

This study of predominantly theoical-simulation kind try
to provide a static estimatian algoilithm for the identification
of network topology of smat microgrids. The grid graph
topology canbethoudht fixed during thecomputationtime and
in this sensat is a staticestimatio. We consicer “microgrid”
as the smallestportion available of the low-voltage power
distribuition network that is maragedautoromously from the
restof the network, having all the chacteistics of interest.
We assumehat dataandinformation of the grid are obtaired
from a network of PhasorMeasuementUnits (PMUS).

Each node of the grid is supp®ed to be a PMU that
unde certan hypahesisprovidesangle measuements prob-
abilistically distributed as a Gaussianrandom varialle [1].
Therefore the electical networkcanberegaréédasa Gaussan
probabilistic model. Due to this probabilistic model, we can
give a grgphical representatia of the condtional dependence
of measues, obtairing a gragh which have a nodefor each
PMU and representthe condtional dependerces of nodes.
This type of analysis is known as graphicd modes, and is
basedon the relationship existing betweea the conentrdion
matix (inverse of the sample covariarce matix) and the
conrectiors within the nodes in the graph. As a matter of
fact the concentiation matix is sparseand nonzerm elemets
imply the existenceof a link betweerthe corespamding nodes
of the graphicd represetation.

According to the properties of the electic network,the con
centation matrix contairs not only elemets referring to links
betwea adjacet nodes, but also thosereferiing to second
neighbours. The sameinformation is given by the spasity
of the squae Lapladan matix of the electical network.
Due to this, and startirg from the graph identified using the
coneentrdion matrix, a procedue to find only first-ndghbours
is neeckd. In theoly (and under ceitain assumptias) some
procedueswhich allow to detemine the only root of a graph
exist.Howeverthesedo not suitsour problembecaisewe have
only an estimato of the correlation matrix andthe latter does
not have exactlythe samesparsityas L2(if L is the Lapladan)
. A different techrique hasthen beenelabaatedto find the
actua electical graph, a techrique mainly basedon the fact
that power grid hasa tree structure.

In pradice, known a seriesof measuements madeon p
nodes of the electiic graph, at first we compute the sampleco-
variarcematiix andthen usingtechniqiestypicd of graghical
modd we obtain an estimatio of the topolagy of the graph,
which will be further elaboated to obtain a tree structue
for the graph itself. It is evident that the resultig graph
regard interconrectiors betwea the PMU devices arranged
on the networkthat provides an appioximétion of the physical
structue of power grid that underlies.



C. Staeofart

At presentthere is no study that tries to solve the spe-
cific problem of power smat grid gragh identificaion. Many
aspets of the problem are basedon typical appioactes con-
ceming graphical models which can be applied to electical
networktoo.

Ming Yuanand Yi Lin in their article [2] focus attention
on selection and estimatio of the the concentraion matrix in
Gaussiargrgphicd modd usingpenadized likelihood methals.
The two provided methdals they called lasso-¥/pe estmator
and nonneatie garrote-ype estmator lead to a sparseand
shrirkage estimator of the conentraion matrix and thus
conduct modd selectionand estimationsimultareously The
implementation of this two methals can be dore effectively
by taking advantageof the efficient maxdet algoiithm devel-
oped in corvex semiddinite optimization. The competitive
performane they proposedbetwea two methods shav that
garotetypeestimatoigiving advantage for modd-fitting when
a goodinitial estimate is availableashappensin our purpose
of power grid.

Massive amownt of measwements and their transnission
acmossthe grid by moden informaion techrology makethe
grid prone to attacls. Hanie Sedgt and Edmord Jonckleee
in their article[1] try to solvethe problemof the mostdreaded
cyberattadks on the electical infrastrudure rappreserted by
“false data injection” that compromises the PMU’s data.
Inadvertently they reveal some fundamernal concets usefd
for identification of power grid topology exploiting cond-
tional mutual information in GaussiarMarkov RandomField
(GMRF). Therefore they explore the neighboring property
of PMU ande measuements, then use so-alled Conditiond
Covariance Test (CCT) on PMU ande measuemerns and
show that, becawseof the walk-summadpility of grid graph, the
output of CCT follows the grid topology. In fact, when the
systemis under false datainjection attack the output of CCT
methal missessomelines that are preset in the grid graph.
The appoachusedin this work hasprovento be the closest
to the problemof grid topolagy identification eventhough for
other purposesand other point of view.

D. Ourcontrbution

Starting from the power grid modd suggetedin [3], we
reformulate the problem of graphical model selection for
the purmpose of grid topology identificaion. To do this we
computed the theoeetical sample covariarce matix of the
power grid modd. From its inverse,representd by the con-
centation matiix, we obtaired someproperties thatthis sparse
matix musthave from theoiical point of view. We have also
found a relaionshipbetwea the concentation matrix andthe
Lapladan matix unde some hypathesisand exploited this
relaion as much as we could to obtain information which
could help in the recanstruction of the electic graph.

We introducel the pendized likelihood algarithm given
by garotetype estimato [2] on the conentration mattix
obtaired from power grid modd. The problem of the tuning
parametey necessar for using garrote type estimate hasnot
been comgetely solved yet, but applying our secoml step

algoiithm to recanstrud the likliest electical tree, the choice
of the tuning parameterdoes not seemcritical.

E. Sumnmary

Sectionll providesthe mathematical prdiminary and main
notatims usedfor the desciption of a grgph relating a eledric
grid. Thefoundamentalresultrefersto the approximatemodel
of microgrid proposedin [3] that constitues the basis for
the following sectiors. Sectionll| introducesthe main ideas
of graphical modds and it provides some propetties of the
moddled power grid. The various aspectsorsideral here can
be summaized in: first and secondneigtbours diperdence
betwea nodes, relation betwea Lapladan matix and con
centation matix, explanationof garotetype estimate. The
goalscollededin SectionlV aretwofold: first it provides the
notion of bipartite graph and brings back the algorithm SBN
(Squaed of Bipartite grapghswith a specifiedNeighbouthoad),
subsegently it explainesour algoiithm for the detemination
of tree graph which we called MCT (Maximum Corrdation
Tree) SectionV contains mearingful simulations obtaired
from real parametes of an existingpower grid. They include
two case:noiselessmeasuemaits and noisy measuements,
obtaired with a proper modd of PMUs devices. In Section
VI there are the conclwsionsof the work and somecluesfor
future work. Finally in Appendix are collectel insights and
key demastratiors of the resuts usedduring the treament.

1. MODEL OF A MICROGRID

A. Mathematical preliminariesandnotaton

Let G = (V, E,o,7) beadirectedgrgph, where V is the
setof nodesof cardinality p = | V|, E is the setof edges, and
o,7 . E — V aretwo functionssuchthat edgee € E goes
from the sour@ node o(e) to the termiral node 7(e). Two
edges e ande’ areconseativeif {o(e), r(e)} N{o(e'), (')}
is not empty. A pathis a sequene of corsecutve edges. We
will often introduce complex-valuedfunctions definad on the
nodes andon the edges. Thesefunctions will alsobe intenced
asvectorsin C? (where p = | V) and C!”!. Given a vector
u, we derote by a its (elementwise) complex conjugate,and
by u” its transpose Let moreover A € {0, +1}/**? pethe
incidence matrix of the grgph G, definal via its elemens

-1 ifo=o(e)
(4] = 1 ifo=r7(e)
0  othemise.
Thesecom relevantmatiix associate to a (un-weighed)graph

G is the so-alled Laplacian matix L € ZI!Z1*? definedvia
its elements

-1 if v=o0(e)orv=r(e)
L, =3¢ — 2 [Ll ifo=e (1)
i=1,i#v
0 othemise.

so diagmal entiies are the only positive values while the
off-diagaal elements are negatve equal to —1 or O; L is



relaed with incidencematiix through L = AT A. If the graph
G is conrected (i.e. for every pair of nodes there is a path
conrecting them) then 1 is the only vectorin both ker(A)
and ker(L) [3], [4]. An undirectedgrafh G is a grgph in
which for every edge e € E, ther existsanedg ¢/ € FE
suchthat o(¢’) = 7(e) and 7(e’) = o(e). If the graphG is
undrectedthen L is symmetricpositive semidefiite [4], thus
resuts:

L>0
I1=0 (2
L=1L"T

If W is asubsebf nodes, we defineby 1,4, the columnvector
whoseelemants are

i 1 foeWw
Wiv) 0 othemise.

Similarly, if w is a node we dende by 1,, the colunn vector
whosevalueis 1 in positionw, and0 elsavhere andwe dende
by 1 the column vectorof all ones.

B. Model formulaion of a microgrid

The microgrid introduced befare may be modded as an
undrected graph G, in which edges represert the power lines,
and nodes representloads (with or without microgererata)
and the only point of comection of the microgrid to the
tramsmissiongrid is called PCC(Pointof CommonCoupling).
We limit our studyto the steadystatebehaviorof the system,
when all voltagesand currents are sinusoi@l signalsat the
samefrequercy. Eachsignal cantherefore be represened via
a comdex numker y = |y|e’“Y whose absolde value |y|
comespadsto the signal root-mean-squarevalue, and whose
phase/y correspondto the phaseof thesignalwith respectto
an arhitrary global refererce. In this notatim, the steadystate
of a microgrid is descibed by the following systemvarialles:

e u € CP, wher u, is the grid voltage at nodew;
« i€ CP, wher i, is the curent injected by nodew;
« £ e ClEl whereg, is the curent flowing on the edgee.

The following corstraintsare satisfiedby u,i and¢:

ATe+i=0, 3)

Au+ Z¢ =0, (4)

where A is the incidence matrix of G, andZ = diag(z., e €
E) is the diagmal matix of line impedances, z. being the
impedanceof the microgrid power line corespading to the
edgee. Equation (3) corresponis to Kirchhoff’'s curent law
(KCL) at the nodes, while (4) descibesthe voltagedrop on
the edges of the gragh. Eachnode v of the microgrid is then
chamcteized by a law relating its injected cumrent 4, with
its voltage u,,. We model the PCC (which we assumeto be
the first node) as an ideal sinusoidl voltage geneator at the
microgrid nominal voltage Uy with arbitrary, but fixed, ande

¢

®)

We mocdel loadsand microgereratas (that is, every nodewv of
the microgrid exceptthe PCQ via the following law relating
the voltageu.,, andthe current i,

ug = UNeJ(/’.

- | Uy
Uyly = Sy
LN

", Yve VA{0}, (6)
wher s, is the nominal comdex power and n, is a char-
acterstic parameterof the node v. The modé (6) is called
exponetial modd andis widely adgtedin the literature on
power flow analysis.Notice that s, is the compgex power that
the nodewould inject into the grid, if the voltageat its point
of conrection were the nominal voltage Uy. The paraneter
7, depems on the patticular device. For example,constat
power, constait cumrert, and constantimpedancedevices are
descibed by 7, = 0, 1, 2, respectively.

C. Approximae modelfor microgrid

The task of solving the system of nonlinear equatims
given by (3), (4), (5), and (6) to obtain the grid voltages
and currents, given the network parametes and the injected
nomirel powers {s,,v € V \ {0}} at every node has been
extensiely coverdl in the literature under the denamination
of power flow analysis. A fundamenal lemmafor retrieving
the solutionis givenin [3] :

Lemma 1. Let L be the complexvalued Laplacian L :=
ATZ='A. Thee exists a unique symmetric matrix X &
CP*P p = |V| suchthat

XL=1-117F
X1g=0 (7)
X =X7T

This matix X, called Grean like matix, dependsonly on the
topolagy of the microgrid power linesandon theirimpedance
It hasbeenobsevedthatthe Lapladan matix weighted using
Z~! keepghe sameproperties (2) for unweightedgraph[4]; as
canbe seenin Apperdix F, the off- diagaal elements preset
negatve real part and positive imagnary one, while diagmal
elemants have positive real part and negatve imaginary one

All the currentsi and the voltages u of the microgrid are
therefore detemined by the equdions

u=Xi+ UN€j¢1
17i=0

g;w, Yo e V\ {0}
whete the first equatian resultsfrom (3), (4), and (5) togetter
with Lemmal, while the secoml equdion desceds from (3),
usingthe fact that A1 = 0 in a conrectedgraph. We cansee
cumrentsi and voltagesu asfunctionsi(Uy), u(Ux) of Uy.
The following proposition provides the Taylor appoximation
of i(Uy) andu(Uy) for large Uy .

(8)

Uyly = Sy

Proposition 2. Let s be the vecta of all nomind compex
powerss,,, including



So ‘= — Z Sp- (9)
ve V\{0}
Thenfor all v € V we havethat
. i 71) v UN)
(U —  Li? Sv € (
wln) = e (UN L7
; X§] d,,(UN)
W(Un) = (U X8, | &(Uy) 10
u, (Un) e ( N+ i i) (10)

for somecomplexvaluad functions ¢, (Uy) and d,(Uyn)
whichare O(1) asUy — oo, i.e. they are boundedfunctions
for large values of the nomiral voltage U .

Theaffine appioximationgivenin (10) whichrelates vectors
of currentsi and voltagesu with the vector of all nominal
compex powerss, is verified in practice and corespadsto
cormrect designand opemtion of power distribution networlks,
where indeedthe nominal voltage Uy is chosensufficiently
large(sulbjectto otherfunctiond constaints)in orderto deliver
electic power to the loads with relatively small power losses
in lines. The proof of 1 and 2 is givenin [3].

I1l. GRAPHICAL MODEL SELECTION

To estimatethe electical networkgraph, a Gaussiargraph-
ical model identificaion techrique was used.Suchtechrique
allows to find out the graph representatio G = (V, E) from
a p-dimensiond Gaussianvector Y ~ AN (p,X), wher V
contans p verticescorespading to the p coodinates of Y
and the edges E = (e;;)1<i<j<p descibe the condtional
independencerelaionshipamorg YV, ..., Y(»). As a matter
of facttherelaionship (¢,j) ¢ E<=Y; LY, | Y,k #14,j
holds for every absem edge,therefore an edgein the graphis
missingif andonly if the element Y; is comgetely uncare-
lated from Y; given all the othes grgph nodes. Of particular
interest is the identificdion of zero enties in the so-cdled
conentation matrix C = $71, sinceit hasbeenproventhat
C(i,j) =0<=Y, LY, | Yy, k#1i,j, [5]. Therefore, graph
estimatio hasbeenreducedto matchting thenonzeroelements
in the inverse of ¥ with the graph edges. Given a finite
redization Y7, ..., Yy of a Gaussianvector’Y with unknown
meany and variance ¥, it's possibleto apdy the maximum
likelihood estimate using data,obtairing (i, ). In this way
the coneentrdion matrix C' can be natuially detemined by
1. However, this techique does not lead to sparsegraph
strudure,sinces. is only anestimatorof 3. A possiblesolution
to this problemwill be givenin the chager I11-C

A. Measue distribution and properties

Gaussiargrgphicd model procedue can be apgdied to the
identificaion of the electical network becawe the voltage
measues at each node are appoximately Gaussian.As a
matter of fact, the power neecakd at a given node is due to
the requestof manydifferentloadswhich presentalsonoises,
andsoit canbe mocelled asa Gaussiarmandom varigble [1].
Finally the relaion which joins s (the vector contaning the
powers taken at every node and u (the vector contaning

s/
L 8 ——10)
uz 9
w1
U, e U
o S S
Us( 4 ) us \
/ \ "12:‘
> &)

Figure 2. An electricd netvork usedto shav the conditiond independence
of measues.

voltages) can be appioximated by the affine relaionship of
equdion (10), thusu is avectorof Gaussiamandomvariades.
In this way, the voltage measues taken at each node can
be thought as realizations of corelatedl Gaussianranrdom
variades.

If the red probability distribution of u is known its mean
1y andits covariance matix X, aregiven,the conentraion
matix C, = X, presentsnonzem enties amorg those
elements of u which are condtionally depender.

Consideing the electical graph, the voltageat a givennode
is a function of the voltages of its first andsecoml neighbours.
To undestandwhy this property holds, a small exampleof
electic networkhasheencreated Figure2. Supposiig to know
the voltageat eachnode this canbe expresseds a function
of the current flowing from the node into the network, u; =
f;(i;), if i; andu; arethe currert and the voltage at node
j. As a consegene of Kirkchhoff’s currentslaw, the sum of
the currents enteing a given node hasto matchthe sum of
the currents outgdng the samenode Moreower, the curent
flowing through an edge of the electic networkis dueto the
voltagedrop on the sameedge andcanbe evaluatedoy &; ; =

“Z’J“J if Z;; is theimpedenceof the line betwee node i and
7.
Consideing asan examplenode1 :
Nodel eq “ = hli)
i1+&1+&1 =0

1

ur = f1(—=&a1 — &n)

€1 =ido+ &9+ &30
_ ua—us
Left branch eq b2 W2
32 - Zaa
iy = f3 ' (u2)



& =i+ &7
Right branch eq. { &7 = -
iz = f7 '(ur)

f1(=&a1 —&71)

= fl(UQ; u37u47u77u8)

U1

Now it's clear that the voltage at node 1, can be computed
exactly if the voltages at nodes 2 — 3 — 4 — 7 — 8 are
known, andso node1 is condtionally independent from any
node of the electical network exceptfor the first and second
neighbous, whenthe voltagesat the latteronesareknown.As
a consequene, the evaluatimn of the electic networkusing a
Gaussiarmodé identification techrique retums a graph wich
contdans not only the edgesof the electical networks,but also
edges comectinga nodewith its seconcheigtbours.In chager
IV-A andIV-B possiblesolutiors to this probem are given.

All the previousreasmings hold if the PCC node is not
consicered in the calcdation; as a matter of fact X, is
invertible.As soonasthe PCCis introducedin the calcuation,
¥, and X, becane singula, since PCC is an ideal voltage
geneata and its voltageis always constan, leadirg to the
fact that its variarce and its covariarce with all the other
elemants in the vectoru is null. It is therefore necessy to
usea pseudinverseof %, (which will be dended as X)) to
obtain a uselul result, whenthe PCCis involved in network
identification. The introduction of PCCis animportantaspet
bothfor finding the conrectionto the highestsmartgrid layer
(the distribution grid) and for some consiceratins that will
come out from the calculdion involving also the PCC To
simplify further calcuation the introduction of a hypothesys
abou micro-grid structue is now done the PCC node is
conrectedto the remaining electic networkonly through one
edge This is not a too restictive hypahesissince it only
mears thatthere mustbe only onenodeconrectedto the PCG
andall the othernodes can be conrectedwithout any kind of
constaint.

B. The Laplacian matrix relation

In the following part theoetical >, and a relationship
betwea one of its pseuainverseand LL, is found. The
latter will be a corroboration that a nonzem entry in X,
indicaesthat the 2 nodesinvolved are neighbous or secoml
neighbous, asalredy obsewed. One hypahesisis assumedn
this section all the loads must be descibed by scorelated
Gaussianrancbm variables with the samevariarce o2. This
hypothesisis madeto simplify the mathematicé treatnent of
this matter but the resultsof this work are still valid without
them,aswill behighlightedin the simulationchapte. Another
non restictive suppaition is made the PCCis the first one
node, so the column vector 19 has1l in first position and 0
in all the otherp — 1 elemetbs. For spacesake,only the final
resuts are retiieved here, while all calcdus canbe found in
Apperdix. The theoetical covariarce matrix (see Appendix
A) resultsto be:

2
= O—XX

)T
U%

Su=E|(u—pu)(u—p
Since [J’—j is only a multiplicative factor, it is ignored in
the foIIo%ing passage Applying the sameprocessusedto
calcdate X which is a pseuainverseof L, a pseudinverse
A of XX is found. A hasthe following property:

XXA=1-117
A= AT
A1=0

As A canbe computeddeletirg in XX the row and colurm
related with the PCC the usefunessof the hypahesisabou
the PCClinkage beconesnow clear If thePCCwasconrected
directly with two nodes 7 and j, it would be impossibleto
have in X{ a non zero entry between: and j asit should
be, becaisethe information abaut neighbours involving PCC
hasbeendelatel during the calcdation. Whenrecmstruding
the whole coneentrdion matrix with the methal presentedin
Apperdix B, the elemants belorging to S~! are not charged.
With the hypothesisthat a single edgestartsfrom the PCCthe
possibility of this event disapear

The following formula givesa relationshipbetwea A and
LL:

A=LL(I-X1181)"". (11)

As shawn in the Apperdix C the existenceof the inverseis
assurd almostalways; moreower it canbe shovn that A has
the sameelemers of LL exceptfor thoseelemen in position
(PCC, PCC),(i,1), (i, PCC) , if 4 is the first neighbour of
the PCCnode This relatia) assurs that A and LL have the
samespasity, S0 2}, = 2 A hasthe samespasity of LL
too. This is an altemative way to demamstratethe presence
in ¥ of nonzem entries only betwea thoseelements which
in the electic grgph are first or secom neigtbours, becaise
LL hasthe samespasity of L? andthenits non-zero enties
indicate first andsecom neigtbours. L L is thoudht to have the
samesparsityas L? sinceevery simulation doneascorfirmed
this, and we also expectthis to be a geneal consiceratian,
with only some exceptios due to very paticular matrixes.
Moreower formula (11) implies a preciserelationshipbetween
A and L, sothe estimatio of ], which differs from A for a
multiplicative factor, can give information alsoabou L. This
is animportant consiceration becase knowing the Lapladan
matix mears alsohaving information abou line impedencs,
(1) (however finding an estimato of %!, so goodasto have
the right valuesis very difficult).

In condusion, under the hypothesisconeerning the phase
of the variarce of loads,having a good estimateo of 3, not
only allows to recanstrict the electical graph, but also gives
importantinformation abou impecdences of the line.

C. Concentrationmatrix estimation

In this sectionwill be illustrated the garmote-type estimaor
theoly usedto detemine an estimatorof the concentration



matiix usablefor Gaussiargraphical moddling. This methal
hasbeenusedbecaiseof the spasity property of the concen-
tration matiix, given the fact that the inverseof the samplel
covariance matrix 3! doesrt leadto a sparsematrix. This
appoachbelorg to the penalizdlikelihood methal thatleads
to a spase and shrirkage estimato of the conentrdion ma-
trix, which hasto be positive definite,andthusconductsmocdel
selection and estimationsimultareously The implementaton
of this methals is nortrivial becaise of the positive definite
constaint on the conentration matiix, so we were forcedto
usethe maxcet algorithm developedin corvex optimization.
To achiee sparsegraph strudure a nonregative garotetype
estimato has beenused.Such methal is applieble only on
invertible matiix andin our cas&, is singula. However, as
provenin Apperdix B all the information brought by 3, can
be obtaired by its submarix found deletirg the PCCrow and
column. Calling this matiix X, this is non singula and the
garotetype estimatorcan be appliedto its inverse,C. It's
known that C' is a reliable estimato of C, the theoetical
conentration matix (not consiceringthe PCCnods.

The shrirkageestimato of ' canbe definedthrough Cij =
d;jcij, wherethe symmetic matix D is the minimizer of

min {—log|C| + tr(CTy)}

Zi;éj dij <t
C>0

subjed to di; >0 (12

Where ¢ is a tuning pammetey [2]. Equivalently, using the
Lagrangian form, this can be written as

min  {=log|C| +tr(C¥a) + A, &

subjec to Cij

wher )\ is anottertuning paramete related to t. A furtherstep
of this method is to estimatethe PCC neighbourhoad using
the procedue explainedin Apperdix B and detemine the
estimaté concentiation matrix for the whole networkstaring
from the outpu of the garote type estimator

The main propetty of this estimate is that for a relatively
large sampleit leads up to the consisteny as claimed in
theoem 3.

Theorem 3. If we dende with C the minimizerof (12) with
initial estimatorC' , n\ — oo and /nA — 0

asn — oo, thenPr(é; = 0) — 1 if ¢;; = 0, and other
elemets of C' have the same limiting distribution as the
maximumlikelihood estimatoron the true graph structure.

Theaem 3 indicaesthat the garotetype estimatorenjoys
the so-cdled oramle property. it selectsthe right graph with
probability tendirg to one and at the sametime givesa root-
n consistat estimato of the concentraion matix. Due to
the nonlineaity of the objedive function and the positive-
definitress constaint, the problem is non trivial. For its
solutionwe canleadbackour probemto the maxcdet problem,
which hasthe following gereral form:

Trez]%n bl'a — log|G(z)]
subjectto G(z) >0 (13)
F(z)>0

where b € R™. Moreover, G : R™ — R and F : R™ —

R!*! are affine:

Go +21G1+ -+ 2mGn
F0+1'1F1+"'+menL

G(z)
F(z) =

wher F; andG; aresymmnetric matiices.It is not had to see
that the garrotetype estimato solvesthe probem respet to
theminimizerD, asshavedin Apperdix D. Theproblemsolu-
tion canbe detemine usingthe Matlab toolbax YALMIP that
can hardle optimization and control orierted SDP probdems.
Moreower, this software can work with comgdex-valued data
andconstaints,necessg in our project. Sofar we focusedon
thecalcuation of the minimizerfor anyfixed tuningparameter
t. Usually, the optimum choice of this value depemls directly
from the problem soit will be hande in simulation chager

IV. NETWROK GRAPH ESTIMATION

A. Rootsof Bipartite Graphs

Now, given the conentraion matrix C, detemined from
the garote algarithm, and taking advantageof the spasity
relation betwee this oneand L2, we want to apply algelraic
graph theoly at the prablem in order to detemine a matiix
with the samesparsityas the lapladan matiix L conernng
the network graph mode.

Definition 4. H is aroot of G = (V,E) if thereexistsa positive
integerk suchthatx andy are adjaceat in G if andonly if
their distane in H is at mostk. If H is a k — th root of G,
thenwe write G = H* andcall G the k — th power of H.

Ordinarily, it is a difficult taskto detemine whethe a given
graph G hasa k — th root or not. Also, the numter of k£ —
th roots could be exponetial in the size of the input graph.
However, we focus the analysis on bipattite grgph that allow,
unde certan hypathesis,to prod the uniquenessof their root.

Definition 5. A bipatite grgph (or bigraph) is a graph whose
verticescan be divided into two disjoint setsU and V such
thatevery edge conrectsa vertexin U to onein V. Therefore,
U andV areeachindependeat sets.

Proposition 6. Let B be a bipartite graph suchthat B? = G.
If wv € E(G) and u,v are on different sidesof B, thenuv €
E(B).

Moreowr, let B = (X, Y, E) be a bipartite grgoh with X
and Y as the pattite sets. Supposewe fix the partite sets
of the bipatite roots of G. Then, from Propaition 6, the
edge set of the bipattite roct is forced. In fact, the unique
bipatite root canddate is B = (X,Y,FE) with E(B) =
{w|uwv € E(G),u € X,v € Y} asseenin Figure 3.
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Figure 3. Exampleof the SBN fundioning wherethe green edge represent
the selested one while the red one doesnt belong to the root

Furthermae,in thegrid modellizationchagerwe statecthat
an electical grgph is always a tree so the proposition below
holds.

Proposition 7. Treesare bipartite

So, if the neighbourhoad of a geneic nodein L is known,
it's possibleto find out the unique root of the graph seeing
that the two disjoint pattition are univocally detemine. Now,
we proposethe algoiithm applied in this project takenfrom
[6] called SBN (Squaresof Bipartite graphs with a specified
Neighlourhood. The hypothesismade until now require to
have knowledgeabou the PCC neighbouhood andthis infor-
mation can be gathe easilywhenthe installation of the node
is made.The mainissuein this roct finding procedue is that
the matrix obtaires using the garmote-type estimate hasonly
asympotically the samespasity of L?; to applythe algotithm
it is necessey thatthe given matrix representghe squae of a
bipattite graph. The estimatel conentrdion matrix obtained
by the garmotetype estimateo presentssomefalse positive and
somefalsenegatve,andwith null probability it still represents
the squae af atree. Thus, differentsolutiors mustbe evaluate
if a non ideal chaacteization of the concentration matrix is
available

Algorithm 1 Root of bipatite graph with specified
neighbourhoad
Cl — v
CQ «—U
Vo + C1UCy
k<2
while (V}, is a proper subsetof V(G)) do
Cry1 < Ng(Cr—1) = Vi
Vier1 < Ve U Crp
k+—k+1

end

X Uz 02i+1

Y Uz Co;

E + {ay|lzr € X,y € Yandzy € E(G)}

B. MaximumCorrelation Tree

Sincein red apgicationsit’s not possibleto have enaugh
measues to estimatethe covariarce matrix in such a goad
way as to have the estimatedcone@ntraion matix pointing
out only the true zer entiies, the previousmethal doesrt

seemsapgicable. A different kind of algoithm has been
creded in order to recanstrud the electical network having
a concentration matix which can preset false non zem
entiies. The electical network has a tree strudure, so the
algoiithm tries to find out the most likely tree startingfrom
the concentation matrix. The algotithm exploit the difference
betwea absolue valuesin the concentation matrix; indeed,
asit is pointedoutin [1], theently in the conentraion matrix

conerning a secom-ndghbaur is smallerthan the entry for

a first neighbou. Taking advantageof this fact, the algotithm
givesbacka matiix whosenon zeroenties deteminethetree
with the strongest edges. Anothe fundamettal fact usedby
the algoilithm is that a graph cortaining p nodes is a tree
if and only if two out of these3 condtions are met: it is

conrected it hasp — 1 edges and it has no cycle, [7]. A

desciption of the algaithm now follows. The algarithm is

given the matix C' andthe numkter of the PCC node. Matrix

C contains information abou the value of the comrelation

betwe@ nodes. The algoiithm startsguessingthat the gragh

hasp — 1 edgescorrespomling to the p — 1 highestabsolue
value elemaits in C (excludel the diagmal enties). Then
it exploresthe grgph starting from the PCC node; if during

the exploration the algaithm finds a cycle in the graph, it

keepsin memay the nodes which form the same.After the
graph exploratian, nodes can be divided in 2 sets,V, which
contans the nodes reated by the exploratian, and V,,which
contans the unreacted nodes. If V,, isn't empty the graph

resultsdiscomectal, soit canrot be a tree;the algoithm tries
thento find a conrectionbetwee the 2 partitions. Among all

the edges betwea V,, and V, the algarithm addsto E the
one with the highest absolue valuein C. If all the enties
in C' aresuchthat C(,j) = 0 with i € V. A j € V, ther
is no possibletree corstructdle with the given matiix so the
algotithm stopsgiving an error. If during the exploraion the
algotithm has found a cycle, it comparesthe weight of all

edges which compsethe cycle and deletefrom E the edge
with the smallestabsolde value. The algoiithm repeatsthe
exploratian of the gragph and the subsegent opemtionsuntil

it finds a tree or until it redizes thatit's impossibleto build

one. Figures 4-5-6 give an illustration of the functioning of

the algorithm.

Since the algoiithm starts with a grgph contairing the
“heaviest” possibleedges, at every iteraion it addsthe edge
with the highest absolde value amang those which can be
insertal, andit deleteghe smallestedgebetwea thosewhich
form cycles, thus the algoiithm gives the best (in terms of
weigth of the edges) tree which can be found with the given
matix C. From now on, we will report on this algoiithm
with the name of MCT (Maximum Corrdation Tree) This
algotithm canobviouslycommit somemistakesdueto thefact
thatthe given matrix is affected by noiseandit’s obtaired by
an estimatia procedure, but in the simulatian chager it will
be clearthat aslong asthe number of measuesincreasesthe
resultsget better (since the matiix C' is more predse). This
methal however can give a quite reliabe estimation of the
electical networkwith a restraned numker of measues.

Taking advantageof the fact that secoml-neighlours have
smaller entries in C' than first-ndghbours, one can think to
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Figure 4. Firstiteration of the algorithm. The light blue links betveen nodes
repesen the edges visited from root PCCduring the exploration, black links
represen the edgesof the graph anddoted linesrepresants thoseedgeswich
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Figure 5. Sewond iteraton of the algorithm

just crede a threshold to selectthe p — 1 edges with the
highest absolue value; aswill be shaved by the simulatian,
this very simple way of reasming gives goad results only
asympotically, as should be expected The algoiithm which
hasbeencreded startswith a thresholdbut guaanteethatthe
output matiix representsa tree.

A quite important advantag coneerning this algoiithm is
that it doesrt needa precise chdce for the threshold of the
garotetypeestimate. As a matterof factthe algoiithm works
well evenif matix C is notreally sparseThealgarithm needs
C to have a detectale differene beetwee absolue value of
first andsecom neighbours, but this propertyis mostly dueto

N
N,

8)

N\
\/

Figure 6. Find resut

the numker of measuesandthe noiseof the samethe garot-
type estimato affectsthis differencebut for a very wide range
of the threshold ¢ the algoiithm works well.

To improve the algoiithm, a reldion betweensignsof the
real partsof nonzemw elematsin C' hasbeenseekedAs C'
is an estimation of i, andthe latter equds LL exceptfor a
multiplicative positive factor, the signsof L L hasbeenstudied
Consideing anonweightedLaplecianmatrix L, L, L, = L?
has always positive elements concerring the diagaal and
secom neighbours, while it has negatve enties for first
neighbour (the denonstrdion canbe found in Apperdix E.1).
The introduction of weightsin the Lapladan matix makes
this property difficult to demanstrate(the property looks at the
signsof the real part, sinceweightsin electical networksare
compex numbers) but in the speci& caseof achainstructured
power network the proof is easyto find.

A chainstructered power network is a very simple type
network, where nodes are arranged in a line and eachone
is conrectedto the previous node in the line and to the
following one. Confoming to this topdogy, the weighted
lapladan matiix hasnon zem elemeits only on the diagonal,
the subdigyond andthe uppediagonal positiors. With sucha
lapladan matrix the proof that L L hasthe elements related to
first neigtbours with negatve real patt, and thoserelaed to
secom neighbours with positive real patt is easyto find (see
Apperdix E.2).

Consideing more comgdicatednetworkstrudures the math
emati@l treatnent of the problem is quite difficult. The
positivity of the red patt of diagmal elements, and those
conerning secom neighboursis still easy(seeApperdix E.3),
but the negatvity of the real patt of first neighbouris difficult
to prove and maybe it's not correct. However the sumin a
colum of LL of the real partts of elemeits concerring first
neighbours hasto be negatve (L1 = 0), so thereis at least
onefirst neighbou with negatve real part. Many simulatians
has beendore to verify this propetty: using a quite geneic
topology for the electical network (which will be introduced
later), the valuesof the impedences of the line have been
taken casudly (asrealization of gaussianvarialdes) and the
property abou the sign of the real patt of first neighbous in
L L hasalwaysbeenresgected Evenif simulatimscanrot give
certanties for all the possibleelectic networks,the propeity
seemdo hold.

The propetty found could give someimprovemert to the
algoithm becawse the matix obtaired by the garmotetype
estimato is an estimationof X! and so, as statedbefore,
elemants concening first neighbous shoud have negatvereal
patt; in this way the algoiithm could exploit also the sign of
the elemens and not only the absolue value. However, the
simulations done have not highlighted any real improvement
in the resut. Moreover, whenthe measuestakenfrom PMU
arenoisy, in esteerad X!, somesecondneighbous’ elemaits
appear to have negatve red parttoo asa consguerce of the
noisy misures.Consideing this two facts,andthe absene of a
proper mathenatical demanstrdion, this expediemhis not used
in the solution of the problem.



V. SIMULATION
A. IEEE 37 NodeTest Feeder

For our simulatins we mainly consideral the samegrid
topdogy implementedin [3], thatis inspiredfrom the standard
testbed IEEE 37 node test feecer [8], which is an actuad
portion of power distributionnetworklocatedin California. We
assumd thatload are balarced,andtherefore all currentsand
voltages canbe descibedin a singlephasephasaial notaion.
The topolagy network IEEE 37 consideed is representedn
the figure 7, obtaired by renaming the labels of nodes with
the convenientnotaion order usedin the simulation program.
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Figure 7. Schenatic repeseteation of the IEEE37 testbel.

B. Generalconsideations

In theimplementationof the overall estimatio procedue it
hasbeenoverlodked the effect of the variation in the garrote
estimato tuning pammeter The main problem noticed in
the project was detemine an autanatic paraneter detegion

procedue. So far, it seemsthat an easy relation between

raw dataandt can’tbe found. Moreover, applicgion of BIC
methal suchin [2] didn’t provide a useful estimationof the
parameter A manual choice of t hasbeendonein orde to
obtain a goad output in the garote estimation although a
pratical verification proventhat there is a low sensitvity of
the Maximum Corrdation Treealgolithm respet to the tuning
patametert evenin caseof noisy data.

C. Noisefree simulation

The plots given in simulations are graphicd represemation
of matixesthatrepresenthe sparsityof the samelf the (i, j)
elemant of the matiix is zerq in the comrisponding position of
the plot thereis a blank circle andis not highlighted, while
if the elemant is nonzerq the plot presats a coloured spot
The colous chargeswith the absolde value of the elemen,
going from red (the smallestabsolue value elemernt in the
matrix) to black (the highest absolue value) Moreover a

black circumferenceis around thoseelemants which are first-
neighbours,while agreyoneis aroundthosewhich aresecoml-
neighbours in the actualnetwork.

The first simulations dore concened ideal misures, with
no noises.Loads at each node are mocelled as scorelated
Gaussiarrandm variables with samevariarce o2.

1) Simuldion with 100 measues: With 100 misures the
estimatedcon@ntrdion matix is quite rough, and it's not
possibleto differentiatewhich entries aretruly non zemw. As
can be expected the results obtaned with the garmotetype
estimato are not satisfactory The chadce of the threshold has
beendonelooking to the relaionship betweenthe threshold
t and the numkber of nonzerm entiies in the matrix retuned
by the garmote-type estimate. As can be seenin Figure 8
for valuesof ¢ betwea 60 and 80 the numbersof nonzero
elements idertified by the estimatos seemsto remain stable

Behavior respect to 100 measurements
1200 T T T T T

1000

800

600

400

Number of non zero entries

200

0 L L L L L L L L L
0 20 40 60 80 100 120 140 160 180 200
Threshold t

Figure 8. Numberof non-zro enties respet to threshold ¢ on garote-type
estmata for 100 measuremats.

Estimated concentration matrix with one hundred measures
5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 3

13
[

_ Identified
" Laplacian matrix

O = Laplacian 1°

= Laplacian 2°

4711

(28,28)

_, 1.2472e-008
(6,21)

Figue 9. Repesetaion of the corcentraion matrix output of garotetype
estimata for 100 meauremats wherethe non-zrosertries are repieseted
by full colored spots correspondng to the relative weight of the absdute
value.

Usingasthrestold 70, the matrix obtanedfrom the garote-
type estimato is not at all precise (Figure 9), there arelots of
false positive and someseconl neigtbours are not identified



Thealgaithm SBN is unusablesincethere aretoo manyfalse
positives.

However using MCT, which can be always applied, the
matiix returnedhasnon-zeroelemerts only in corrisporderce
of first-neighlours, so it finds the right graph (Figure 10)

Matrix returned by MTC with 100 misures
1.3 5 7 9 11 13 156 17 19 21 23 25 27 29 31 33 35

_ Identified
1 o- Laplacian matrix

Q = Laplacian 1°

= Laplacian 2°

_, 41851
(29.5)

_ 0.027508
(20,35)

Figue 10. Tree graph remnstucted by MCT algorithm apgied to the
corcentraion matrix resuting from the garote-type estimatorof Figure 9.

2) Simulation with 50000 measues: With such a high
numbers of measues the estimatedconaentrdion matix is
reliable, sowe expectthe garote-typeto work well; analyzing
the samerelationship usedbefore to choosethe threstold, 50
seemdo be a nice choice for ¢ (Figure 11).

Behavior respect to 50000 measurements
1200 T T T T T

1000 [~ B

800 B

600 - B

Number of non-zero entries

200 B

0 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200
Threshold t

Figure 11. Numbe of nonzero enties respet to threshold¢ on garrde-type
estimata for 100 measuremats.

The matiix retumedby the garrote-type estimatoris almost
right, but there are still somefalse positvesand somefalse
negatves (involving only secom-neéghbaours) (Figure 12).

Evenif the matix retumedby the estimato is almostright
SBN doesrt work correctly, becage the mattix givento the
algoiithm shouldbe the squae of a bipattite graph, andthis is
not the case.The MCT algartihm is obviously ableto retun
the matix represening the right graph.

D. Noisy Simulatian

In red applicationsPMUs are affected by noises.There are
three typesof error in a measue takenby PMU: an error on

10

Estimated concentration matrix with 50000 misures
7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

_ Identified
- Laplacian matrix

O =Laplacian 1°
= Laplacian 2°

2.2244

(28,28)

_, 8.8822e-007
(11,32)

Figure 12. Repesetation of the concentraion matrix output of garote-type
with a threshol of 50 obtdned for 5000 measuemerts.

the syncihonization betwee different PMUs, an error on the
meastue of the phasedifferene betweea voltage and currert
and an error on the amplitude of the signal. The first one
can suppeedto be time invariart and can be mocelled asa
Gaussiarrandom variable with standad deviation 10~3. The
secoml one,which is mainly dueto quartization andthe way
in which the phasedifferenceis computed, is time variarn,
uncarelatedbetwea any 2 misuresandit hasbeensuppsed
that97% of the measuesstandbetwea +0.5°from the actud
value. The latter error, dueto quartization and noise, is time
variart, uncarelated betwea any 2 misures andit hasbeen
suppaedthat 97% of the measues standbetwea 0.5% of
the actua value. This valueshave beenfound on Factomart
Catalogug

Ultimately, in the simulation voltagemeasue at eachnode
hasbeenobtaned as

Un = e/%in e70(1 4 A)u

with « the measwe computed without error, 6, the
synchonization error (generaed once for every simulatian),
0 the error on the phase difference (gereraed for every
measue) and A the errore on the amplitude (gereraed for
every measue).

1) Simuldion with 10000 measues: The introduction of
errorsis critical. Evenusinga very high number of measues
in the estimatedconcentiation matrix the differencebetween
absolue valueof theelemertsis quite small. The output of the
garotetype doesrt presentappeciabledifferencein absolute
valuebetwea first-néghbours’elemen andall the othernon-
zeroone (Figure 13).

MCT doesn’'twork well becaisethe differencein absolue
value of the elemerts in the estimatedconcentration matiix
is too small. It retuns a matrix which contains lots of false
positive (Figure 14).

To diminish the consegene of noisy measues an elab-
oraion of the data has been dore. PMUs can work at a



Estimated concentration matrix with 10000 noisy measures

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35
R _ Identified
' Laplacian matrix
35
5 . O = Laplacian 1°
= Laplacian 2°
_, 00022477
(6,6)
_, 2.7492e-007
(27,32)

Figure 13. Simuldion output of gariotetype estmata for 10000 measure-
mentsaffected by noise (the thresholl chosenis 150).

Matrix returned by MTC with 10000 noisy measures

1 -®---------"-"---—————- - -P------- _ Identified
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_, 0.00019055
(13,27)

Figure 14. Tree graph remnstricted by MCT algorithm apgied to noisy
simuldion give in Figure 13.

samplirg frequery of 60 Hz; in a bit more than a seconl
and a half, it can obtain 100 conseative measues of the
voltage at a node. With high probability loads’ distribution
doesrt charge in such a shot perod of time, so we can
assumethat thesemeasues shouldall be equds becaisethe
electical grid could be corsideral steadystate.Startingfrom
this consideation we averagethesemeasuesobtaning a less
noisy datum The meanof the datais not a comrect estimato
of the actud value of the measue becaisenoisemodify also
the phaseof the measue itself; however, giventhatthe error
on the phaseis small this procedue seemsto work. As a
matter of fact the error introducedby the multiplication for
el%svin 19 is quite small; the real part of e7%vine7? is almaost
one, while the imaginary patt is quite small (on the order of
103). Consideed this, doing the averageon 100 measues
andwriting e’%vine7?" asé; + je; we get:
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Matrix returned by MCT with 100 noisy measures (with mean)
11 13 15 17 19 21 23 25 27 29 31 33 35
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Figure 15. Treegraph remnstucted by MCT algorithm for 100 averanged
meastues (the threshold chasenfor garote estmata was 150).

(01 +jer)(1 + Ar)u+ ...+ (8100 + je100)(1 + A1go)u
100
51 +d2+...4+ 100 5141 4 8202 + ... + 5100A100
100 vt 100 vt
Jrj€1 +e+...+ 61oou+j€1A1 + el +... + ElOOAIOOu
100 100

Given that §; = 1 the first term is almost equa to w,
while the secorl one canbe appioximatedasthe sumof 100
realization of a Gaussiarrandbm variable with zeto meanso
it goesto zera The third and fourth terms goesalmostto
zerobecasee; is very small. In the following 2 simulatins
each“measure” has actually been creaed doing an average
on 100 conseutive measues with the sameloads’condtion
as explainedpreviously

2) Simulaion with 100 measues: In this simulation 100
“measures” have been used. The average techniqiegve a
very good improvemert to the identificaion procedue. As a
matterof factthe conantrdion matrix estimatel by thegamot-
type estimato is far more betterthanthe previous simulation
(even if the numters of measuesis drastically diminished)
The MCT algoiithm is able to estimatealmost perfectly the
topology of the electical graph (Figure 15), obtairing only 3
false positive (which are moreower secoml neighbours) so the
algoiithm appearsto be still valid if we manipulate data. In
Figure 16, the identified graph is shovn to seewhich edges
arewrong.

3) Simulaion with 1000measues: Doing asimulatian with
1000“measures’the resultsof the whole algorithm is peffect.
MCT returns a matrix containing only the actua links of the
electical graph. We canthusaffirm thatthe manipulationdone
on the datahasgiven good results,and the whole procedue
is still valid evenwith noisy measues.

4) Other simulatiors: Different type of simulatins has
beendone We have chargedthevaluesof theloads,modelling
them as scorelatedgaussiarrancom varialdes with different
mean and the resuts were still good Also the chang in
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Figure 16. Topology identification correspondng tree gragph obtan by MCT
algorithm of Figure 15.

valueof theimpedencesof the line hasnot really affected the
identificaion. Concening noisesjt hasbeenobsevedthat the
averageexpediet is not good if the phaseerror introduced
by noise is quite higha than the one consicered in the
previoussimulatiins, ascanbe expected Sothe identificaion
procedue need the misures to be not too noisy, and this
implies that PMUs must introduce small errors (at leaston
the phasé.

VI. CONCLUSIONS AND FUTURE DEVELOPMENTS

This work shavs the possibility to identify the topolagy
of an electic graph startirg from measues taken by PMUs
devices arrangedin different places of the power grid. This
resut hasbeenreated using a two-step-#gorithm: first the
con@ntration matix hasbeenestemate usinga garote-type
estimateo, and then the samematrix has been elaboated to
getthe mostlikely treewich descibesthe electical netwak
(using MCT). The obtaired results are satisfactoy in the
ideal caseof noiselessmeasues, while the introduction of
errors in measues make the procedue unrdiable. However
with somereasmabledataprocessinghe resultsarestill quite
satisfactoryNeverthlesslataprocessings possibleonly if the
phaseerror is adegiatelysmall.In practical casethe procedure
found works only if PMUs give accuate measues.

Future developmerts can involve the distribution of the
algolithmsin orde to obtaina distributedalgoiithm thatruns
on eachnode Another important featue to analyz is the
possibility of creating an autanatic procedute to calcuate the
thresholdfor the garmote-type estimate. In theenda morepre-
cisestudyon the valuesof the conentrdion matiix could give
importantinformation abaut the networkline impedences.
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Appendix

A Theoretical covariance matrix >,

From the definition of the covariance matrix and using formula (10) concerning the approximated network we have:

Yu=E|(u—pu)(u— NU)T

pa = Blu] = ??Uy + X%e”J
Un

Obtaing in this way the theoretical coviariance matrix.

1 - 1 —
Yu=—XE[E—7s)(s — pus)"]X = —XVar(s)X
Uy Un
Remembering that the power needed to the PCC is the opposite of all powers needed by other nodes, s; = =3 s;,
i#1
and s; are scorrelated and with the same variance o, the variance of s has the following structure:

n—-1 -1 ... -1
-1 1 0 0
Var(s) = o° =o’D
0
-1 0 1
D= I+ (n-2)1olg +1o[0 —1---—1]+[0 —1--- —1]"17]

Since X1¢ = 0, it’s easy to prove the following equality:

2 0_2

o — —
=2 _XDX = = XX
Uk Uk

Yu
It can be easily seen that the first row and the first column of XX is composed only by zero (considering that
_ T
X1p = 0 and that X = XT). In this way it can be written as XX = [ 8 OS } , with Sa (p—1) x (p—1) full-rank
matrix.

B On the calculus of pseudoinverse A

The pseudoinverse A of the matrix XX is determine from the submatrix of [ |)1(T|‘ é

that the equation below hold and it’s possible to write down the system made by the constraint of the inverse

operator.
XX 1 A v| | T 0
1T o o e | T 10 1

. Indeed, it can be seen

XXA=1-17 v=1g
XXv+1le=0 c=0

& —
17A4=0 XXA=1-11F
1Ty =1 A=AT

An interesting result can be found exploiting the structure of XX:



T
XX 1 0 0" 1
T oo l=l0 s 1
I
0 1 of
Changing the last and second rows and columns, it becomes | 1 0 1T
01 S
The inverse of this matrix leads to
A 1 a1 Qp—1
1 o o - 0 p—1 p—1
a0 , with oy = —» S7'(i,j) and A= > S7(i, j).
: : g-1 i=1 i,j=1
Qp_1 0

Finally, changing back the second and last rows and columns, the inverse of the given matrix is

A al ... ap71
a 0 A o ap_1
. g
st : = A= .
: St
p—1 : Op_1
1 0o ... o0 P

The pseudoinverse matrix of XXcan therefore be found deleting the row and column related with the PCC, inverting
the resulting matrix and reconstructing the elements of the PCC with easy calculations.

C Relationship between A and LL

Starting from equation (7), it’s possible to write down:

XL=1-11§ = XXLL =XL-X11JL = XXLL +X115L =1-11} (1)

XXA=XXLL+X11JL (2)

The given relationship is linear but matrix XX is singular, so pseudoinverses has to be used to solve the problem.
The solution of a linear system like CXB = D, where the unknown matrix is X and C' and B are singular
matrix, exists if and only if there are two matrices C) and BM™ such that CCVC = ¢, BBYB = B and
ccWDBOB =D. ¢™ and BM are a particular type of pseudoinverses (not unique). If the solution exists, the
matrix which solves the system is

X =AWDBW 1y - AW AYBBW

where Y is an arbitrary matrix of appropriate dimension. For further details see [9]. From the properties of A follow
that XX AXX = XX , so A is a possible pseudoinverse of XX that can be used in the solution of (2). Starting
from (2), the existence of a solution with A as pseudoinverse can be proved in the following way:

XXAXXLL +X11§ L) = XXAXXLL + XXAX117 L

From the property of XX and A it’s easy to see that the first term in the sum equals XX LL. Using (1) and the
property of A to analyze the second therm:

XXA - XXAXXLL — XXA11F =1 — 117 — XXLL = X11JL
SO
XXAXXLL 4+ XXAX113 L = XXLL + X11§ L.

The existence of a solution has thus been proved. The general solution is



A= AXXLL+ AX115 L +Y — AXXY

with Y an arbitrary matrix of appropriate dimensions. Among all the possible choices for Y the null matrix is
considered. Analyzing the first term,

AXXLL = (I -113)LL = LL

the solution can be written as:

A(I —X11fL) = LL (3)

Without any loss of generality, suppose that the node which is linked with the PCC is labelled as 2. In this way the
first row of L has the following form: [ @ —a 0 --- 0 ], @ # 0, since the sum of the elements of any row in L
has to be 0. Moreover, remembering that the first row of X is made by zero entries, the sum of all the elements of

P
the first row is 0. Calling a; = > X(4,7), it’s easy to prove that
j=1

1 0 o --- 0
aas l14+aas 0 --- 0

(I -X11gL)= | @ —ads

I,_»
aa,  —oap

This matrix is invertible if and only if 1 + aas # 0, that is & # —1/a. This condition appears to be almost always
met (at least in the simulation done for this work has always been met), so (3) can be solved using the inverse:

A=LL(I-X117L)~"

The inverse of the latter matrix has the following form:

1 0 o --- 0
_ _aap _1 .
1+aasz 1+aasz 0 0
T 1 oza3+2(x2a3az aas
(I — Xllo L) = 1+aaz 1+aas
. Ip—2
aap+2a2apa2 aap
1+aaz 1+aay

Due to the form of the inverse, A turns out to have the same element of LL except for the elements in position
(1,1), (1,2), (2,1), (2,2).

D MaxDet and Nonnegative Garrote Estimator
We want to show the relation between the maxdet problem and the nonnegative Garrote estimator in order to apply

YALMIP functions in the optimization of our semi-definite problem. Now, taking into account equation (12) and
(13), we can see that

Glz) = C
di1c11 -+ dinCin
dnlénl e dnnénn
Gy - 0 0 --- 0 0 --- 0
= du + dkn Crh + ot dan . :
0 --- 0 0 --- 0 0 - Gnn
and b7z = tT(C’A) = [ €11Q11  C12G12 ... CpkQhk --- Conlnn } . [ di1 dio ... dpx ... dpn }T. So, it

has been proven that C' can be written as an affine function of d;;, while tr(é’ ¥,) can be written as a linear function



of d;;, as needed by MaxDet problem formulation. Concerning the constraint ZZ £ di; <t dij > 0 we can write a
similar relation as made for G(x):

F(r) = Fy+duFu+dieFio+- 4+ dinFip+ - +dpmFon
+t 0 ... O 0o 0 ... 0 -1 0 ... 0
0o . 0 0 1 0 : 0o . 0
= ) . +dn ) ) + di2 ) N
0 0 0 0 0 0
-1 0 0 0 O 0
0 0 0 0
=+ din |t + dnn
0 1 0
0 0 0 1
[ =D di +t T
+d11
+di2
- +di3
L +dnn_

where F;; with i # j is the (n?+1) x (n?+1) matrix with -1 in position (1,1) and 1 in position (n(i—1)+j+1,n(i—
1) +j+1), whereas if ¢ = j the matrix F}; is made by the element 1 in position (n(i —1)+j+1,n(i —1) +j+1).
Moreover, it’s easy to show that the constraint F'(z) > 0 gives:

F(x) > 0= 2'F(z)z2>0Vz

ZTF(«T)Z = Z%(—dw — o —=dip— - — dn,n—l + t) + ngll + -+ Z?Vdnn
if z;=0forall i #1 and 2z; = 1, then
— Z dij +t>0
i#£]
If z; =0 for all 4 # 2 and 2o = 1, then
di1 >0
and so forth. Thus, the semi definite constraint F'(z) > 0 is equivalent to ZZ oy dij <t dij >0

E Numerical property of Laplacian element

E.1 Unweighted Laplacian

Theorem 1. First neighbours in an unweighted Laplacian L., are negative, while second neighbours and the elements
on the diagonal are positive.

Proof. From the property of the Laplacian matrix the following statements are easy to prove:

ki

Lu(i,j) <0 <= (i,j) € G
Considering now the element (4,5), i # j L2 and supposing that L, (i, j) < 0, that is nodes 4, j are firt neighbour:



L3(i,5) = Y Lu(i,k)Lu(k,5) = > Lu(i,k)Lu(k, ) + Lu(i,i) Lu(i, §) + Lu(i, ) Lu(G, 5)
k=1 k#i,j
= > Lu(i, k) Lu(k,§) = Lulis §) Y Lu(i k) = Lu(i,§) Y Lu(k, )
ki kA k]
Writing the summations explicitly:
L2(i,5) = Lu(i,1)Ly(1,5) 4+ Lu(i,2)Lu(2,5) + ... + Ly(i,n)Ly(n, §) +
+ Lyu(4,5)[-Lu(i,1) — Ly(i,2) — ... — Ly(i,5) — ... — Ly (i,n)] +
+ Lu(4,5)[-Lu(4,1) = Lu(5,2) — ... — Ly(4,5) — ... — Ly(4,n)]
Writing first terms as Ly (i, k) Ly (k, j) = 2Ly (i, k) Ly (k, §) + 3 Ly (k, 1) Ly (k, j):

L2(i,j) =

|
+ Lu(z’,Q)[
|

+ Lulin) [ L) - Lulid)| + Lu(n) |

Since in L, all the elements outside the diagonal are either 0 or —1, and L(i,j) =
j) > 0 ). Finally the coefficient of each term in brackets is negative, so L2 (i, ) is
they are positive because they can be written

are positive ( $L(k,h) — L(i,

negative. Concerning terms representing second neighbours in L2,

as:

LQ’L]

ZL (i,k)L

ZL (i,k)L

k#i,j

w(k, 7) + Ly (4,

Do) = Lulisd)| + L) [§20205) = Lutic)| +..+

3Luned) = Lulis )] = 21,69

—1, all the terms between brackets

i) Lu(i, 7)) + Lu(i, ) Lu(J, 5)

and L, (¢,7) = 0 since ¢ and j are second negihbours; so

L2(i,5) ZL i k)L = Y Lu(i,k)Lu(k, 5)
ki, j
which is a summation of positive (or null) terms. The diagonal elements in L2 are positive because they can be
written as norms. |
E.2 Weighted Laplacian in Chain network structure

In a chain-structured electric network sign property is easy to verify even in the weighted Laplacian

//\\ ’///7'\\ /// = sss
o/ N A

Figure 1: Infinite chain-structured graph

The weighted Laplacian matrix associated to an electric network as the one in Figure 1 is like

—€

o+ €
—«

0 :
—o 0
a+p =B
-8 B+~
0 -y

0

0
0

y+d0 =6
-5 |



with a = a, + Jbas ao > 0, b, < 0 (these considerations are valid for all the non-zero elements in the matrix).
Calling F' = LL, the demonstration looks at just one element wich represent a first neighbour in F, for example the
element in position (4, 3) :

F(4,3) = —B(a+ ) — (B+7)8 = —(ag — jbs)(aa + jba + ag + jbs) — (ap — jbs + ay — jby)(ap + jbs)

Considering only the real part of F'(4,3):

—agGq — Qa% — bgby — 2b% —ayag — bybg <0

The real part is then negative (the same proof holds for all the first neighbours in F'). The elements corresponding
to second neighbours in F are in the second subidiagonal and in the second upperdiagonal (this is a consequence of
the form of the Laplacian). To study the sign of the real part of second neighbours the element in position (5,3) is
analyzed:

F(5,3) = (=%)(=8) = (ay — jby)(as + jbs)
The real part of F(5,3) is then:

aag +bybg >0

as stated.

E.3 Laplacian of generic Networks

In a generic electrical network, E_L has positive real part elements on the diagonal and for the entries concerning
second neighbours. Calling F = LL and cosidering that L = L the diagonal elements are real and positive:

F(i i)=Y L(i,k)L(k,i) =Y L(k,i)L(k,i) > 0.
k=1

k=1

Considering the entry in F for a second neighbour, for example F'(i, j) with L(s, j) = 0:

F(i,j) =Y LG k)L(k,j) = Y L(i,k)L(k, j) + L(i,)L(i, ) + L(i, ) LG, 5) = Y, L, k)L(k, j)
k=1 k#i,5 k#i,j

Considering the real part of a generic term of the summation, with L(i,k) = a4+ jb, a < 0, b > 0, L(k,j) =
c+jd, c<0,d>0

L(i,k)L(k,j) = ac+bd > 0

The real part of the summation is therefore positive.

F Signs of the weighted Laplacian

In this Appendix the dimonstration concernig sign in weighted Laplacian matrix is proven. The property is as
follow: considering L the real part of its non zero elements out of the diagonal is positive, and the imaginary part
of the same is negative. Considering the impedence of any edge of the electric network, this has real and imaginary
part which are positive (the line is a passive element). Due to this fact its inverse has positive real part and negative
imaginary part. As a matter of fact

. 1 1 ae — jbe
= bey, Qe be >0 = — = — = .
Ze Qe +.7 ey Qe Ve 2 ae+]be az+bz

A generic element of the weighted Laplacian can be computed as

p—1

L(i,j) = 3 Ak, i)~ A(k, j)

2
k=1 k



The incidence matrix A is such that only two elements per row are different from zero, a 1 and a -1. Exploiting
this fact, each term of the summation can be zero or *ZL,C and this proves the statement. This implies also that the
elements on the diagonal has positive real part and negative imaginary one (since the sum of the elements in a row
is 0).





