
1

Topology Identification of SmartMicrogrids
Bof Nicoletta,Michelotti Davide, Muraro Riccardo

I . INTRODUCTION

A. Pratical relevanceof theproblem

The widely useof distributedenergygeneration(solar pan-
els, wind turbines,etc), the presenceof loads with significant
energyconsumption (electric cars)andthe needfor reliability
of energysupply in critical areas has led the emergence of
Smart Grid (SG), which can act in real time to managethe
power grid in an efficient manner, concerning various aspects
and features. Several studies in this area have been made
and are still under progress (optimization of consumption,
reduction of waste energy, detection of faults and malicius
attacks, etc), neverthelessthe knowledge of the physical grid
structure is a basicingredient in all thesestudies.

Figure 1. Hierarchy in energy dispatching: from transmission high-voltage
power to distribution medium-low voltagepower network.

As a matter of fact, knowing the arrangement of
loads/generators on transmissionlines is essential in order to
makeefficient electricity dispatchment,avoiding energywaste
andvoltagedrops. In addition, through the knowledge of this
graph is possible to implement a scheduling of connected
devices to avoid overload of the lines. Depending on the
context, the knowledge we have on grid topology is not
always exhaustive. Surely the low voltage grid topology is
in general not known, and nowadays there is no need of
this knowledge since there is no practical interest due to
the fact that it is not properly monitored. Since in future
grid development PMUs devices will probably beenwidely
used, the knowledgeof grid topology will give important
information for the optimization of electricity dispatchment.
Moreover the networkknowledgeis even more relevant with
the increasingcomplexity of networks,in which agents are
not consideredexclusively passive loadsbut can constitute a
source of energythrough common microgeneration devices.

B. Objectiveandtranslationof theproblem

This study of predominantly theorical-simulation kind try
to providea static estimation algorithm for the identification
of network topology of smart microgrids. The grid graph
topology canbethought fixedduring thecomputationtimeand
in this senseit is a staticestimation. We consider “microgrid”
as the smallestportion available of the low-voltage power
distribuition network that is managedautonomously from the
rest of the network,having all the characteristics of interest.
We assumethat dataandinformation of the grid areobtained
from a networkof PhasorMeasurementUnits (PMU’s).

Each node of the grid is supposed to be a PMU that
under certain hypothesisprovidesanglemeasurementsprob-
abilistically distributed as a Gaussianrandom variable [1].
Therefore theelectrical networkcanberegardedasa Gaussian
probabilistic model. Due to this probabilistic model, we can
give a graphical representation of the conditional dependence
of measures, obtaining a graph which have a node for each
PMU and represent the conditional dependences of nodes.
This type of analysis is known as graphical models, and is
basedon the relationship existing between the concentration
matrix (inverse of the sample covariance matrix) and the
connections within the nodes in the graph. As a matter of
fact the concentration matrix is sparseandnon-zero elements
imply theexistenceof a link betweenthecorrespondingnodes
of the graphical representation.

According to thepropertiesof theelectric network,thecon-
centrationmatrix contains not only elements referring to links
between adjacent nodes, but also thosereferring to second-
neighbours. The sameinformation is given by the sparsity
of the square Laplacian matrix of the electrical network.
Due to this, and starting from the graph identified using the
concentration matrix, a procedure to find only first-neighbours
is needed. In theory (and under certain assumptions) some
procedureswhich allow to determine the only root of a graph
exist.Howeverthesedonot suitsour problembecausewehave
only an estimator of the correlation matrix andthe latter does
not have exactlythesamesparsityasL2(if L is theLaplacian)
. A different technique has then beenelaborated to find the
actual electrical graph, a technique mainly basedon the fact
that power grid hasa treestructure.

In practice, known a seriesof measurements madeon p
nodes of theelectric graph,at first we computethesampleco-
variancematrix andthen, usingtechniquestypical of graphical
model we obtain an estimation of the topology of the graph,
which will be further elaborated to obtain a tree structure
for the graph itself. It is evident that the resulting graph
regards interconnections between the PMU devices arranged
on thenetworkthatprovides anapproximation of thephysical
structure of power grid that underlies.
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C. Stateof art

At present there is no study that tries to solve the spe-
cific problem of power smart grid graph identification. Many
aspects of the problem are basedon typical approachescon-
cerning graphical models which can be applied to electrical
network too.

Ming Yuan and Yi Lin in their article [2] focus attention
on selection andestimation of the the concentration matrix in
Gaussiangraphical model usingpenalized likelihood methods.
The two provided methods they called lasso-type estimator
and nonnegative garrote-typeestimator lead to a sparseand
shrinkage estimator of the concentration matrix and thus
conduct model selectionand estimationsimultaneously. The
implementation of this two methods can be done effectively
by taking advantageof the efficient maxdet algorithm devel-
oped in convex semidefinite optimization. The competitive
performance they proposedbetween two methods show that
garrote-typeestimatorgiving advantagefor model-fitting when
a goodinitial estimator is availableashappensin our purpose
of power grid.

Massive amount of measurements and their transmission
acrossthe grid by modern information technology makethe
grid prone to attacks. Hanie Sedghi and Edmond Jonckheere
in their article[1] try to solvetheproblemof themostdreaded
cyber-attacks on the electrical infrastructure rappresented by
“false data injection” that compromises the PMU’s data.
Inadvertently they reveal somefundamental concepts useful
for identification of power grid topology exploiting condi-
tional mutual information in GaussianMarkov RandomField
(GMRF). Therefore they explore the neighboring property
of PMU angle measurements, then useso-called Conditional
Covariance Test (CCT) on PMU angle measurements and
show that,becauseof the walk-summability of grid graph, the
output of CCT follows the grid topology. In fact, when the
systemis under falsedatainjection attack, the output of CCT
method missessomelines that are present in the grid graph.
The approachusedin this work hasprovento be the closest
to the problemof grid topology identification eventhough for
otherpurposesandotherpoint of view.

D. Ourcontribution

Starting from the power grid model suggested in [3], we
reformulate the problem of graphical model selection for
the purpose of grid topology identification. To do this we
computed the theoretical sample covariance matrix of the
power grid model. From its inverse,represented by the con-
centrationmatrix, we obtainedsomeproperties thatthis sparse
matrix musthave from theorical point of view. We have also
found a relationshipbetween theconcentrationmatrix andthe
Laplacian matrix under some hypothesisand exploited this
relation as much as we could to obtain information which
could help in the reconstruction of the electric graph.

We introduced the penalized likelihood algorithm given
by garrote-type estimator [2] on the concentration matrix
obtained from power grid model. The problem of the tuning
parameter, necessary for using garrote type estimator hasnot
been completely solved yet, but applying our second step

algorithm to reconstruct the likliest electrical tree, the choice
of the tuning parameterdoes not seemcritical.

E. Summary

SectionII providesthe mathematicalpreliminary andmain
notationsusedfor thedescription of a graph relating a electric
grid. Thefoundamentalresultrefersto theapproximatemodel
of microgrid proposedin [3] that constitutes the basis for
the following sections. SectionII I introducesthe main ideas
of graphical models and it provides someproperties of the
modelled power grid. Thevariousaspectsconsidered here can
be summarized in: first and secondneighbours dipendence
between nodes, relation between Laplacian matrix and con-
centration matrix, explanationof garrote-type estimator. The
goalscollected in SectionIV aretwofold: first it provides the
notion of bipartite graph and brings back the algorithm SBN
(Squaredof Bipartitegraphswith a specifiedNeighbourhood),
subsequently it explainesour algorithm for the determination
of tree graph which we called MCT (Maximum Correlation
Tree). Section V contains meaningful simulations obtained
from real parameters of an existingpower grid. They include
two case:noiselessmeasurements and noisy measurements,
obtained with a proper model of PMUs devices. In Section
VI there are the conclusionsof the work and somecluesfor
future work. Finally in Appendix are collected insights and
key demostrations of the results usedduring the treatment.

I I . MODEL OF A MICROGRID

A. Mathematical preliminariesandnotation

Let G = (V ,E , σ, τ) be a directedgraph, where V is the
setof nodesof cardinality p = |V |, E is thesetof edges, and
σ, τ : E → V are two functions suchthat edgee ∈ E goes
from the source node σ(e) to the terminal node τ(e). Two
edges e ande′ areconsecutive if {σ(e), τ(e)}∩{σ(e′), τ(e′)}
is not empty. A path is a sequence of consecutive edges.We
will often introducecomplex-valuedfunctionsdefined on the
nodes andon theedges.Thesefunctionswill alsobe intended
as vectorsin Cp (where p = |V |) andC|E |. Given a vector
u, we denoteby ū its (element-wise)complex conjugate,and
by u

T its transpose.Let moreover A ∈ {0,±1}|E |×p be the
incidencematrix of the graph G, defined via its elements

[A]ev =






−1 if v = σ(e)

1 if v = τ(e)

0 otherwise.

Thesecond relevantmatrix associated to a (un-weighed)graph
G is the so-called Laplacian matrix L ∈ Z|E |×p definedvia
its elements

[L]ev =





−1 if v = σ(e) or v = τ(e)

−
p∑

i=1,i6=v

[L]ei if v = e

0 otherwise.

(1)

so diagonal entries are the only positive values while the
off-diagonal elements are negative equal to −1 or 0; L is
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relatedwith incidencematrix throughL = ATA. If the graph
G is connected(i.e. for every pair of nodes there is a path
connecting them), then 1 is the only vector in both ker(A)
and ker(L) [3], [4]. An undirectedgraph G is a graph in
which for every edge e ∈ E , there exists an edge e′ ∈ E

such that σ(e′) = τ(e) and τ(e′) = σ(e). If the graphG is
undirectedthenL is symmetricpositivesemidefinite [4], thus
results:





L ≥ 0

L1 = 0

L = LT

(2)

If W is a subsetof nodes,we defineby 1W thecolumn vector
whoseelements are

[1W ]v

{
1 if v ∈ W
0 otherwise.

Similarly, if w is a node, we denote by 1w the column vector
whosevalueis 1 in positionw, and0 elsewhere, andwedenote
by 1 the column vectorof all ones.

B. Model formulationof amicrogrid

The microgrid introduced before may be modeled as an
undirected graph G, in which edges represent thepower lines,
and nodes representloads (with or without microgenerator)
and the only point of connection of the microgrid to the
transmissiongrid is calledPCC(Pointof CommonCoupling).
We limit our studyto the steadystatebehaviorof the system,
when all voltagesand currents are sinusoidal signalsat the
samefrequency. Eachsignal cantherefore be represented via
a complex number y = |y|ej∠y whose absolute value |y|
correspondsto the signal root-mean-squarevalue,andwhose
phase∠y correspondsto thephaseof thesignalwith respectto
an arbitrary global reference.In this notation, the steadystate
of a microgrid is describedby the following systemvariables:

• u ∈ C
p, where uv is the grid voltage at nodev;

• i ∈ Cp, where iv is the current injected by nodev;
• ξ ∈ C|E |, whereξe is the current flowing on the edgee.

The following constraintsaresatisfiedby u, i andξ:

AT ξ + i = 0, (3)

Au+ Zξ = 0, (4)

where A is the incidencematrix of G , andZ = diag(ze, e ∈
E ) is the diagonal matrix of line impedances, ze being the
impedanceof the microgrid power line corresponding to the
edgee. Equation (3) corresponds to Kirchhoff’s current law
(KCL) at the nodes, while (4) describes the voltagedrop on
the edges of the graph. Eachnodev of the microgrid is then
characterized by a law relating its injected current iv with
its voltageuv. We model the PCC (which we assumeto be
the first node) as an ideal sinusoidal voltagegenerator at the
microgrid nominal voltage UN with arbitrary, but fixed, angle
φ

u0 = UNejφ. (5)

We model loadsandmicrogenerators (that is, every nodev of
the microgrid exceptthe PCC) via the following law relating
the voltageuv and the current iv

uv īv = sv|
uv

UN

|ηv , ∀v ∈ V \ {0} , (6)

where sv is the nominal complex power and ηv is a char-
acteristic parameterof the node v. The model (6) is called
exponential model and is widely adopted in the literature on
power flow analysis.Notice that sv is the complex power that
the nodewould inject into the grid, if the voltageat its point
of connection were the nominal voltageUN . The parameter
ηv depends on the particular device. For example,constant
power, constant current, and constant impedancedevices are
described by ηv = 0, 1, 2, respectively.

C. Approximatemodelfor microgrid

The task of solving the system of nonlinear equations
given by (3), (4), (5), and (6) to obtain the grid voltages
and currents,given the network parameters and the injected
nominal powers {sv, v ∈ V \ {0}} at every node, has been
extensively covered in the literature under the denomination
of power flow analysis. A fundamental lemmafor retrieving
the solution is given in [3] :

Lemma 1. Let L be the complexvalued Laplacian L :=
AT

Z
−1A. There exists a unique symmetric matrix X ∈

Cp×p, p = |V | suchthat





XL = I − 11
T
0

X10 = 0

X = X
T

(7)

This matrix X, calledGreen likematrix, dependsonly on the
topology of themicrogrid power linesandon their impedance.
It hasbeenobservedthat theLaplacian matrix weighted using
Z
−1 keepsthesameproperties(2) for unweightedgraph[4]; as

canbeseenin Appendix F, theoff- diagonal elementspresent
negative real part andpositive imaginary one,while diagonal
elements have positive real part andnegative imaginary one.

All the currents i and the voltages u of the microgrid are
therefore determinedby the equations






u = Xi+ UNejφ1

1
T
i = 0

uv īv = sv| uv

UN
|ηv , ∀v ∈ V \ {0}

(8)

where the first equation resultsfrom (3), (4), and(5) together
with Lemma1, while the second equation descends from (3),
using the fact thatA1 = 0 in a connectedgraph. We cansee
currentsi andvoltagesu as functions i(UN ), u(UN ) of UN .
The following proposition provides the Taylor approximation
of i(UN) andu(UN ) for largeUN .

Proposition 2. Let s be the vector of all nominal complex
powerssv, including
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s0 := −
∑

v∈V \{0}

sv. (9)

Thenfor all v ∈ V we havethat

iv(UN ) = ejφ
(

s̄v
UN

+
cv(UN )

U2
N

)

uv(UN ) = ejφ
(
UN +

[Xs̄]v
UN

+
dv(UN )

U2
N

)
(10)

for somecomplexvalued functions cv(UN ) and dv(UN )
which are O(1) asUN →∞, i.e. they are boundedfunctions
for large values of the nominal voltageUN .

Theaffineapproximationgivenin (10) which relatesvectors
of currents i and voltagesu with the vector of all nominal
complex powers s, is verified in practice and corresponds to
correct designand operation of power distribution networks,
where indeedthe nominal voltageUN is chosensufficiently
large(subject to otherfunctional constraints)in order to deliver
electric power to the loads with relatively small power losses
in lines. The proof of 1 and2 is given in [3].

I I I . GRAPHICAL MODEL SELECTION

To estimatetheelectrical networkgraph, a Gaussiangraph-
ical model identification technique wasused.Suchtechnique
allows to find out the graph representation G = (V,E) from
a p-dimensional Gaussianvector Y ∼ N (µ,Σ), where V
contains p verticescorresponding to the p coordinates of Y

and the edges E = (eij)1≤i<j≤p describe the conditional
independencerelationshipamong Y (1), . . . , Y (p). As a matter
of fact the relationship (i, j) /∈ E ⇐⇒ Yi ⊥ Yj | Yk, k 6= i, j
holds for every absent edge,therefore an edgein the graph is
missingif and only if the element Yi is completely uncorre-
lated from Yj given all the others graph nodes.Of particular
interest is the identification of zero entries in the so-call ed
concentration matrix C = Σ−1, sinceit hasbeenproventhat
C(i, j) = 0⇐⇒ Yi ⊥ Yj | Yk, k 6= i, j, [5]. Therefore, graph
estimation hasbeenreducedto matching thenonzeroelements
in the inverse of Σ with the graph edges. Given a finite
realization Y1, . . . , YN of a GaussianvectorY with unknown
meanµ and varianceΣ, it’s possibleto apply the maximum
likelihood estimator usingdata,obtaining (µ̄, Σ̂). In this way
the concentration matrix C can be naturally determined by
Σ̂−1. However, this technique does not lead to sparsegraph
structure,sinceΣ̂ is only anestimatorof Σ. A possiblesolution
to this problem will be given in the chapter II I-C

A. Measure distribution and properties

Gaussiangraphical model procedure can be applied to the
identification of the electrical network because the voltage
measures at each node are approximately Gaussian.As a
matter of fact, the power needed at a given node is due to
the requestof manydifferent loadswhich presentalsonoises,
andso it canbe modelled asa Gaussianrandom variable [1].
Finally the relation which joins s (the vector containing the
powers taken at every node) and u (the vector containing

Figure 2. An electrical network usedto show the conditional independence
of measures.

voltages) can be approximated by the affine relationship of
equation (10), thusu is a vectorof Gaussianrandomvariables.
In this way, the voltage measures taken at each node can
be thought as realizations of correlated Gaussianrandom
variables.

If the real probability distribution of u is known its mean
µu and its covariancematrix Σu aregiven, the concentration
matrix Cu = Σ−1

u presentsnon-zero entries among those
elements of u which areconditionally dependent.

Considering theelectrical graph, thevoltageat a givennode
is a function of thevoltages of its first andsecond neighbours.
To understandwhy this property holds, a small exampleof
electric networkhasbeencreated,Figure2. Supposing to know
the voltageat eachnode, this canbe expressedasa function
of the current flowing from the node into the network,uj =
fj(ij), if ij and uj are the current and the voltageat node
j. As a consequence of Kirkchhoff’s currentslaw, the sumof
the currentsentering a given node has to match the sum of
the currents outgoing the samenode. Moreover, the current
flowing through an edge of the electric network is due to the
voltagedrop on thesameedge, andcanbeevaluatedby ξi,j =
ui−uj

Zij
, if Zij is the impedenceof the line between node i and

j .
Considering asan examplenode1 :

Node1 eq.

{
u1 = f1(i1)

i1 + ξ21 + ξ71 = 0

↓

u1 = f1(−ξ21 − ξ71)

Left branch eq.






ξ21 = i2 + ξ42 + ξ32

ξ42 = u4−u2

Z42

ξ32 = u3−u2

Z32

i2 = f−1
2 (u2)
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Right branch eq.





ξ71 = i7 + ξ87

ξ87 = u8−u7

Z87

i7 = f−1
7 (u7)

u1 = f1(−ξ21 − ξ71)

= f1(u2, u3, u4, u7, u8)

Now it’s clear that the voltage at node 1, can be computed
exactly if the voltages at nodes 2 − 3 − 4 − 7 − 8 are
known, andso node1 is conditionally independent from any
node of the electrical networkexceptfor the first andsecond
neighbours,whenthevoltagesat thelatteronesareknown.As
a consequence, the evaluation of the electric networkusing a
Gaussianmodel identification technique returns a graph wich
contains not only theedgesof theelectrical networks,but also
edgesconnectinganodewith its secondneighbours.In chapter
IV-A andIV-B possiblesolutions to this problem aregiven.

All the previousreasonings hold if the PCC node is not
considered in the calculation; as a matter of fact Σu is
invertible.As soonasthePCCis introducedin thecalculation,
Σu and Σ̂u become singular, since PCC is an ideal voltage
generator and its voltage is always constant, leading to the
fact that its variance and its covariance with all the other
elements in the vectoru is null. It is therefore necessary to
usea pseudoinverseof Σu (which will be denoted asΣ†

u
) to

obtain a useful result, when the PCC is involved in network
identification. The introduction of PCCis an importantaspect
both for finding theconnectionto thehighestsmartgrid layer
(the distribution grid) and for someconsiderations that will
come out from the calculation involving also the PCC. To
simplify further calculation the introduction of a hypothesys
about micro-grid structure is now done: the PCC node is
connectedto the remainingelectric networkonly throughone
edge. This is not a too restrictive hypothesissince it only
means thatthere mustbeonly onenodeconnectedto thePCC,
andall the othernodes canbe connectedwithout any kind of
constraint.

B. TheLaplacian matrix relation

In the following part theoretical Σu and a relationship
between one of its pseudoinverse and L̄L, is found. The
latter will be a corroboration that a non-zero entry in Σ†

u

indicates that the 2 nodes involved are neighbours or second
neighbours, asalredy observed.Onehypothesisis assumedin
this section: all the loads must be described by scorrelated
Gaussianrandom variables with the samevariance σ2. This
hypothesisis madeto simplify the mathematical treatment of
this matter, but the resultsof this work arestill valid without
them,aswill behighlightedin thesimulationchapter. Another
non restrictive supposition is made: the PCC is the first one
node, so the column vector 10 has1 in first position and 0
in all the otherp− 1 elements. For spacesake,only the final
results are retrieved here, while all calculus can be found in
Appendix. The theoretical covariance matrix (seeAppendix
A) resultsto be:

Σu = E

[
(u− µu)(u− µu)

T
]
=

σ2

U2
N

XX

Since σ2

U2

N

is only a multiplicative factor, it is ignored in
the following passages. Applying the sameprocessusedto
calculate X which is a pseudoinverseof L, a pseudoinverse
A of XX is found. A hasthe following property:





XXA = I − 11
T

0

A = ĀT

A1 = 0

As A can be computeddeleting in XX the row and column
related with the PCC, the usefulnessof the hypothesisabout
thePCClinkagebecomesnow clear. If thePCCwasconnected
directly with two nodes i and j, it would be impossible to
have in Σ†

u
a non zero entry betweeni and j as it should

be, becausethe information about neighbours involving PCC
hasbeendelated during the calculation. Whenreconstructing
the whole concentration matrix with the method presentedin
Appendix B, the elements belonging to S

−1 arenot changed.
With thehypothesisthata singleedgestartsfrom thePCCthe
possibility of this event disappear.

The following formula givesa relationshipbetween A and
L̄L:

A = L̄L
(
I −X11

T

0 L
)−1

. (11)

As shown in the Appendix C the existenceof the inverseis
assured almostalways;moreover it can be shown that A has
thesameelements of L̄L exceptfor thoseelement in position
(PCC, PCC), (i, i), (i, PCC) , if i is the first neighbour of
the PCC node. This relation assures that A and L̄L have the
samesparsity, so Σ†

u =
U2

N

σ2 A has the samesparsity of L̄L
too. This is an alternative way to demonstratethe presence
in Σ†

u
of non-zero entries only between thoseelements which

in the electric graph are first or second neighbours, because
L̄L hasthe samesparsity of L2 andthenits non-zero entries
indicatefirst andsecond neighbours.L̄L is thought to have the
samesparsityasL2 sinceevery simulation doneasconfirmed
this, and we also expectthis to be a general consideration,
with only some exceptions due to very particular matrixes.
Moreover formula (11) implies a preciserelationshipbetween
A andL, so the estimation of Σ†

u
, which differs from A for a

multiplicative factor, cangive information alsoabout L. This
is an important consideration becauseknowing the Laplacian
matrix means alsohaving information about line impedences,
(1) (however finding an estimator of Σ†

u so good as to have
the right valuesis very difficult).

In conclusion, under the hypothesisconcerning the phase
of the variance of loads,having a good estimator of Σu not
only allows to reconstruct the electrical graph, but alsogives
important information about impedences of the line.

C. Concentrationmatrix estimation

In this sectionwill be illustrated the garrote-typeestimator
theory used to determine an estimatorof the concentration
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matrix usablefor Gaussiangraphical modelling. This method
hasbeenusedbecauseof the sparsity propertyof the concen-
tration matrix, given the fact that the inverseof the sampled
covariance matrix Σ̂−1

u
doesn’t lead to a sparsematrix. This

approachbelong to thepenalized likelihood method that leads
to a sparseand shrinkageestimator of the concentration ma-
trix, which hasto bepositivedefinite,andthusconductsmodel
selection and estimationsimultaneously. The implementation
of this methods is nontrivial becauseof the positive definite
constraint on the concentration matrix, so we were forced to
use the maxdet algorithm developedin convex optimization.
To achieve sparsegraph structure a nonnegative garrote-type
estimator has beenused.Such method is appliable only on
invertible matrix and in our casêΣu is singular. However, as
provenin Appendix B all the information brought by Σ̂u can
be obtainedby its submatrix found deleting the PCCrow and
column. Calling this matrix Σ̃u, this is non singular and the
garrote-type estimatorcan be applied to its inverse,C̃. It’s
known that C̃ is a reliable estimator of C, the theoretical
concentration matrix (not considering the PCCnode).

The shrinkageestimator of Ĉ canbe definedthrough ĉij =
dij c̃ij , wherethe symmetric matrix D is the minimizer of

min
D

{−log|Ĉ|+ tr(ĈΣ̃u)}
subject to

∑
i6=j dij ≤ t dij ≥ 0 (12)

Ĉ > 0

Where t is a tuning parameter, [2]. Equivalently, using the
Lagrangian form, this canbe written as

min
D

{−log|Ĉ|+ tr(ĈΣ̃u) + λ
∑

i6=j

ĉij
c̃ij
}

subject to ĉij
c̃ij
≥ 0

Ĉ > 0

whereλ is another tuning parameter related to t. A furtherstep
of this method is to estimatethe PCC neighbourhood using
the procedure explainedin Appendix B and determine the
estimated concentrationmatrix for the whole networkstarting
from the output of the garrote type estimator.

The main property of this estimator is that for a relatively
large sample it leads up to the consistency as claimed in
theorem 3.

Theorem 3. If we denote with Ĉ the minimizerof (12) with
initial estimatorC̃ , nλ→∞ and

√
nλ→ 0

as n → ∞, then Pr(ĉij = 0) → 1 if cij = 0, and other
elements of Ĉ have the same limiting distribution as the
maximumlikelihood estimatoron the true graph structure.

Theorem 3 indicates that the garrote-type estimatorenjoys
the so-colled oracole property: it selectsthe right graph with
probability tending to oneandat the sametime givesa root-
n consistent estimator of the concentration matrix. Due to
the nonlinearity of the objective function and the positive-
definitness constraint, the problem is non trivial. For its
solutionwe canleadbackour problemto themaxdet problem,
which hasthe following general form:

min
x∈Rm

bTx− log|G(x)|
subject to G(x) > 0 (13)

F (x) ≥ 0

where b ∈ Rm. Moreover, G : Rm → Rl×l andF : Rm →
R

l×l areaffine:

G(x) = G0 + x1G1 + · · ·+ xmGm

F (x) = F0 + x1F1 + · · ·+ xmFm

whereFi andGi aresymmetric matrices.It is not hard to see
that the garrote-type estimator solvesthe problem respect to
theminimizerD, asshowedin Appendix D. Theproblemsolu-
tion canbe determineusingtheMatlab toolbox YALMIP that
can handle optimization and control oriented SDP problems.
Moreover, this softwarecan work with complex-valueddata
andconstraints,necessary in our project.Sofar we focusedon
thecalculationof theminimizer for anyfixed tuningparameter
t. Usually, the optimum choice of this valuedepends directly
from the problem so it will be handle in simulation chapter

IV. NETWROK GRAPH ESTIMATION

A. Rootsof Bipartite Graphs

Now, given the concentration matrix Ĉ, determined from
the garrote algorithm, and taking advantageof the sparsity
relation between this oneandL2, we want to apply algebraic
graph theory at the problem in order to determine a matrix
with the samesparsityas the laplacian matrix L concerning
the networkgraph model.

Definition 4. H is a root of G = (V,E) if thereexistsa positive
integerk such that x and y are adjacent in G if and only if
their distance in H is at most k. If H is a k − th root of G,
thenwe write G = Hk andcall G the k − th power of H.

Ordinarily, it is a difficult taskto determinewhether a given
graph G hasa k − th root or not. Also, the number of k −
th roots could be exponential in the size of the input graph.
However, we focus the analysis on bipartite graph that allow,
under certain hypothesis,to proof theuniquenessof their root.

Definition 5. A bipartite graph (or bigraph) is a graph whose
verticescan be divided into two disjoint setsU and V such
thatevery edge connectsa vertexin U to onein V. Therefore,
U andV areeachindependent sets.

Proposition 6. Let B be a bipartite graphsuchthat B2 = G.
If uv ∈ E(G) and u,v are on different sidesof B, thenuv ∈
E(B).

Moreover, let B = (X,Y,E) be a bipartite graph with X
and Y as the partite sets. Supposewe fix the partite sets
of the bipartite roots of G. Then, from Proposition 6, the
edgeset of the bipartite root is forced. In fact, the unique
bipartite root candidate is B = (X,Y,E) with E(B) =
{uv |uv ∈ E(G), u ∈ X, v ∈ Y } asseenin Figure3.



7

Figure 3. Exampleof the SBN functioning wherethe green edge represent
the selected onewhile the red onedoesn’t belong to the root.

Furthermore,in thegrid modellizationchapterwestatedthat
an electrical graph is always a tree so the proposition below
holds.

Proposition 7. Treesare bipartite

So, if the neighbourhood of a generic nodein L is known,
it’s possibleto find out the unique root of the graph seeing
that the two disjoint partition areunivocally determine. Now,
we proposethe algorithm applied in this project takenfrom
[6] called SBN (Squaresof Bipartite graphs with a specified
Neighbourhood). The hypothesismadeuntil now require to
have knowledgeabout thePCCneighbourhoodandthis infor-
mationcanbe gather easilywhen the installation of the node
is made.The main issuein this root finding procedure is that
the matrix obtainesusing the garrote-type estimator hasonly
asymptotically thesamesparsity of L2; to apply thealgorithm
it is necessary that thegivenmatrix representsthe square of a
bipartite graph. The estimated concentration matrix obtained
by the garrote-typeestimator presentssomefalsepositive and
somefalsenegative,andwith null probability it still represents
thesquare af a tree.Thus,differentsolutions mustbeevaluate
if a non ideal characterization of the concentration matrix is
available.

Algorit hm 1 Root of bipartite graph with specified
neighbourhood
C1 ← v

C2 ← U
V2 ← C1 ∪ C2

k←2
while (Vk is a proper subsetof V(G)) do

Ck+1 ← NG(Ck−1)− Vk

Vk+1 ← Vk ∪ Ck+1

k ← k + 1
end
X ← ⋃

iC2i+1

Y ← ⋃
i C2i

E ← {xy|x ∈ X, y ∈ Y and xy ∈ E(G)}

B. MaximumCorrelation Tree

Since in real applications it’s not possibleto have enough
measures to estimatethe covariance matrix in such a good
way as to have the estimatedconcentration matrix pointing
out only the true zero entries, the previousmethod doesn’t

seemsapplicable. A different kind of algorithm has been
created in order to reconstruct the electrical network having
a concentration matrix which can present false non zero
entries. The electrical network has a tree structure, so the
algorithm tries to find out the most likely tree starting from
the concentration matrix.The algorithm exploit the difference
between absolute valuesin the concentration matrix; indeed,
asit is pointedout in [1], theentry in theconcentration matrix
concerning a second-neighbour is smaller than the entry for
a first neighbour. Taking advantageof this fact, the algorithm
givesbacka matrix whosenonzeroentriesdeterminethe tree
with the strongest edges. Another fundamental fact usedby
the algorithm is that a graph containing p nodes is a tree
if and only if two out of these3 conditions are met: it is
connected, it has p − 1 edges and it has no cycle, [7]. A
description of the algorithm now follows. The algorithm is
given the matrix Ĉ andthe number of the PCCnode. Matrix
Ĉ contains information about the value of the correlation
between nodes.The algorithm startsguessingthat the graph
hasp − 1 edgescorresponding to the p − 1 highest absolute
value elements in Ĉ (excluded the diagonal entries). Then
it exploresthe graph starting from the PCC node; if during
the exploration the algorithm finds a cycle in the graph, it
keepsin memory the nodes which form the same.After the
graph exploration, nodes can be divided in 2 sets,Ve which
contains the nodes reached by the exploration, and Vuwhich
contains the unreached nodes. If Vu isn’t empty, the graph
resultsdisconnected, so it cannot bea tree;thealgorithm tries
thento find a connectionbetween the 2 partitions.Among all
the edges between Vu and Ve the algorithm addsto E the
one with the highest absolute value in Ĉ. If all the entries
in Ĉ are suchthat Ĉ(i, j) = 0 with i ∈ Ve ∧ j ∈ Vu there
is no possibletreeconstructable with the given matrix so the
algorithm stopsgiving an error. If during the exploration the
algorithm has found a cycle, it comparesthe weight of all
edges which composethe cycle and deletefrom E the edge
with the smallestabsolute value. The algorithm repeatsthe
exploration of the graph and the subsequent operationsuntil
it finds a tree or until it realizes that it’s impossibleto bui ld
one. Figures 4-5-6 give an illustration of the functioning of
the algorithm.

Since the algorithm starts with a graph containing the
“heaviest”possibleedges,at every iteration it addsthe edge
with the highest absolute value among thosewhich can be
inserted, andit deletesthesmallestedgebetween thosewhich
form cycles, thus the algorithm gives the best (in terms of
weigth of the edges) treewhich canbe found with the given
matrix Ĉ. From now on, we will report on this algorithm
with the name of MCT (Maximum Correlation Tree). This
algorithm canobviouslycommit somemistakes,dueto thefact
that the givenmatrix is affected by noiseandit’s obtainedby
an estimation procedure, but in the simulation chapter it will
beclearthat aslong asthe number of measuresincreases,the
resultsget better (since the matrix Ĉ is more precise). This
method however can give a quite reliable estimation of the
electrical networkwith a restrained number of measures.

Taking advantageof the fact that second-neighbours have
smaller entries in Ĉ than first-neighbours, one can think to
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Figure 4. First iteration of thealgorithm. The light blue links between nodes
represent the edgesvisited from root PCCduring the exploration,black links
represent the edgesof the graph anddotted linesrepresents thoseedgeswich
can be add to the graph to make the graph connected.

Figure 5. Second iteration of the algorithm

just create a threshold to select the p − 1 edges with the
highest absolute value; as will be showed by the simulation,
this very simple way of reasoning gives good results only
asymptotically, as should be expected. The algorithm which
hasbeencreatedstartswith a thresholdbut guaranteethat the
output matrix representsa tree.

A quite important advantage concerning this algorithm is
that it doesn’t needa precise choice for the threshold of the
garrote-typeestimator. As a matterof fact thealgorithm works
well evenif matrix Ĉ is not really sparse. Thealgorithm needs
Ĉ to have a detectable difference beetween absolute valueof
first andsecond neighbours,but this property is mostly dueto

Figure 6. Final result

thenumber of measuresandthenoiseof thesame;thegarrot-
typeestimator affectsthis differencebut for a very wide range
of the threshold t the algorithm works well.

To improve the algorithm, a relation betweensignsof the
real partsof non-zero elements in Ĉ hasbeenseeked.As Ĉ
is an estimation of Σ†

u
, and the latter equals L̄L exceptfor a

multiplicativepositivefactor, thesignsof L̄L hasbeenstudied.
Considering anon-weightedLaplacianmatrixLu, L̄uLu = L2

u

has always positive elements concerning the diagonal and
second neighbours, while it has negative entries for first
neighbour (the demonstration canbe found in Appendix E.1).
The introduction of weights in the Laplacian matrix makes
this propertydifficult to demonstrate(theproperty looksat the
signsof the real part, sinceweightsin electrical networksare
complex numbers), but in thespecial caseof achain-structured
power network the proof is easyto find.

A chain-structered power network is a very simple type
network, where nodes are arranged in a line and eachone
is connected to the previous node in the line and to the
following one. Conforming to this topology, the weighted
laplacian matrix hasnon zero elements only on the diagonal,
the subdiagonal andthe upperdiagonalpositions. With sucha
laplacian matrix theproof that L̄L hastheelements related to
first neighbours with negative real part, and thoserelated to
second neighbours with positive real part is easyto find (see
Appendix E.2).

Considering morecomplicatednetworkstructures,themath-
ematical treatment of the problem is quite difficult. The
positivity of the real part of diagonal elements, and those
concerning second neighboursis still easy(seeAppendix E.3),
but thenegativity of the realpart of first neighbour is difficult
to prove and maybe it’s not correct. However the sum in a
column of L̄L of the real parts of elements concerning first
neighbours has to be negative (L1 = 0), so there is at least
onefirst neighbour with negative real part. Many simulations
hasbeendone to verify this property: using a quite generic
topology for the electrical network(which will be introduced
later), the values of the impedences of the line have been
taken casually (as realization of gaussianvariables) and the
property about the sign of the real part of first neighbours in
L̄L hasalwaysbeenrespected.Evenif simulationscannot give
certainties for all the possibleelectric networks,the property
seemsto hold.

The property found could give someimprovement to the
algorithm because the matrix obtained by the garrote-type
estimator is an estimationof Σ†

u and so, as statedbefore,
elementsconcerning first neighboursshould havenegativereal
part; in this way the algorithm could exploit also the sign of
the elements and not only the absolute value. However, the
simulations donehave not highlighted any real improvement
in the result. Moreover, when the measures takenfrom PMU
arenoisy, in esteemedΣ†

u somesecondneighbours’ elements
appear to have negative real part too asa consequence of the
noisymisures.Considering this two facts,andtheabsenceof a
propermathematicaldemonstration, this expedient is not used
in the solutionof the problem.
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V. SIMULATION

A. IEEE 37 NodeTestFeeder

For our simulations we mainly considered the samegrid
topology implementedin [3], thatis inspiredfrom thestandard
testbedIEEE 37 node test feeder [8], which is an actual
portion of powerdistributionnetworklocatedin California.We
assumed that load arebalanced,andtherefore all currentsand
voltages canbedescribedin a single-phasephasorial notation.
The topology network IEEE 37 considered is representedin
the figure 7, obtained by renaming the labelsof nodes with
the convenientnotation order usedin the simulation program.

Figure 7. Schematic representation of the IEEE37 testbed.

B. Generalconsiderations

In the implementationof theoverall estimation procedure it
hasbeenoverlooked the effect of the variation in the garrote
estimator tuning parameter. The main problem noticed in
the project was determine an automatic parameter detection
procedure. So far, it seemsthat an easy relation between
raw dataand t can’tbe found. Moreover, application of BIC
method such in [2] didn’t provide a useful estimationof the
parameter. A manual choice of t has beendone in order to
obtain a good output in the garrote estimation although a
pratical verification proventhat there is a low sensitivity of
theMaximum CorrelationTreealgorithm respect to thetuning
parametert even in caseof noisy data.

C. Noisefreesimulation

The plots given in simulations aregraphical representation
of matrixesthat representthesparsityof thesame.If the (i, j)
element of thematrix is zero, in thecorrispondingpositionof
the plot there is a blank circle and is not highlighted, while
if the element is non-zero, the plot presents a coloured spot.
The colours changeswith the absolute value of the element,
going from red (the smallestabsolute value element in the
matrix) to black (the highest absolute value). Moreover a

black circumference is around thoseelements which arefirst-
neighbours,while agreyoneis aroundthosewhicharesecond-
neighbours in the actualnetwork.

The first simulations done concerned ideal misures, with
no noises.Loads at each node are modelled as scorrelated
Gaussianrandom variableswith samevariance σ2.

1) Simulation with 100 measures: With 100 misures the
estimatedconcentration matrix is quite rough, and it’s not
possibleto differentiatewhich entries are truly non zero. As
can be expected, the results obtained with the garrote-type
estimator arenot satisfactory. The choice of the thresholdhas
beendone looking to the relationship betweenthe threshold
t and the number of non-zero entries in the matrix returned
by the garrote-type estimator. As can be seenin Figure 8
for valuesof t between 60 and 80 the numbersof non-zero
elements identified by the estimators seemsto remain stable.

Figure 8. Numberof non-zero entries respect to threshold t on garrote-type
estimator for 100 measurements.

Figure 9. Representation of the concentration matrix output of garrote-type
estimator for 100 measurements wherethe non-zerosentries are represented
by full colored spotscorresponding to the relative weight of the absolute
value.

Usingasthreshold 70, thematrix obtainedfrom thegarrote-
type estimator is not at all precise(Figure 9), there arelots of
falsepositive andsomesecond neighbours arenot identified.
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Thealgorithm SBN is unusablesincethere aretoo manyfalse
positives.

However using MCT, which can be always applied, the
matrix returnedhasnon-zeroelements only in corrispondence
of first-neighbours, so it finds the right graph (Figure 10)

Figure 10. Tree graph reconstructed by MCT algorithm applied to the
concentration matrix resulting from the garrote-type estimatorof Figure 9.

2) Simulation with 50000 measures: With such a high
numbers of measures the estimatedconcentration matrix is
reliable,sowe expectthegarrote-typeto work well; analyzing
the samerelationshipusedbefore to choosethe threshold, 50
seemsto be a nice choice for t (Figure 11).

Figure 11. Number of non-zero entries respect to thresholdt on garrote-type
estimator for 100 measurements.

The matrix returnedby the garrote-typeestimatoris almost
right, but there are still somefalse positvesand somefalse
negatives(involving only second-neighbours) (Figure 12).

Evenif the matrix returnedby the estimator is almostright
SBN doesn’t work correctly, because the matrix given to the
algorithm shouldbe thesquare of a bipartite graph, andthis is
not the case.The MCT algortihm is obviouslyable to return
the matrix representing the right graph.

D. NoisySimulation

In real applicationsPMUs areaffectedby noises.There are
three typesof error in a measure takenby PMU: an error on

Figure 12. Representation of theconcentration matrix output of garrote-type
with a threshold of 50 obtained for 50000 measurements.

the syncrhonization between different PMUs, an error on the
measure of the phasedifference between voltage and current
and an error on the amplitude of the signal. The first one
can supposedto be time invariant and can be modelled as a
Gaussianrandom variable with standard deviation 10−3. The
second one,which is mainly dueto quantization andthe way
in which the phasedifferenceis computed, is time variant,
uncorrelatedbetween any2 misuresandit hasbeensupposed
that97%of themeasuresstandbetween±0.5◦from theactual
value.The latter error, due to quantization andnoise,is time
variant, uncorrelated between any 2 misures and it hasbeen
supposed that 97% of the measures standbetween 0.5% of
the actual value. This valueshave beenfound on Factomart
Catalogue).

Ultimately, in the simulation voltagemeasure at eachnode
hasbeenobtained as

un = ejθsyinejθ(1 + ∆)u

with u the measure computed without error, θsync the
syncrhonization error (generated once for every simulation),
θ the error on the phase difference (generated for every
measure) and ∆ the errore on the amplitude (generated for
every measure).

1) Simulation with 10000 measures: The introduction of
errors is critical. Evenusinga very high numberof measures,
in the estimatedconcentration matrix the differencebetween
absolutevalueof theelements is quitesmall.Theoutput of the
garrotetypedoesn’t presentappreciabledifferencein absolute
valuebetween first-neighbours’element andall theothernon-
zeroone(Figure 13).

MCT doesn’twork well becausethe differencein absolute
value of the elements in the estimatedconcentration matrix
is too small. It returns a matrix which contains lots of false
positive (Figure 14).

To diminish the consequence of noisy measures an elab-
oration of the data has been done. PMUs can work at a
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Figure 13. Simulation output of garrote-type estimator for 10000 measure-
mentsaffected by noise (the threshold chosenis 150).

Figure 14. Tree graph reconstructed by MCT algorithm applied to noisy
simulation give in Figure 13.

sampling frequency of 60 Hz; in a bit more than a second
and a half, it can obtain 100 consecutive measures of the
voltage at a node. With high probability loads’ distribution
doesn’t change in such a short period of time, so we can
assumethat thesemeasures shouldall be equals becausethe
electrical grid could be considered steadystate.Startingfrom
this consideration we averagethesemeasuresobtaining a less
noisy datum. The meanof the datais not a correct estimator
of the actual valueof the measure becausenoisemodify also
the phaseof the measure itself; however, given that the error
on the phaseis small this procedure seemsto work. As a
matter of fact the error introducedby the multiplication for
ejθsyinejθ is quite small; the real part of ejθsyinejθ is almost
one,while the imaginary part is quite small (on the order of
10−3). Considered this, doing the averageon 100 measures
andwriting ejθ

i
syinejθ

i

asδi + jǫi we get:

Figure 15. Treegraph reconstructed by MCT algorithm for 100 averanged
measures (the thresholdchosenfor garrote estimator was150).

(δ1 + jǫ1)(1 + ∆1)u+ . . .+ (δ100 + jǫ100)(1 + ∆100)u

100
=

δ1 + δ2 + . . .+ δ100

100
u+

δ1∆1 + δ2∆2 + . . .+ δ100∆100

100
u+

+j
ǫ1 + ǫ2 + . . .+ ǫ100

100
u+ j

ǫ1∆1 + ǫ2∆2 + . . . + ǫ100∆100

100
u

Given that δi ⋍ 1 the first term is almost equal to u,
while the second onecanbe approximatedasthe sumof 100
realization of a Gaussianrandom variable with zero meanso
it goes to zero. The third and fourth terms goesalmost to
zerobecause ǫi is very small. In the following 2 simulations
each“measure” has actually beencreated doing an average
on 100 consecutive measureswith the sameloads’condition
asexplainedpreviously.

2) Simulation with 100 measures: In this simulation 100
“measures” have been used. The average techniquegive a
very good improvement to the identification procedure. As a
matterof fact theconcentration matrix estimated by thegarrot-
type estimator is far more betterthanthe previous simulation
(even if the numbers of measures is drastically diminished).
The MCT algorithm is able to estimatealmostperfectly the
topology of the electrical graph (Figure 15), obtaining only 3
falsepositive (which aremoreover second neighbours) so the
algorithm appears to be still valid if we manipulate data.In
Figure 16, the identified graph is shown to seewhich edges
arewrong.

3) Simulation with 1000measures: Doingasimulation with
1000“measures”the resultsof thewholealgorithm is perfect.
MCT returns a matrix containing only the actual links of the
electrical graph.We canthusaffirm thatthemanipulationdone
on the datahasgiven good results,and the whole procedure
is still valid even with noisy measures.

4) Other simulations: Different type of simulations has
beendone. Wehavechangedthevaluesof theloads,modelling
them as scorrelatedgaussianrandom variables with different
mean and the results were still good. Also the change in
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Figure 16. Topology identification corresponding tree graph obtain by MCT
algorithm of Figure 15.

valueof the impedencesof the line hasnot really affected the
identification. Concerning noises,it hasbeenobservedthat the
averageexpedient is not good if the phaseerror introduced
by noise is quite higher than the one considered in the
previoussimulations,ascanbeexpected.So the identification
procedure needs the misures to be not too noisy, and this
implies that PMUs must introduce small errors (at least on
the phase).

VI . CONCLUSIONS AND FUTURE DEVELOPMENTS

This work shows the possibility to identify the topology
of an electric graph starting from measures taken by PMUs
devices arrangedin different places of the power grid. This
result hasbeenreached using a two-step-algorithm: first the
concentration matrix hasbeenestemated usinga garrote-type
estimator, and then the samematrix has beenelaborated to
get the most likely treewich describes the electrical network
(using MCT). The obtained results are satisfactory in the
ideal caseof noiselessmeasures, while the introduction of
errors in measures make the procedure unreliable. However
with somereasonabledata-processingtheresultsarestill quite
satisfactory. Neverthlessdata-processingis possibleonly if the
phaseerror is adequatelysmall.In practical casetheprocedure
found works only if PMUs give accuratemeasures.

Future developments can involve the distribution of the
algorithms in order to obtaina distributedalgorithm that runs
on each node. Another important feature to analyze is the
possibility of creating anautomaticprocedure to calculate the
thresholdfor thegarrote-typeestimator. In theenda morepre-
cisestudyon thevaluesof theconcentration matrix couldgive
important information about the network line impedences.
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Appendix

A Theoretical covariance matrix Σu

From the definition of the covariance matrix and using formula (10) concerning the approximated network we have:

Σu = E

[

(u− µu)(u− µu)
T
]

µu = E[u] = ejϕUN +X
E[s]

UN

ejϕ

Obtaing in this way the theoretical coviariance matrix.

Σu =
1

U2
N

XE[(s− µs)(s − µs)
T ]X =

1

U2
N

XV ar(s)X

Remembering that the power needed to the PCC is the opposite of all powers needed by other nodes, s1 = −
∑

i6=1

si,

and si are scorrelated and with the same variance σ, the variance of s has the following structure:

V ar(s) = σ2











n − 1 −1 · · · −1
−1 1 0 0
... 0

. . .
...

−1 0 · · · 1











= σ2D

D =
[

I + (n− 2)101
T

0
+ 10[0 − 1 · · · − 1] + [0 − 1 · · · − 1]T1T

0

]

Since X10 = 0, it’s easy to prove the following equality:

Σu =
σ2

U2
N

XDX =
σ2

U2
N

XX

It can be easily seen that the first row and the first column of XX is composed only by zero (considering that

X10 = 0 and that X = X
T). In this way it can be written as XX =

[

0 0T

0 S

]

, with S a (p− 1)× (p− 1) full-rank

matrix.

B On the calculus of pseudoinverse A

The pseudoinverse A of the matrix XX is determine from the submatrix of

[

|X|2 1

1
T 0

]−1

. Indeed, it can be seen

that the equation below hold and it’s possible to write down the system made by the constraint of the inverse
operator.

[

XX̄ 1

1
T 0

] [

A v
vT c

]

=

[

I 0
0 1

]



















XXA = I − 1vT

XXv + 1c = 0

1
TA = 0

1
T v = 1

⇔



















v = 10

c = 0

XXA = I − 11
T

0

A = ĀT

An interesting result can be found exploiting the structure of XX:

1



[

XX 1

1
T 0

]

=





0 0
T 1

0 S 1

1 1
T 0





Changing the last and second rows and columns, it becomes





0 1 0
T

1 0 1
T

0 1 S





The inverse of this matrix leads to















∆ 1 α1 · · · αp−1

1 0 0 · · · 0
α1 0
...

... S
−1

αp−1 0















, with αj = −

p−1
∑

i=1

S
−1(i, j) and ∆ =

p−1
∑

i,j=1

S
−1(i, j).

Finally, changing back the second and last rows and columns, the inverse of the given matrix is

















∆ α1 · · · αp−1 1
α1 0
... S

−1
...

αp−1

...
1 0 · · · · · · 0

















⇒ A =











∆ α1 · · · αp−1

α1

... S
−1

αp−1











The pseudoinverse matrix of XXcan therefore be found deleting the row and column related with the PCC, inverting
the resulting matrix and reconstructing the elements of the PCC with easy calculations.

C Relationship between A and L̄L

Starting from equation (7), it’s possible to write down:

X̄L̄ = I − 11
T

0
⇒ XX̄L̄L = XL−X11

T

0
L ⇒ XX̄L̄L+X11

T

0
L = I − 11

T

0
(1)

XX̄A = XX̄L̄L+X11
T

0
L (2)

The given relationship is linear but matrix XX̄ is singular, so pseudoinverses has to be used to solve the problem.
The solution of a linear system like CXB = D, where the unknown matrix is X and C and B are singular
matrix, exists if and only if there are two matrices C(1) and B(1) such that CC(1)C = C, BB(1)B = B and
CC(1)DB(1)B = D. C(1) and B(1) are a particular type of pseudoinverses (not unique). If the solution exists, the
matrix which solves the system is

X = A(1)DB(1) + Y −A(1)AY BB(1)

where Y is an arbitrary matrix of appropriate dimension. For further details see [9]. From the properties of A follow
that XX̄AXX̄ = XX̄ , so A is a possible pseudoinverse of XX̄ that can be used in the solution of (2). Starting
from (2), the existence of a solution with A as pseudoinverse can be proved in the following way:

XX̄A(XX̄L̄L+X11
T

0 L) = XX̄AXX̄L̄L+XX̄AX11
T

0 L

From the property of XX̄ and A it’s easy to see that the first term in the sum equals XX̄L̄L. Using (1) and the
property of A to analyze the second therm:

XX̄A−XX̄AXX̄L̄L−XX̄A11T

0
=I − 11

T

0
−XX̄L̄L = X11

T

0
L

so

XX̄AXX̄L̄L+XX̄AX11
T

0 L = XX̄L̄L+X11
T

0 L.

The existence of a solution has thus been proved. The general solution is

2



A = AXX̄L̄L+ AX11
T

0
L+ Y −AXX̄Y

with Y an arbitrary matrix of appropriate dimensions. Among all the possible choices for Y the null matrix is
considered. Analyzing the first term,

AXX̄L̄L = (I − 11
T

0
)L̄L = L̄L

the solution can be written as:

A(I −X11
T

0
L) = L̄L (3)

Without any loss of generality, suppose that the node which is linked with the PCC is labelled as 2. In this way the
first row of L has the following form: [ α −α 0 · · · 0 ], α 6= 0, since the sum of the elements of any row in L
has to be 0. Moreover, remembering that the first row of X is made by zero entries, the sum of all the elements of

the first row is 0. Calling ai =
p
∑

j=1

X(i, j), it’s easy to prove that

(I −X11
T

0 L) =















1 0 0 · · · 0
αa2 1 + αa2 0 · · · 0
αa3 −αa3
...

... Ip−2

αap −αap















This matrix is invertible if and only if 1 + αa2 6= 0, that is α 6= −1/a2. This condition appears to be almost always
met (at least in the simulation done for this work has always been met), so (3) can be solved using the inverse:

A = L̄L(I −X11
T

0 L)
−1

The inverse of the latter matrix has the following form:

(I −X11
T

0 L)
−1 =

















1 0 0 · · · 0
− αa2

1+αa2

1
1+αa2

0 · · · 0
αa3+2α2a3a2

1+αa2

αa3

1+αa2

...
... Ip−2

αap+2α2apa2

1+αa2

αap

1+αap

















Due to the form of the inverse, A turns out to have the same element of L̄L except for the elements in position
(1, 1), (1, 2), (2, 1), (2, 2).

D MaxDet and Nonnegative Garrote Estimator

We want to show the relation between the maxdet problem and the nonnegative Garrote estimator in order to apply
YALMIP functions in the optimization of our semi-definite problem. Now, taking into account equation (12) and
(13), we can see that

G(x) = Ĉ

=







d11c̃11 · · · d1nc̃1n
...

. . .
...

dn1c̃n1 · · · dnnc̃nn







= d11







c̃11 · · · 0
...

. . .
...

0 · · · 0






+ dkh







0 · · · 0
... c̃kh

...
0 · · · 0






+ · · ·+ dnn







0 · · · 0
...

. . .
...

0 · · · c̃nn







and bTx = tr(ĈĀ) =
[

c̃11ā11 c̃12ā12 . . . c̃hkāhk . . . c̃nnānn
]

·
[

d11 d12 . . . dhk . . . dnn
]T

. So, it

has been proven that Ĉ can be written as an affine function of dij , while tr(ĈΣ̃u) can be written as a linear function
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of dij , as needed by MaxDet problem formulation. Concerning the constraint
∑

i6=j dij ≤ t dij ≥ 0 we can write a
similar relation as made for G(x):

F (x) = F0 + d11F11 + d12F12 + · · ·+ d1nF1n + · · ·+ dnnFnn

=













+t 0 . . . 0

0
. . . 0

...
... 0

. . .
...

0 . . . . . . 0













+ d11













0 0 . . . 0

0 1 0
...

... 0
. . .

...
0 . . . . . . 0













+ d12













−1 0 . . . 0

0
. . . 0

...
... 0 1

...
0 . . . . . . 0













+ · · ·

= + d1n













−1 0 . . . 0

0
. . . 0

...
... 0 1

...
0 . . . . . . 0













+ · · ·+ dnn













0 0 . . . 0

0
. . . 0

...
... 0

. . .
...

0 . . . . . . 1













=



















−
∑

i6=j dij + t

+d11
+d12

+d13
. . .

+dnn



















where Fij with i 6= j is the (n2+1)× (n2+1) matrix with -1 in position (1,1) and 1 in position (n(i−1)+j+1, n(i−
1)+ j +1) , whereas if i = j the matrix Fij is made by the element 1 in position (n(i− 1) + j +1, n(i− 1) + j +1).
Moreover, it’s easy to show that the constraint F (x) ≥ 0 gives:

F (x) ≥ 0 ⇐⇒ zTF (x)z ≥ 0 ∀z

zTF (x)z = z21(−d12 − · · · − d1n − · · · − dn,n−1 + t) + z22d11 + · · ·+ z2Ndnn

if zi = 0 for all i 6= 1 and z1 = 1, then

−
∑

i6=j

dij + t ≥ 0

If zi = 0 for all i 6= 2 and z2 = 1, then

d11 ≥ 0

and so forth. Thus, the semi definite constraint F (x) ≥ 0 is equivalent to
∑

i6=j dij ≤ t dij ≥ 0

E Numerical property of Laplacian element

E.1 Unweighted Laplacian

Theorem 1. First neighbours in an unweighted Laplacian Lu are negative, while second neighbours and the elements

on the diagonal are positive.

Proof. From the property of the Laplacian matrix the following statements are easy to prove:

Lu(i, i) = −
∑

k 6=i

Lu(i, k)

Lu(i, j) < 0 ⇐⇒ (i, j) ∈ G

Considering now the element (i, j), i 6= j L2
u and supposing that Lu(i, j) < 0, that is nodes i, j are firt neighbour:

4



L2
u(i, j) =

n
∑

k=1

Lu(i, k)Lu(k, j) =
∑

k 6=i,j

Lu(i, k)Lu(k, j) + Lu(i, i)Lu(i, j) + Lu(i, j)Lu(j, j)

=
∑

k 6=i,j

Lu(i, k)Lu(k, j)− Lu(i, j)
∑

k 6=i

Lu(i, k)− Lu(i, j)
∑

k 6=j

Lu(k, j)

Writing the summations explicitly:

L2
u(i, j) = Lu(i, 1)Lu(1, j) + Lu(i, 2)Lu(2, j) + . . .+ Lu(i, n)Lu(n, j) +

+ Lu(i, j) [−Lu(i, 1)− Lu(i, 2)− . . .− Lu(i, j)− . . .− Lu(i, n)] +

+ Lu(i, j) [−Lu(j, 1)− Lu(j, 2)− . . .− Lu(i, j)− . . .− Lu(j, n)]

Writing first terms as Lu(i, k)Lu(k, j) =
1
2Lu(i, k)Lu(k, j) +

1
2Lu(k, 1)Lu(k, j):

L2
u(i, j) = Lu(i, 1)

[

1

2
Lu(1, j)− Lu(i, j)

]

+ Lu(1, j)

[

1

2
Lu(i, 1)− Lu(i, j)

]

+ Lu(i, 2)

[

1

2
Lu(2, j)− Lu(i, j)

]

+ Lu(2, j)

[

1

2
Lu(2, j)− Lu(i, j)

]

+ . . .+

+ Lu(i, n)

[

1

2
Lu(n, j)− Lu(i, j)

]

+ Lu(n, j)

[

1

2
Lu(n, j)− Lu(i, j)

]

− 2Lu(i, j)
2

Since in Lu all the elements outside the diagonal are either 0 or −1, and L(i, j) = −1, all the terms between brackets
are positive ( 1

2
L(k, h) − L(i, j) > 0 ). Finally the coefficient of each term in brackets is negative, so L2

u(i, j) is
negative. Concerning terms representing second neighbours in L2

u, they are positive because they can be written
as:

L2
u(i, j) =

n
∑

k=1

Lu(i, k)Lu(k, j) =
∑

k 6=i,j

Lu(i, k)Lu(k, j) + Lu(i, i)Lu(i, j) + Lu(i, j)Lu(j, j)

and Lu(i, j) = 0 since i and j are second negihbours; so

L2
u(i, j) =

n
∑

k=1

Lu(i, k)Lu(k, j) =
∑

k 6=i,j

Lu(i, k)Lu(k, j)

which is a summation of positive (or null) terms. The diagonal elements in L2
u are positive because they can be

written as norms.

E.2 Weighted Laplacian in Chain network structure

In a chain-structured electric network sign property is easy to verify even in the weighted Laplacian

Figure 1: Infinite chain-structured graph

The weighted Laplacian matrix associated to an electric network as the one in Figure 1 is like

L =





















. . . −ǫ 0
...

... . .
.

−ǫ α+ ǫ −α 0 0 · · ·
0 −α α+ β −β 0 · · ·
· · · 0 −β β + γ −γ 0
· · · 0 0 −γ γ + δ −δ

. .
. ...

... 0 −δ
. . .




















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with α = aα + jbα, aα > 0, bα < 0 (these considerations are valid for all the non-zero elements in the matrix).
Calling F = L̄L, the demonstration looks at just one element wich represent a first neighbour in F, for example the
element in position (4, 3) :

F (4, 3) = −β̄(α+ β)− (β̄ + γ̄)β = −(aβ − jbβ)(aα + jbα + aβ + jbβ)− (aβ − jbβ + aγ − jbγ)(aβ + jbβ)

Considering only the real part of F (4, 3):

−aβaα − 2a2β − bβbα − 2b2β − aγaβ − bγbβ < 0

The real part is then negative (the same proof holds for all the first neighbours in F ). The elements corresponding
to second neighbours in F are in the second subidiagonal and in the second upperdiagonal (this is a consequence of
the form of the Laplacian). To study the sign of the real part of second neighbours the element in position (5,3) is
analyzed:

F (5, 3) = (−γ̄)(−β) = (aγ − jbγ)(aβ + jbβ)

The real part of F (5, 3) is then:

aγaβ + bγbβ > 0

as stated.

E.3 Laplacian of generic Networks

In a generic electrical network, L̄L has positive real part elements on the diagonal and for the entries concerning
second neighbours. Calling F = L̄L and cosidering that L = LT the diagonal elements are real and positive:

F (i, i) =

p
∑

k=1

L̄(i, k)L(k, i) =

p
∑

k=1

L̄(k, i)L(k, i) > 0.

Considering the entry in F for a second neighbour, for example F (i, j) with L(i, j) = 0:

F (i, j) =

p
∑

k=1

L̄(i, k)L(k, j) =
∑

k 6=i,j

L̄(i, k)L(k, j) + L̄(i, i)L(i, j) + L̄(i, j)L(j, j) =
∑

k 6=i,j

L̄(i, k)L(k, j)

Considering the real part of a generic term of the summation, with L(i, k) = a + jb , a ≤ 0, b ≥ 0, L(k, j) =
c+ jd , c ≤ 0, d ≥ 0

L̄(i, k)L(k, j) = ac+ bd ≥ 0

The real part of the summation is therefore positive.

F Signs of the weighted Laplacian

In this Appendix the dimonstration concernig sign in weighted Laplacian matrix is proven. The property is as
follow: considering L the real part of its non zero elements out of the diagonal is positive, and the imaginary part
of the same is negative. Considering the impedence of any edge of the electric network, this has real and imaginary
part which are positive (the line is a passive element). Due to this fact its inverse has positive real part and negative
imaginary part. As a matter of fact

ze = ae + jbe, ae, be > 0 ⇒
1

ze
=

1

ae + jbe
=

ae − jbe
a2e + b2e

.

A generic element of the weighted Laplacian can be computed as

L(i, j) =

p−1
∑

k=1

A(k, i)
1

zk
A(k, j)
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The incidence matrix A is such that only two elements per row are different from zero, a 1 and a -1. Exploiting
this fact, each term of the summation can be zero or − 1

zk
and this proves the statement. This implies also that the

elements on the diagonal has positive real part and negative imaginary one (since the sum of the elements in a row
is 0).
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