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Chapter 1

Introduction

Through internet diffusion and the development of the miniaturisation of electronic components,

it has been possible to interconnect a large number of tiny sensors with wireless connections.

Therefore wireless sensors networks (WSN) have become more and more widespread. They permit

to receive or monitor data which would be hardly managed using wired connections, even though

communications bring on a considerable energy consumption. This technology is widely exploited

in many applications: industrial machines control, environmental monitoring, agriculture, event

detection, military applications.

For all these uses it is important to maintain all the devices of the network temporally synchro-

nized, so that each node of the system has the same time reference of each other node. For example,

if a network provides data from a plant, it is fundamental that these data refer to the same instant

of time, even more this synchronism is essential in event detection, or mechanical systems.

(a) (b)

Figure 1.1: WSN application examples.
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1.1 Background: problems and existing solutions

As already described, the use of WSN leads to face mainly two problems: synchronization and

energy conservation. In the next paragraphs we will describe these problems and the existing

solutions.

Figure 1.2: Some WSN devices.

1.1.1 Synchronization

The first problem to be solved, dealing with WSNs, is the synchronization of nodes internal clocks

despite both the unknown time-varying frequency of each clock oscillator and the unknown topology

of the network.

In literature various synchronization protocols have been proposed. In this work we have decided

to consider the ATS and PI ones. As explained in the next chapter, these protocols are founded on

a distributed approach characterized by the fact that each node runs the same algorithm and that

the decisions made by the nodes are only taken on the basis of local information. For these reasons

and according to the characteristics mentioned above, each node is a low power device integrating

all the functions required to accomplish both the interconnection and its particular task: sensing,

computing, wireless communication, storage ability. In addition, as these devices are not connected

to electricity supply, the nodes of a WSN are battery powered. This characteristic leads us to the

second central issue.

1.1.2 Energy conservation

As explained nodes are battery supplied. This permits a flexible installation and use (strong

point of WSNs) such as the inaccessible collocation of the sensors or their possible hostile working

environment or their huge number. Due to these factors, in many cases these devices are impossible

or too expensive to get to, hence the impossibility for these devices of being either recharged or

replaced makes the energy consumption a central issue. It is remarkable that in a typical sensor node

the energy required to transmit a bit of information is approximately the same required to execute

a thousand operations [1], so an efficient strategy to guarantee a massive energy conservation is

to power-off the nodes (or wireless transceiver) when communication is not needed. In order to

reach this goal it is necessary a sleep/wake schedule and, as a consequence, this requires the nodes

synchronization. Some techniques are the following:

� fixed parameter strategy. In order to schedule the duty-cycle (as ratio between wakeup and
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sleep periods) and maintain the possibility of communication, fixed parameters are used. Even

though this strategy requires a simple method for synchronization, it needs the knowledge of

the network topology, therefore it does not comply with a distributed approach. In addition,

it is difficult to obtain an optimal performance because once the ratio between wakeup and

sleep time has been fixed, it can’t be modified;

� S-MAC (Sensor MAC) is implemented at the MAC layer. It defines adaptative duty-cycles

coordinating the switching on and off through the use of sync data packets;

� T-MAC (Time-out MAC) defines a time-out period (a node goes to sleep after a period

without events);

� other techniques use hierarchical network structures. For example in [1] the information is

sent from the children to the parents during variable talk intervals (see fig. 1.3).

Figure 1.3: Communication periods representation in hierarchical structure.

1.2 Objectives

The aim of our work is to suggest different strategies to regulate the cycle-time in which a node

can receive (ad not for example shifting them in the time, as in [1]), evaluating, on one side how

the introduction of switching-off periods influences node’s synchronization, and on the other side

how much synchronization can favour sleeping periods.

The heart of the matter is quite evident: as mentioned before, in order to reduce the time lapse

in which the nodes can communicate, it is important that all the nodes are sufficiently synchronized.

However, to guarantee a robust synchronization, nodes have to be able to communicate, so they

need a broad enough time window. Therefore the width of the communication periods and the

synchronization of the nodes are contrasting aspects of the problem and they have to be managed

in the best way from the energy consumption point of view. In any case it is fundamental that as

time goes by, no nodes are excluded from future communications.For this reason in all the windows

proposed a neighbours check is implemented: the window widens if no communications are recorded.

We have developed essentially two different strategies. Error based window and error proportional

window consider the local synchronization error to reduce or enlarge the duration of switching on.

The other two windows (received neighbours window and previous received neighbours window)

instead work so that a node considers just the fact that it has received from all its neighbours or

not.

The observations and the conclusions have been drawn through MATLAB simulations. In order
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to simulate the behaviour of a WSN in the most realistic way as possible, we implemented the

network communication taking into account the following aspects:

� more than one node can communicate at any instant;

� possible collisions during communications;

� transmission noise;

� including a new node in a synchronized WSN.

To estimate the performance of each strategy we have decided to evaluate the variance of the

time estimates and the saving factor. The first one is indicative of the accuracy of the synchronism

and the second one is an energy conservation index which depends on the ratio between the awake

time of the nodes and the total time. In chapter 5 we will describe how these indexes vary depending

both on the window and on the different conditions of simulations (communication noise, collisions,

synchronization algorithm). In particular we will show that in most cases the best performance lies

in a compromise between precision of synchronization and energy conservation.

1.3 Contents of the chapters

The structure of the work is divided into six chapters:

Chapter 2: it describes the communication protocol and the synchronization algorithms used in

the simulations giving a brief mathematical background

Chapter 3: it explains how the sizing policies of the communication periods work. We propose

here three different adaptative window algorithms;

Chapter 4: it illustrates the MATLAB implementation ideas to describe the network, the adapta-

tive windows and the behaviour of the whole system

Chapter 5: in this chapter we show the simulations carried out, and we describe the different

situations chosen to test the implemented algorithms

Chapter 6: we describe the conclusions of our work, referring to the simulation tests and hinting

at the possible developments



Chapter 2

Consensus synchronization

As explained in the introduction, the aim of this work is to synchronize a net of digital clocks, so

that they will all have the same value after a certain period. In this perspective, a synchronisation

problem can be considered as a consensus problem, which allows us to use all the techniques

developed so far in the latter field. For a detailed discussion on this subject, we refer to the existing

reference. This chapter is rather conceived to illustrate some mathematical tools used later in this

report.

Let us consider a set of agents, able to communicate to each other, characterised by some

variables associated to the agents themselves. The aim of consensus is to guarantee that these

variables converge to the same value.

At the basis of the consensus theory, we find the theorem of Perron Frobenius, which states

that if a matrix A of Rnxn is strictly positive, then a vector v and an eigenvalue λ0, both positive,

exist so that:

1. v is an eigenvector of A

2. λ0 = 1 and the other eigenvalues of A are inside the circle of unitary radius.

This means that there is a dominant eigenvalue, situated on the circle of unitary radius.

It can be shown that stochastic matrices satisfy the conditions of the previous theorem. Moreover

if a stochastic matrix P is the characteristic matrix of a discrete system such as:

x(k + 1) = Px(k) (2.1)

all the components of x(k) converge to a common value which is a linear combination of the initial

conditions for k approaching to infinite. In other words:

lim
k→∞

x(k) = α ∗ 11 (2.2)

where 11 is the vector [11 . . . 1]T and α a linear combination of the initial conditions.

If, instead of a stochastic matrix, we use a bistochastic matrix the value to which x(k) converges

is the mean of the initial conditions.

9



10 CHAPTER 2. CONSENSUS SYNCHRONIZATION

A net of devices can always be represented by a graph, whose nodes contain the information

which needs to be shared in order to reach consensus. From the graphs theory we know that it is

always possible to associate to each graph a matrix; in particular some methods can be used to

obtain a stochastic or a bistochastic matrix associated to the graph. Therefore both tools from

graph theory and consensus theory can be applied to describe and solve the synchronisation problem

we are interested in.

In the next sections we will briefly present the communications protocol and the consensus

algorithms that we have used, focussing mainly into their asynchronous implementation.

2.1 Communication protocol

Since our aim is to analyse a network of devices communicating their status to each other, it is

important to develop fitting communication protocols. Many examples can be found in literature. For

this work, we have chosen to use the asynchronous broadcast protocol, where the term asynchronous

means that the nodes communicate in instants of time, which are not pre-established. According to

this protocol, at every instant an active node communicates its status to his neighbours and the

active neighbours update themselves, with reference to the prefixed weight q. The transmitting

node maintains its value, since a node can either transmit or receive and update; obviously if a

node does not receive any information, it maintains its previous status, without updating.

The broadcast matrix Pbroadcast associated to the graph describing the network determines the

evolution of the system. Let’s call i the current transmitting node, q ∈ (0, 1] the weight, ek the

vector of the canonical basis with 1 on the k-th position and Niout the set of neighbours of i which

can receive from i. The broadcast matrix Pbroadcast i can be written as:

Pbroadcast i = Pi = I + q
∑

j∈Niout

ej(ei − ej)T (2.3)

Note that every time there is a communication, a new broadcast matrix is built to update the

system, and this means that these matrices are depending both on time and on the node that is

communicating its status to its neighbours.

2.1.1 A Broadcast communication example

An example can clarify what has been said so far. Consider the following graph (see fig. 2.1):

 

Since our aim is to analyze a network of devices communicating their status to each other, it is 

important to develop fitting communication protocols. Many examples can be found in literature. 

For this work, we choose to use the asynchronous broadcast protocol, where the term asynchronous 

means that the nodes communicate in instants of time, which are not pre-established. According to 

this protocol, at every instant an active node communicates its status to his neighbours and the 

active neighbours update themselves, with refer to the prefixed weight q. The transmitting node 

maintains its value, since a node can either transmit or receive and update; obviously if a node does 

not receive any information, it maintains its previous status, without updating. 

 The broadcast matrix Pbroadcast associated to the graph describing the network determines the 

evolution of the system. Let’s call i is the current transmitting node, q belonging(qui ci va ail 

simbolo di appartenenza ma non ce l’ho sulla tastiera..) to (0,1] is the weight, ek is the vector of the 

canonical basis with 1 on the k-th position and Niout is the set of neighbours of i which can receive 

from i. The broadcast matrix Pbroadcast can be written as: 

∑
∈

−+=
Nioutj

T
jijibroadcast eeeqIP )(,  

Note that every time there is a communication, a new broadcast matrix is built to update the system, 

and this means that these matrices are depending both on time and in the node that is 

communicating its status to its neighbours. 

 

An example can clarify what said so far.  Consider the following graph: 

 

Suppose that the node 1 transmits its value to its neighbours and that the updating equation is: 

x(k+1) = P(k) x(k) 

The broadcast matrix is: 

1 

2 

3 

4 

Figure 2.1: Example graph.
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Suppose that the node 1 transmits its value to its neighbours and that the updating equation is

eq. 2.1. In this way the broadcast matrix would be:

P1 =


1 0 0 0

q 1− q 0 0

q 0 1− q 0

0 0 0 1

 (2.4)

If node 2 transmits after node 1 has transmitted, the broadcast matrix becomes:

P2 =


1− q q 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 (2.5)

2.2 ATS

Average Time Sink (ATS) is a fully distributed, consensus based protocol, for the synchronization of

wireless sensors, which guarantees both skew and offset compensation [4]. Since it is fully distributed,

all nodes follow the same algorithm and there are no special nodes, such as roots, in the graph

which is associated to the sensors network.

In our work this algorithm has been implemented in its asynchronous form using the Broadcast

protocol for communications purposes. We have chosen this implementation, as in our analysis it

would be unrealistic to suppose that all the agents communicate with all the other agents at the

same time.

Since all the protocol is described in Schenato-Gamba paper [4], we will just summarize the

results. Every node in the graph can be modelled by the following expression:

τi = αit+ βi (2.6)

where τi is the local clock, αi the local skew and βi the local offset. The aim of the algorithm is to

synchronize all the clocks to the same virtual clock

τv = αvt+ βv (2.7)

letting the nodes share the estimation of their own clock:

τ̂i = α̂it+ ôi (2.8)

Since every node has a different skew and offset estimation, to achieve consensus all clocks have

to compensate them, in order to reach a common value for both. For the offset estimation, the

equation is given by:

ôi(t+ 1) = ôi(t) + (1− ρo)(τ̂j − τ̂i) (2.9)

This is the update equation that is used in the algorithm to which we refer to as ATS O, which

provides only the offset compensation. The updating equation for the skew estimation is:

α̂i(t+ 1) = ρvα̂i(t) + (1− ρv)ηijα̂j(t) (2.10)
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where ηij is calculated as:

ηij(t+ 1) = ρηηij(t) + (1− ρη)
τnewj − τoldj
τnewij − τoldij

(2.11)

and represent the ratio between αi and αj , in fact limt→∞ ηij(t) = αi

αj
.

It can be demonstrated that, for these expressions of skew and offset estimations, the time

estimations of the nodes of the graph approach the same value for all the clocks of the network,

that is:

lim
t→∞

τ̂i = τ̂i, ∀(i, j) (2.12)

It can be observed that the weights ρo, ρv and ρη have a meaning similar to the weight q of the

Broadcast matrix. For the asynchronous implementation in a WSN with N nodes we can imagine

ρo, ρv and ρη as time-varying N × 1 vectors whose cells can take only two values: 1 or 0 < ρ < 1.

2.2.1 ATS and ATS O comparison

In this paragraph we show the performance of the ATS and of the ATS O, which, as said before,

changes only the offset. In the following simulations the error variance is calculated without the

influence of the noise and considering α constant for every node. Figure 2.2 shows the difference in

terms of performance between both the asynchronous implementations. Moreover in this figure can

be noticed that the different trends of the variance depend on the chosen communication period.
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Figure 2.2: Comparison between ATS and Only Offset changing the communication period

2.3 PI

The PI Consensus algorithm is a distributed clock synchronization protocol for networks of clocks,

which have different initial offsets and internal clock speeds. The algorithm is based on an PI-like

consensus protocol where the proportional (P) part compensates the different clock speeds, while

the integral part (I) eliminates the different clock offsets. This synchronization protocol has been
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presented in its synchronous implementation in the paper “A PI Consensus Controller for Networked

Clocks Synchronization”[3], where, if the communication graph is known, convergence is guaranteed

and optimal design is studied, using optimisation tools.

However in our case, as explained before, the synchronous implementation is unrealistic, there-

fore we have based our implementation on the paper “A PI consensus controller with gossip

communication for clock synchronization in wireless sensors networks”[2] , with the difference that

our implementation is based on Broadcast communication.

If the nodes can not communicate, then the local time xi(t) can be modelled as a discrete time

integrator

xi(t+ 1) = xi(t) + di (2.13)

Clearly, different initial offset, xi(0), and different speeds di cause synchronization errors. To solve

the problem in the article[3] they assume that it is possible to control each clock by a local input

ui(t) as follows

xi(t+ 1) = xi(t) + di + ui (2.14)

where to make the algorithm distributed, the control action ui is only allowed to use local information.

Moreover each node has in memory, beside the estimate xi(t), another variable denoted by wi(t)

that plays an important role in compensating the different speeds di.

In our case we suppose that for i ∈ 1, . . . , N and for k ∈ N , the information xi(T (k)) is sent by

node i to all its active neighbours, which are selected within the set Ni taking into account which

ones are turned on1.

Now, without loss of generality, let’s focus on the communication between the node i and the

node j, where the node i transmits only to one of its neighbours that is j. Therefore at time T (k)2

the node i transmits the information xi(T (k)) to node j.

Then the updating equations for x and w are

xj(T (k + 1)) =
1

2
(xj(T (k)) + xi(T (k))) + wj(T (k)) + dj(T (k)) (2.15)

xh(T (k + 1)) = xh(T (k)) + wh(T (k)) + dh(T (k)), ∀h 6= i (2.16)

and

wj(T (k + 1)) =
α

2
(−xj(T (k)) + xi(T (k))) + wj(T (k)) (2.17)

wh(T (k + 1)) = wh(T (k)), ∀h 6= i (2.18)

Defining the vector xj =

[
xj(T (k + 1))

wj(T (k + 1))

]
=

[
x′j

x′′j

]
to identify the control action uj these

equations can be expressed as

xj(T (k + 1)) =

[
1 ∆αj(T (k))

0 1

]
[xj(T (k))− uj(T (k))] (2.19)

1It depends from the communication window.
2This representation of the time is used to indicate that we use discrete time with granularity T (k)− T (k − 1).

Anyway this time T(k) is the general time that is unknown to the nodes. For example node i at the time T (k) has a

time estimation τ̂i(k)
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where uj(T (k)) has been previously calculated as

uj(T (k)) =

[
u′j(T (k))

u′′j (T (k))

]
=

1

2

[
1

αPI

]
(x′i(T (k))− x′j(T (k))) (2.20)



Chapter 3

Adaptative window

As explained before, our goal is to reduce power consumption by limiting the width of the receiving

window of every agent. In this chapter we are going to describe the three algorithms we have

implemented in order to obtain a sort of adaptative window width.

Before the algorithms some variables, to size and to represent the receiving window, are presented.

3.1 Variables used for the windows algorithms

3.1.1 Introduced variables

In order to represent the receiving window size and to evaluate the saved power some variables are

introduced:

� T : the communication period of each node.

� δ: used to represent the window semi-width while the window center is a multiple of the

synchronisation period T (see fig. 3.1).

� δmax: δ maximum value calculated as δmax = T/2.

� δmin: δ minimum value that depends from the time quantization.

� SF: it represents the power saving factor due to the use of the receiving windows. It is

calculated as (1− (Agents active time
(Number of agents∗time) ) ∗ 100.

Figure 3.1: Receiving window representation.

15
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In order to control the memory width with the adaptive windows, other variables are introduced:

� neighbours: information inserted by the user that represents, for each node, how many

neighbours it has1.

� ID: It is a number that is used to uniquely identify each node in the WSN. In our case we

use the node number, but the idea is to use a sort of ID that is unique for each agent2. This

data is sent to the neighbours within the estimated time every time that a node transmits.

� NRIW(Neighbours received in last window): At every instant, each active node evaluates

how many different neighbours it has received in the current window. This information could

be obtained by the node considering how many different ID it has received in the current

window.

� NRIW old: the NRIW value referred to the previous receiving window.

� ê (Estimated synchronization error): This is not the real consensus error just because each

agent can not know this information that requires the knowledge of the τ̂ of each agent. It is

intended to “estimate” the consensus error just using local data that every agent has. It is

calculated by the receiving node as êj(t) = τ̂i(t) − τ̂i(t) , where i is the transmitting node

while j is the receiving one3.

� êmax: it is defined as the maximum ê received in the last window.

3.1.2 Nodes memory

To control the width of the receiving window, each node needs to know some information about

the last communications. Therefore we have decided to equip each node with a certain amount of

memory to save various data along the run time.

Obviously this memory is used in our implementation like a normal variable, as implemented in

section 4.3. The stored variables are, for each node and for each instant of time:

1. estimated synchronization error ê

2. ID of the received node

3. a label that is set to 1 only if the communication, containing ê and ID, has been performed

in the current receiving window

3.2 Currently Received Neighbours Window (CRNW)

This window is based on the simple idea that, in an ideal network without nodes failures and

without communication collisions, the WSN will continue working as if there is not a communication

window, if every node receives all its neighbours in every communication window.

The receiving window starts δmin ticks4 before the communication time and it is closed only if

1The issues related to the use of this information about the real neighbours will be commented in the next

paragraphs.
2Eventually node ID can be randomly generated by the same node.
3It is by using the MAC-layer [5] time-stamping, available in many sensor network devices, that the reading of

the local clock at the receiving node can be assumed instantaneous
4One tick is the minimum time between one execution of the algorithm in the node and the next one.
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all the neighbours are received in the window. An example of this window algorithm working in an

ideal case is showed in fig. 3.2.
 

Time 

Node 1 

Node 2 

Node 3 

δmin 

Figure 3.2: Currently Received Neighbours Window algorithm example.

As it is clear, with this window every node needs to know from the beginning how many

neighbours it has. Moreover, the window is not centered with respect to the communication time

and this fact can cause the loss of a lot of communications, which occur just before the instant

T (k)− δmin. To solve this problem another algorithm to size the window is proposed.

3.3 Previously Received Neighbours Window (PRNW)

Another way of taking into account the communications received from the neighbours is to consider

the number of neighbours received in the previous window and change the window width according

to the fact that the node has received all its neighbours or not. In this way the receiving window is

opened δ ticks before the communication moment, leading to a centered receiving windows which

brings a faster and more robust synchronization (see fig. 3.3). Window width is sized according

this algorithm:

� if in the last window no neighbour has been received next window width is set to δmax.

� else window width is sized in this way5:

– if NRIW oldj(t) ≥ neighboursj δ(j) = δ(j)− δmin6

– if NRIW oldj(t) < neighboursj δ(j) = δ(j) + δmin

� if δ(j) > δmax δ(j) = δmax

� if δ(j) < δmin δ(j) = δmin

As it is evident with this window every node needs to know from the beginning the number

of its neighbours. Moreover, the algorithm is not so robust because in real networks nodes and

communication failures may occur, causing a node not to receive one or more neighbours for a

considerable amount of time.

5The algorithm is described for the node j.
6As this operation is performed for every instant that the node is active the decreasing action is proportional to

the current window size.



18 CHAPTER 3. ADAPTATIVE WINDOW
 

Time 

Node 1 

Node 2 

Node 3 

Figure 3.3: Previously Received Neighbours Window algorithm example.

Possible evolutions of this kind of window can be implemented in order to let each node estimate

its neighbours. So, each node has to make this estimation when it is turned on and during the

running time when it stops receiving a neighbour for more than a certain number of periods. The

estimation could be done fully opening the window for a certain number of periods and considering

as actual neighbours only the neighbours received in these periods. These considerations would

make the adaptive window algorithm more robust, but because of the nature of the problems they

pretend to solve, their advantages are difficult to be analysed with virtual simulations.

3.4 Error Based Window (EBW)

This window is based directly on the evaluation of what has been called the estimated synchronisation

error ê. We desire that this error decreases till it reaches an acceptable value, called êaccepted.

In every instant the maximum between the errors received in the receiving window, named êmax,

is evaluated and if the node is active next window width is changed in this way:

� if the node estimated time τ̂j ≤ 3T next window width is set to δmax.

� if in the previous window no neighbour has been received next window width is set to

δ(t) = 2 δ(t− 1).

� else when a new neighbour is received, window width is sized in this way:

– if êmax(t) ≤ êmax(t − 1) or êmax(t) ≤ êaccepted next window width is set as δ(t) =

δ(t− 1)− δ(t− 1)/5.

– if êmax(t) > êmax(t − 1) or êmax(t) > êaccepted next window width is set as δ(t) =

δ(t− 1) + δ(t− 1)/5.

� if δ(j) > δmax δ(j) = δmax

� if δ(j) < δmin δ(j) = δmin

The algorithm is performed by each node independently.

This algorithm seems to be more robust to node failures than the previous one. Moreover it

does not need the information about the number of neighbours7. Anyway, the choice of using only

7This algorithm takes only care of receiving at least from one neighbours in every window and it has at least a

neighbour because the graph has to be connected.
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the data received in the last window could be too less conservative and in a WSN, where a large

number of collisions occur, it may be preferred to use all the data that the memory described in

section 3.1.2 can provide. This can be easily verified calculating êmax using all the ê in memory

and not only the ê referred to the current window.

3.5 Error Proportional Window (EPW)

This window algorithm is another way of using the information that nodes have about the estimated

synchronisation error ê.

To receive a neighbour every time it communicates, the receiving window needs a semi-width

large at least as the real synchronization error between the two nodes8. Therefore we have decided

to change the semi-width δ proportionally to the estimated synchronisation error ê. The algorithm

can be described in few steps:

� if the node estimated time τ̂j ≤ 3T next window width is set to δmax.

� if in the previous window no neighbour has been received next window width is set to

δ(t) = 2 δ(t− 1).

� else window width is sized for the node j as: δ(j) = K êmax(j)9.

� if δ(j) > δmax δ(j) = δmax

� if δ(j) < δmin δ(j) = δmin

8Not considering non-idealities such as communication noise and collisions.
9K is the estimated synchronisation error proportional coefficient



Chapter 4

Matlab implementation

The code we have implemented in Matlab consists in a main file which calls sequentially various

functions inside a For loop. Each iteration of this loop represents the minimum quantum of time

in which every transmitting node communicates its estimated time and ID, while we evaluate

communication collisions.

To decide how data flow in the WSN, we use a broadcast matrix for every node that is in its

transmitting instant. These broadcast matrices are created considering not only the adjacency

matrix of the graph, but also which nodes are active.

So, the synchronization algorithms use the broadcast matrices to decide which node can update

its τ̂ using the τ̂ transmitted from another node.

4.1 Program flow

Outside the loop, the program performs some initializations. The graph and its adjacency matrix

are randomly generated, as well as the coefficients α end β (see eq. (2.6)) that are used for the

clock model.

The operations that the program performs during a loop iteration are:

1. The α coefficient for every agent is changed according to the variable value vel, in order to

execute a random walk that simulates clocks, varying their period along the run-time.

2. The noise that simulates quantization and errors during the data transmission is generated

according to the variable σ n.

3. The chosen synchronisation algorithm is performed using the estimated time of the previous

instant τ̂(t − 1). It is important to underline that the various algorithms use the τ̂(t − 1)

only of the nodes that have been received in the previous instant. As described in 4.2 it is

performed evaluating the various broadcast matrices referred to the instant t− 1.

4. The chosen adaptive window algorithm changes the semi-width of the receiving windows δ.

5. The function called agents communication control, depending from the current τ̂ , the

chosen communication period T and the window semi-width δ, changes the adjacency matrix

20
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in order to simulate that a node is inside or outside its communication window. Moreover

this function detects which nodes are in their communication moment and calculates NRIW.

6. Depending on the fact if we decide to perform a simulation considering communications

collision or not, the functions real broadcast or ideal broadcast are called.1 These functions

create a broadcast matrix for every transmitting node, taking into account the modified

adjacency matrix.

7. Each node checks its memory and calculates how many different neighbours it has received in

the current window and in the current moment.

8. Depending on the user choice, the program can plot in every moment which the active nodes

are and which nodes have communicated with other nodes. This has been useful to debug the

program: a node, in fact, can update its τ̂ only when it has received the τ̂ sent by another

node while it is active. In section 4.4 it is explained how this procedure is performed.

4.2 Broadcast matrices evaluation

As described before, the synchronization algorithms need to know which node has communicated

with another node, and this is performed evaluating more than a broadcast matrix in every quantum

of time.

In the following paragraph we will explain how the ATS algorithm has been implemented in its

asynchronous form. The PI has been implemented in a similar way.

4.2.1 Simplified WSN case

Let’s focus for example on a WSN where only the node i can transmit in the instant of time t, while

all the j neighbour nodes can receive. We can easily model the communication with the Broadcast

protocol, observing that ρηj (t) 6= 1 only if Pi(j, i)(t) 6= 0 and if ∃ told , Pi(told)(j, i) 6= 0, with i 6= j,,

while ρoj (t) 6= 1 and ρvj (t) 6= 1 only if Pi(j, i)(t) 6= 0, with i 6= j. Therefore, we can describe how

data flow, evaluating the cells of the matrix Pi(t). 
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Figure 4.1: Ideal WSN with only node 4 transmitting but with node 3 switched off.

In the previous image (fig. 4.1) it can be seen how we evaluate communications in the graph,

considering that only the node 4 can transmit. In this example all the nodes apart from node 3 are

1The way we evaluate collisions will be described in the next sections.
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in their receiving windows2, therefore all nodes except from node 3 can receive, so we can change

the adjacency matrix accordingly. So, using the modified adjacency matrix, the broadcast matrix

is automatically generated and it is employed, by the synchronization algorithms, only to detect

which node has received from another node.

4.2.2 Real WSN case

To implement our program we have taken into account the possibility that more than a node can

transmit in the same instant. Therefore, for each instant of time t we generate a Pi for every node

i which can transmit, using than the matrices in sequence.

It can happen that a sequence of matrices Pi, executed at the same time, causes a certain

number of collisions. A collision occurs when a node, which is transmitting, is also receiving a

communication from another node, or when a node is receiving from more then a node at the same

time.

We have decided to manage these collisions implementing two different function inside the

program:

ideal case: Collisions are not considered. It is supposed to be possible that the nodes can transmit

and receive information to and from more than a neighbour at the same time3.

real case: The collision causes the node to fail the reception.
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Figure 4.2: Real WSN with more than a node transmitting and node 3 switched off.

In figure 4.2 it can be seen how the program detects the nodes communications, considering that

more than a node can transmit, and that collisions cause communications failure. In this example

all the nodes apart from node 3 are in they receiving windows, therefore all the nodes apart from

node 3 can receive. This fact is detected as described before and causes adjacency matrix to change.

So, using the modified adjacency matrix, the broadcast matrices are automatically generated for

each node which is in its transmitting instant and collisions are identified, evaluating the same cell

for all the broadcast matrices. If the cell is not in the main diagonal and if it is different from 0

2This evaluation is made noticing that |τ̂3(t)− T (k3)| > δ3(t) while for the others j nodes |τ̂j(t)− T (kj)| < δj(t).

Only node 4 is in its communication instant because |τ̂4(t)− T (k4)| < δmin/2.
3In this case the order of evaluation of the Pi matrices is important, therefore we have decided to randomize the

evaluation order of the matrices that are referred to the same instant of time.
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in more than a broadcast matrix, it is set to 0 in all the broadcast matrices, referred to the same

instant.

4.3 Memory layout

In the next lines we present the “logical structure” of the variable which represents the node

memory, as it will be useful to understand how the recorded data are used. This memory is used

only to size the semi-width δ, depending on the chosen adaptative algorithm. In particular, it is

using the labels 0 or 1, saved in the third level of every cell, that the variables NRIW and êmax are

calculated.

We have projected a memory which has the structure of a three dimensional vector, for every

node, as it can be seen in fig. 4.3. The length, which represents how many past communications

are saved, can be decided by the user4, while every cell, that refers to a single communication event,

can be imagined organized into three levels:

1. The first level contains the estimated synchronization error ê

2. The second level contains the ID

3. A label is set to 1 if this instant is a part of the current window for this node. The entire

labels vector is set to 0 at the end of the window.

The pointer is moved from a cell to the next one, if a neighbour is received in this instant, or if the

node was receiving but no neighbours has been received. When the pointer reaches the end of the

vector, it starts again from the beginning, overwriting old data.

 

t 

Error  𝑒  

Received node ID 

Received in current window→ 1 

Figure 4.3: Memory scheme for one node. Every “3D” cell contains data referred to a communication

received event.

4Generally it has been observed that the memory size has to be at least of the same order of magnitude of the

number of neighbours that a node has.
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4.4 WSN evolution check

In this section we will explain how the image, that represents the WSN evolution, is created in

order to check if the program works right. The right part simply presents τ̂ evolution where a

“change” can obviously occur only if a node receives a communication. The left part is used to check

if the “change” occurs only when the node has really received data from another node. This second

check is independent from the τ̂ and is based on the evaluation of the various broadcast matrices,

referred to the same instant of time.
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Figure 4.4: This figure is a frame produced by the function plot WSN. It represents the evolution of

τ̂ for every node and plots the graph step by step showing active nodes in yellow and communicating

nodes in green. The data flow between two nodes is represented with a red line.
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Simulations

In this chapter, which is the core of our work, we will analyse the behaviour of the algorithms using

the four windows projected, i.e. the EPW (Error Proportional Window), the EBW (Error Based

Window), the PRNW (Previous Received Neighbours Window) and the CRNW (Current Received

Neighbours Window).

At the beginning we will consider ATS O, which is ATS with only offset compensation, full

ATS, and PI in the most ideal case, i.e. transmissions with no noise and no collisions; then we will

introduce in the simulations noise and collisions, progressively. We have decided to work in this

way in order to understand which is the most significant factor causing the performances to worsen.
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Figure 5.1: WSN graph used for the simulations.

The variables of interest in this contest are the variance of the time estimation, and the saving

factor SF, which is useful to show if the chosen configuration allows energy conservation. The

variance is expressed in logarithmic scale, the SF in per cent. The communication period is set to 10

seconds1, while the time is expressed in ticks and one tick corresponds to 0.01 second s. Therefore

1This parameter has a great influence on the others and on the resulting saving factor. Its choice has been done

to simulate as really as possible a real WSN.

25
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a 300000 ticks simulation corresponds to 50 real minutes, with approximately 300 communications

for each node.

The variables used for the ATS and the PI are:

� ρ = 0.5 that from previous work results to be a good value for both transient response and

noise resistance

� αPI = 0.01

The variables used for the windows algorithms:

� K = 10 used for the EPW window.

� êaccepted = 0.2 used for the EBW window.

The WSN graph we have decided to use for the following simulations can be seen in fig. 5.1.

5.1 Case 1: No noise and No collisions

In this first paragraph, we will analyse the behaviour of ATS O, ATS and PI in the ideal case with

no noise and no collisions, testing the four windows described in the previous chapter.

5.1.1 ATS O

Figure 5.2 shows the time estimation variance and the saving factor2 obtained with the four windows

and in the case with no window.
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Figure 5.2: τ̂ variance and saving factor obtained with the algorithm ATS O for different windows.

As it can be seen, the variance is really similar in the cases NoW, EBW and EPW, while for

2 Note that the SF corresponding to the case with no window is always 0, because the nodes never turn off, so

there is no energy conservation.



5.1. CASE 1: NO NOISE AND NO COLLISIONS 27

the cases CRNW and PRNW it can be noticed that the evolution is slower3 and the steady state

value is bigger.

The reason why the variance continues to oscillate between the maximum and the minimum

values is the structure of the ATS O itself. This algorithm, in fact, has no skew compensation,

so clocks having different skews can never maintain their synchronisation. Eventually they will

desynchronize, as they run with different speeds.

The analysis of the SF shows that the window which guarantees the best performances is the

CRNW, with a SF of nearly 55%. PRNW allows to reach a value for the SF that is around 40%.

The other two windows, i.e. EPW and EBW, do not attain great results: in steady state their

saving factors are respectively around 20% and 10%. Because of the ATS O structure in fact, the

error can not really be reduced, as it will encrease again, once the nodes loose their synchronisation,

for the lack of skew compensation.

5.1.2 ATS

The ATS algorithm is implemented to provide both the offset compensation, as the ATS O, and the

skew compensation. This should make the time estimation variance decrease all along the run-time,

if no noise and no external factors, such as collisions, interfere. This behaviour is confirmed by

simulations, as it can be seen in fig. 5.3.
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Figure 5.3: τ̂ variance and saving factor obtained with the ATS algorithm for different windows.

Both PRNW and EBW give minimum values of variance included between 10−20 and 10−15; the

highest values are attained with the CRNW, and are included between 10−15 and 10−10. In this

case it is even more evident than with ATS O, that CRNW and PRNW are slower in diminishing

the variance.

As for the energy conservation, EPW and EBW result to be the best, since their saving factors

reach respectively nearly 100% and 80%. Windows based on neighbors communications have on the

3 The slower evolution depends from the fact that these windows are not sized to the maximum delta for the first

cycles.
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contrary worse results: PRNW saving factor attains 70% and CRNW nearly 65%, both in steady

state.

5.1.3 PI

Even with PI algorithm the time estimation variance has a decreasing trend along all the simulation.
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Figure 5.4: τ̂ variance and saving factor obtained with PI algorithm for different windows.

However, this decreasing trend is slower than in the case of the ATS, and probably the reason is

the choice of the PI coefficients. The final time estimation variance is similar in all cases. As for

the saving factor, the best results are given by the EPW, 95%, and by the EBW, nearly 75%. the

PRNW and the CRNW saving factors are respectively 70% and 60%, both in steady state.

Summarizing the results obtained in the ideal case, we can say that, when a high synchronization

is desired, the most effective window algorithm is EPW. This particular window ensures good

results with both ATS and PI algorithms, while it has bad performances with the ATS O4. Actually,

all the windows give better results if used to implement ATS and PI, rather than ATS O. This

last algorithm, in fact, has great performances limitations, due to the lack of skew compensation.

An interesting question now is weather these results will change, adding noise to the system. This

analysis will be the aim of the next paragraph.

5.2 Case 2: Considering noise but not collisions

In this paragraph we will analyse how the noise affects the system transmissions. As before, we will

not consider the possibility of collisions. To simulate the noise we have used two parameters:

� value vel = 10−7: it simulates a clock that is not perfectly stable

� sigma n = 0.01: it simulates the error introduced in the communication

4Its behaviour can be improved changing the proportional coefficient K.
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These values have been chosen because, with value vel higher than the one proposed, consider-

ing rho = 0.5, in the ATS algorithm the time estimation variance increases during the simulations,

even without any window5. This does not happen with the PI algorithm, which guarantees good

results even with value vel = 10−5.

5.2.1 ATS O

As it can be seen figure 5.5, EBW and EPW have very similar time estimation variance trends,

attaining the minimum variance value 6 ∗ 10−4. The highest values of variance are reached by the

PRNW, with a maximum of 7 ∗ 10−1. As it can be observed through the saving factor analysis, the

introduction of the noise does not cause the performances to worsen, as the attained values are

almost the same as in the ideal case. So, the highest saving factors are reached by the CRNW, 55%,

and by the PRNW, 45%. The EPW and the EBW are unable to guarantee energy conservation,

and their saving factors are respectively less than 20% and 10%.
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Figure 5.5: τ̂ variance and saving factor obtained with ATS O algorithm for different windows.

5.2.2 ATS

Looking at figure 5.6, it can be observed that after a 2 ∗ 104 ticks transient during which the

time estimation variance decreases, its values remain included between a maximum of 10−3 and a

minimum of 10−5. The increased and low bounded variance values in steady state are due to the

noise.

The variance trend shows, more clearly than in the previous case, the alternation of local

maximums and minimums. This happens since the nodes can not maintain their synchronization,

because of the noise effects. So, we find a variance local maximum, when the nodes are not

synchronized, and a minimum, when communications ensure good synchronization.

5while with rho=0.9 it is almost constant if value vel = 10−6
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Figure 5.6: τ̂ variance and saving factor obtained with ATS algorithm for different windows.

As expected, the case which guarantees the best variance values is the one without window; the

reason is simple: no window means that the nodes are always listening, so it is easier to regain

synchronisation, eventually.

Observing the saving factor graph, we note that the window which guarantees the highest value

is still the EPW, whose maximum value is over 90%. Both EBW and CRNW are unable to mantain

the same performances as in the ideal case, and their saving factors are respectively 75% and less

than 60%. The noise is obviously the cause of the worsening of the results.

5.2.3 PI

As shown in 5.7, the time estimation variance trends are decreasing but low bounded. After the

transient, the variance remains always below 3 ∗ 10−4, in all the five cases considered.
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Figure 5.7: τ̂ variance and saving factor obtained with PI algorithm for different windows.
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As for the energy conservation, the window which guarantees the best performances is the

EPW, with a 90% saving factor. EBW and PRNW have similar saving factors: the first is around

75%, the second 70%. The worst case is given by CRNW, whose saving factor is around 60% in

steady state. Comparing these results with those obtained in the ideal case, we notice that the

performances do not worsen. The reason is the good noise resistance, typical of the PI algorithm.

To summarize the results obtained so far, we stress the fact that both the windows based on the

evaluation of the synchronization error give the best performances with ATS and PI. In particular,

EPW ensures a saving factor over 90% with both algorithms. On the contrary, ATS O has better

performances with CRNW and PRNW, though the saving factor values are not really good.

Comparing these results with those obtained in the ideal case, we notice that the noise causes a

worsening in the time estimation variance values, especially for the PI and for the ATS, while the

effects on the saving factor are negligible.

5.3 Case 3: considering noise and collisions

Let’s now consider the effects of collisions in the behaviour of ATS O, ATS and PI, implemented

using the different windows. We could expect that the performances worsen, as the probability of

collision increases when nodes are synchronized causing windows to enlarge.

5.3.1 ATS O

The trends of the time estimation variance and of the saving factor are similar to the ones without

collisions. This means that, as the algorithm ATS O does not ensure a ”perfect” synchronization,

collisions do not occur frequently.
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Figure 5.8: τ̂ variance and saving factor obtained with ATS O algorithm for different windows.



32 CHAPTER 5. SIMULATIONS

5.3.2 ATS

As it can be seen in fig. 5.9, the trends of time estimation variance for the four windows is more

irregular6 than in the case with no collisions.
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Figure 5.9: τ̂ variance and saving factor obtained with ATS O algorithm for different windows.

The graph of the saving factor offers interesting information. The EPW gives the best values,

reaching 90%. The other window based on the evaluation of the synchronization error has not the

same good performances: its saving factor attains only 40% in steady state. This means that the

EBW is more affected by collisions than the EPW. As for the PRNW and the CRNW, we notice

that their performances worsen drastically: in steady state their saving factors are around 10%.

From this analysis we can conclude that these last two windows are unable to manage collisions,

which cause the failure of a certain number of communications and the consequentially enlargement

of the window.

5.3.3 PI

As for the ATS algorithm, the most interesting thing to observe is how collisions make performances

worsen, when the synchronization increases. In fact, the only implementation which guarantees

good results with PI is EPW: its saving factor reaches 90%. EBW, PRNW and CRNW, as the

variance decreases, give bad saving factor values, meaning that, because of collisions, they are

forced to open their window uselessly. This is the cause of the saving factor trends, which encrease

at the beginning, while the variances are decreasing, and stabilize around low values in steady state:

around 20% for the EBW and 5% for the other two.

In conclusion, as expected, the introduction of collisions brings performances to worsen. It is

interesting to notice that the time estimation variance, in the case with collisions, seems to be of

the same order of magnitude than the one in the case with only noise, for all the three algorithms.

As for the saving factor, the ATS O is the only algorithm which offers the same performances with

6 The previous observed alternation of maximums and minimums is affected by collisions becoming irregular.
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Figure 5.10: τ̂ variance and saving factor obtained with PI algorithm for different windows.

and without collisions because of the poor synchronization. Both PI and ATS are badly affected by

this phenomenon, maintaining good results only with EPW. Especially with PI, EBW, CRNW and

PRNW are completely useless, if the aim is to preserve energy. So we can say that the elements

which cause the greatest problems to save energy in our simulations are collisions. In fact, just

with noise it is possible to reach discrete results at least with EPW, EBW and PRNW in the PI

and ATS cases.

5.4 Adding a node test

Matlab implementation gives the possibility of simulating the action of plugging a node to an

active WSN therefore in these last simulations we connect a node to the WSN, only when a certain

amount of time has already passed (see fig. 5.11).
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(a) Using ATS and EPW.
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(b) Using PI and EPW.

Figure 5.11: Error between five nodes from their instantaneous mean. The fifth node is plugged

and considered for the mean after 5000 ticks.
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The test is performed only with ATS and PI algorithms considering both noise and collisions. As

from the previous simulations it results that the best window algorithm is EPW, we have decided

to perform the test only with this one. All the algorithms parameters are set to the values used in

the previous simulations. Only the total time and the WSN network are changed. The total time is

set to 100000 ticks while the WSN network considered is made by four nodes. The fifth node is

plugged after 5000 ticks.

Figure 5.12 shows that with this window algorithm the saving factor behaviour is good with

both ATS and PI. When the node is connected, its “big” synchronisation error makes its neighbours

windows enlarge. This is desirable in order to let the last connected node be received with good

probability and its effect on the saving factor is quickly recovered.
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Figure 5.12: Diagrams obtained plugging one node to the WSN network at time t = 5000 ticks.

This test proves that the presented adaptive window algorithm, based on the local estimated

error, seems to work well even if used in a network to which a new node is plugged. This is the first

step to test adaptative windows algorithms with a WSN that can dynamically change its topology.

However this kind of test depends a lot from real parameters therefore we have decided that it

would be much more interesting to perform them with a real WSN as descried in chapter 7.



Chapter 6

Conclusions

As already explained, the aim of our work is to project algorithms able to guarantee both synchro-

nization and energy conservation. For this reason, we have tried to study the behaviour of four

different window algorithms, starting with an ideal case, ending in a more realistic situation, where

we have considered the effects of both noise and communication collisions.

These window algorithms are projected to guarantee the nodes the possibility to communicate in

windows dynamically sized. The main idea has been equipping each node with a certain amount of

memory to evaluate past communications. Therefore parameters responsible for the performances

are the memory amount and others depending on the algorithm, such as êaccepted and the estimated

synchronization error proportional coefficient K.

Accordingly to available devices and desired application, some configurations of these parameters

may be preferred.

Our analysis shows, as said in the previous chapter, that the most effective implementation is

due to the EPW. In particular EPW and EBW provide a great saving factor without compromising

synchronization precision but they require a good synchronization algorithm such as ATS or PI.

ATS O for its own structure, which does not assure high levels of synchronizations, is less

affected by collisions. For this reason it has better performances with CRNW and PRNW than

with EPW and EBW.

In conclusion, windows implementations based on error evaluation are preferable than those

founded on the neighbours estimation if high levels of synchronization are required. In fact,

if supported by performing synchronization algorithms, they allow optimal results in energy

conservation, noise resistance and, being fully distributed, they are flexible as regards the network

structure.
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Chapter 7

Future Works

Since our work is based on Matlab simulations, the realism is obviously limited, and it would

be interesting to test the implemented routines in a real network. In this way it will be possible

to consider some phenomena which could have been disregarded, or evaluate, for example, some

possible hardware limitations.

An important further test would be to study how the windows performances are affected by the

dynamical change of the structure of the network. For sure, the windows based on the neighbours

estimation would probably need to be modified, not to maintain a maximum amplitude forever

when a node dies as described on section 3.3.

Moreover during the tests, it could be useful to change some of the windows parameters, to see

how the real WSN reacts. For instance, we could decide to modify the maximum accepted error1,

analysing the effect on the synchronization. In particular a node could not remain synchronized

with the others.

Tests results would be of great interest to conclude our work, which as said before is basically

simulative, and to project adaptive windows with high performances.

1Used in EBW algorithm.
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