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Problem Definition

Problem Definition

Problem A:
Estimate the size S of an anonymous network exploiting consensus
methods.

Problem B:
Formulate an hypothesis test for detecting topology changes.
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Problem Definition

Problem definition - A

The constraint of anonymity characterizes the problem in a critical way.

In fact, if one assumes no a-priori knowledge on the network topology, an
impossibility results states that there is no estimation strategy with finite
computational complexity that can output the correct size almost surely.

Proposed estimation strategies differ by how nodes generate statistical
information on the network size. There are three main groups: random
walks, sampling methods and consensus based methods. The estimation
step reduces to Maximum Likelihood (ML) procedures.
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Problem Definition

Problem - B

Devise an hypothesis testing approach for detecting topology changes in a
node neighborhood. The change-detection algorithm should be distributed
such that nodes can run it locally.

We could not find any source on change detection in the scientific
literature that dealt with the constraint of anonymity.
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Problem Definition

Contribution

For the estimation strategy based on average consensus and common
Bernoulli distribution we provided a refined bound on the estimator error
probability that slightly improves the state of art. The results is, however,
of little practical interest due too slow convergence rate and scalability of
average consensus and to the high sensibility of the estimator statistic to
noise superposed to the outcome of consensus.

We formulated a neighborhood size change detection test in the form of a
Generalized Likelihood Ratio (GLR) and provided its statistical
characterization in terms of type I and II error probabilities. We have
shown that, if tuned opportunely, the test achieves good detection
performances.
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Static Network - Consensus Algorithms

Static Network

Fundamental hypothesis for this Section:
network topology have not to change, i.e. number of agents is constant.

Considered cases:
Average Consensus, with Bernoulli distribution
Max Consensus, with Uniform distribution
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Static Network - Consensus Algorithms

Network Size Estimation

Let us model a static connected network with a graph G = (N , E) where
N ⊂ N+ is the set of nodes and E ⊂ N 2 is the set of undirected edges
such that (i , j) ∈ E if node i and node j can communicate.

The general estimation strategy in consensus based methods comprises
three main steps.
i) each node i ∈ N starts by generating a local vector of initial random

values, y (i) ∈ RM , by sampling M i.i.d. random variables with
common probability density p (·).

ii) the network distributedly computes a consensus function of these
initial values such that asymptotically each node reaches consensus on
a quantity

f = F
({

y (i) : i ∈ N
})

,

iii) each node statistically infers an estimate of S = |N | given f .
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Static Network - Consensus Algorithms

Average Consensus - Bernoulli distribution

Each agent i locally generates

y (i) ∼ B(p)

The consensus function is the average:

f :=
1
S
∑
i∈N

y (i)

Since Sfm ∼ Bin(S, p), exploiting independency, we can fully determine the
distribution of f .
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Static Network - Consensus Algorithms

Suppose that fm is observed. The likelihood of fm as a function of S has
(unbounded) support on the discrete set

supp ` (S ; fm) =

{
νS̄ : ν ∈ N+, f =

k̄
S̄

with (k̄, S̄) coprime
}

It can be shown that the ML estimator of S is

Ŝ(f ) = min
( M⋂

m=1
supp ` (S ; fm)

)

Ŝ(f ) is thus the smallest size which can explain the M independent
observations, f1, . . . fM , in terms of f := 1

S
∑

i∈N y (i).

Difficult to provide a closed form for the estimator distribution because of
the discrete nature of the initial distribution.
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Static Network - Consensus Algorithms

Error Probability Characterization

Define α(p) the error probability. When M = 1 it can be bounded from
above by

α = 1− φ(S)/S

where φ(·) is the Euler phi-function.

Since φ(S)/S > 0.15 at least up to S = 1010, one can argue that as long
as p is far from zero or one than α(p) < 0.85.
An upper bound, for the general case M ≥ 1, can be

P
[
Ŝ(f ) 6= S ; S

]
≤ αM

Now we provide a refinement of this error probability.
The intuition behind our approach is that the estimator error-probability
can be computed in closed form when S is a power of 2.
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Static Network - Consensus Algorithms

Characterization of our bound - 1

Define ψ : Q→ N+ as the application mapping each rational into the
value taken by the denominator of its coprime representation (with
convention ψ(0) 7→ 1) and dm = ψ(fm), m = 1, . . . ,M.

Consider the prime-number factorizations

S = 2γ23γ35γ5 ..., dm = 2γm
2 3γm

3 5γm
5 ... m = 1, . . . ,M

The previous ML estimator provides the correct size if and only if the
lowest common multiple of the M observations d1, . . . , dM is exactly S.

This happens if and only if for each prime number ν ∈ primes(S) there
exist at least one m ∈ {1, . . . ,M} such that νγν divides dm.
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Static Network - Consensus Algorithms

Characterization of our bound - 2

Since the M variables f1, . . . , fM are i.i.d., it can be proved that

P
[
Ŝ(f ) 6= S ; S

]
≤ |primes(S)|β(p)M

where
β(p) :=

1 + (1− 2p)S

2
is the probability that the outcome of a binomial random variable with
success probability p and a number of experiments S is even.

Remark
Our new bound is the exact error probability when S is a power of two.

p = 0.5 minimizes the worst case error probability over a certain range of
possible sizes [1, Smax ]. It corresponds to a global minimum of β(p) for
any S power of two.
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Static Network - Consensus Algorithms

Comparison between old and new bounds
Our bound vanishes asymptotically faster in M than the one argumented
in the existing articles.
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Figure: Parameters settings: α = 0.85; range of sizes [1, 106] for which we have
found numerically maxS∈[1,106] |primes(S)| = 16; p = 0.5.
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Static Network - Consensus Algorithms

Max Consensus - Uniform distribution

Each agent i locally generates

y (i) ∼ U [0, 1]

The consensus function is the maximum

fm := max
i∈N

y (i)
m , m = 1, . . . ,M

It can be shown that the joint probability density of f is

p (f ; S) =


S

M∏
m=1

f S−1
m 0 ≤ fm ≤ 1 , m = 1, . . . ,M

0 otherwise
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Static Network - Consensus Algorithms

It follows that the ML estimator of S is

Ŝ(f ) = arg max
S∈R+

p (f ; S) =
M∑M

m=1− log fm

Except for a scaling factor, Ŝ(f ) ∼ Γ−1 and for M > 2, the estimator
relative mean square error is only function of M. In particular it decreases
when M becomes bigger.

The max-consensus estimation strategy is easily extended to network with
dynamic topology.
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Change Detection

Neighborhood size estimation

We briefly recall a generalization of the max-consensus estimator which is
needed for our approach to change detection. The new estimation
procedure assumes that the process by which the network changes
topology is deterministic (and unknown).

Communication protocol: the time is divided in epochs, indexed by
t = 0, 1, 2, . . .. Every agent broadcasts its information exactly once per
epoch (the order is irrelevant).

Network model: at each epoch t the we describe the network by means of
a graph, G(t) := (V(t), E(t)), where V(t) is the set of agents active at
time t and E(t) ⊆ V(t)× V(t) is the set of communications among active
agents at time t: (i , j) ∈ E(t) indicates that agent i has successfully
broadcast its information to j .

(Size estimation and change detection) 27 Luglio 2012 17 / 39



Change Detection

Information generation scheme
for t = 1, 2, . . . do

(Information Update) each agent i computes F (i)(t) by
shifting the columns of F (i)(t − 1), in the sense that
f (i)

k (t) = f (i)
k−1(t − 1) for k = 2, . . . ,D. f (i)

1 (t) is instead
filled with M new i.i.d. random values f (i)

m,1(t) ∼ U [0, 1],
m = 1, . . . ,M
(Communication) every agent broadcasts F (i)(t) to its
neighbors
(Information Mixing) each agent i updates its F (i)(t) by
means of the F (j)(t)’s received from its neighbors. More
specifically

f (i)
m,k(t)← max

(j,i)∈E(t)

(
f (i)
m,k(t),

{
f (j)
m,k(t)

})
for m = 1, . . . ,M, k = 1, . . . ,D.

end for
(Size estimation and change detection) 27 Luglio 2012 18 / 39



Change Detection

It is not difficult to see that the set of nodes from which f (i)
k aggregates

information is given for k ≥ 1 by the recursion

V(i)
k (t) :=

⋃
(j,i)∈E(t)

V(j)
k−1(t − 1) ,

with initial conditions V(i)
0 (t) = {i}.

It follows from the previous slides that the ML estimator of
S(i)

k (t) =
∣∣∣V(i)

k (t)
∣∣∣ is the statistic

Ŝ(i)
k (t) :=

M∑M
m=1−log

(
f (i)
m,k(t)

) ,
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Change Detection

Hypothesis testing

Let f ∼ {pθ}θ∈Θ, where Θ is the the set of a-priori plausible values that θ
might take, and consider two complementary hypotheses H0 and H1 of
the form

Hi := {f ∼ pθ , θ ∈ Θi} , Θ0 ∩Θ1 = ∅, Θ0 ∪Θ1 = Θ .

Deciding between H0 and H1 is performed by means of a deterministic
decision rule g with range {0, 1}. Two different kinds of errors can occur:

accepting H1 when H0 is true, a.k.a. type I error
accepting H0 when H1 is true, a.k.a. type II error

It is meaningful to characterize g in terms of type I and II error
probabilities.
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Change Detection

Hypothesis testing

Given a decision function g , define the test power function as

βg (θ) = P [H1 is accepted ; θ] = E [g(f ) ; θ] .

Both type I and II error probabilities can be expressed by means of βg (·).
In particular, the worst case type I error probability, a.k.a the test size, is
given by

α0 = sup
θ∈Θ0

βg (θ) .

When the hypotheses are simple, it can be shown that in the class of
decision functions with a given size α0, the minimizers of the type II error
probability take a special form.
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Change Detection

Hypothesis testing

This special form is given by the Neymann-Person lemma

g (f ) :=

{
0 Λ ≤ λ
1 otherwise

where Λ is the Likelihood Ratio (LR)

Λ =
` (θ0 ; f )

` (θ1 ; f )
, θi ∈ Θi ,

and λ is the test threshold: it realizes a trade-off between the test
sensitivity to high frequency changes and the rate of false positives.
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Change Detection

Change detection

Our aim is to detect disconnections in the k-steps neighborhoods over a
temporal window spanning N + 1 epochs. Intuitively this should be
possible by inspecting the evolution of the samples

f (i)
k (t − N + 1, t) =

(
f (i)

k (t − N), . . . , f (i)
k (t)

)
.

We shall make the assumption that at most one sensible size change
happens in the temporal window [t − N, t].

In the following let us concentrate on a single node and a given k-steps
neighborhood; for notational brevity we drop all super-scripts (i) and
sub-scripts k.
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Change Detection

Change detection

Consider the following set of hypotheses for detecting disconnection-like
changes over a window of N + 1 epochs

H0 : S(t − N) = . . . = S(t − T ) = S,
S(i) ≥ σS for all i ∈ {t − T + 1, . . . , t}

H1 : S(t − N) = . . . = S(t − T ) = S,
exists i ∈ {t − T + 1, . . . , t} s.t. S(i) < σS

(1)

H0 assumes that before the change time, t − T , the true size is
constant and equal to S; after the change the network size ‘remains
greater than‘ σS. In particular the size could have remained constant.
H1 assumes again that before the change time the true size is equal
to S; in this case, however, a disconnection happened after t − T .
σ ∈ (0, 1] tunes the test sensibility to small size disconnections
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Change Detection

Change detection

There are no nominal parameters: the pre-change size, S, the change time,
t −T , and the post-change sizes S(τ), τ = t −T + 1, . . . , t are unknowns
that must be estimated.

Since we assume no a-priori knowledge on them, these quantities are
estimated from the sample f (t − N, t) employing ML approaches.

Remark: S and T define the set of hypotheses to be tested. Once they
are estimated they are treated as deterministic parameters by the actual
decision procedure. Apparently, this not fully rigorous.
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Change Detection

Alg. Neighborhood change detection
1) (cycle on all the plausible change times)

for T = 1, . . . ,N − 1 do
2) (estimation of the pre-change value)

S(T ) =
M(N − T + 1)∑t−T

τ=t−N
∑M

m=1−log (fm(τ))

3) (estimation of the post-change values)
for τ ∈ {t − T + 1, . . . , t} do

Ŝ(τ) =
M∑M

m=1−log (fm(τ))

Ŝ0(τ) =

 Ŝ(τ) if Ŝ(τ) ≥ σS(T )

σS(T ) otherwise

end for
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Change Detection

4) (computation of the GLR)

Λ(T ) =

t∏
τ=t−T

`
(
Ŝ0(τ) ; f (τ)

)
t∏

τ=t−T
`
(
Ŝ(τ) ; f (τ)

)
end for

5) (computation of the optimal change time)

T = arg min
T ∈{1,...,N−1}

Λ(T )

6) (decision)

g (f (t − N : t)) =

{
0 if Λ(T ) ≥ λ
1 otherwise.

(Size estimation and change detection) 27 Luglio 2012 27 / 39



Change Detection

Change detection
In the report we proved that once S and T are fixed the following facts
hold:

the power function establishes a partial order in parameter space: if
S(τ) ≤ S ′(τ) for all τ = t − T + 1, . . . , t, then

βg (S(t − T + 1), . . . ,S(t)) ≥ βg
(
S ′(t − T + 1), . . . ,S ′(t)

)
.

the test size can be computed by evaluating the the power function at
the point S(τ) = σS , τ = t − T + 1, . . . , t, i.e.

α0 = βg (S(τ) = σS , τ = t − T + 1, . . . , t)

the distribution of the GLR depends only on the ratios
ρ(τ) = S(τ)/(σS, τ = t −T + 1, . . . , t. In particular, the distribution
of the GLR used in the computation of α0 does not depend on the
outcome of S.
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Change Detection

Change detection

It follows that nodes do not need to compute the test threshold, λ, at
each epoch after S and T have been estimated. N thresholds, one for
each possible outcome of T ∈ {1, . . . ,N}, can be precomputed off-line,
stored in the node’s memory and then used at run-time.

The GLR distribution (for each T ) can be expressed in analytical form by
means of Lambert’s W function. This part, however, is missing from the
report due to lack of time. Instead we evaluated it using the Monte Carlo
method.
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Change Detection

Change detection
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Figure: Type II error probability as a function of M, T and ρ := S(τ)/σS,
τ = t − T + 1, . . . , t; the test size is α0 = 0.01.
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Simulations

Simulations

We have ran extensive simulations of the change detection algorithm on a
prototypical grid network with 100 nodes. We wanted to

analyze the role of the tunable parameters
understand if the change detectors could be used to ‘identify‘ the
direction into which the disconnection happened, e.g. by distributedly
compute a gradient towards the disconnected sub-graph
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Simulations

Simulations - Static Network

Let us start with the following choice of parameters

M = 50, D = 20, N = 25, α0 = 0.01, σ = 1 .
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Simulations

Simulations - Static Network

The false-positive rate is very high, greater that what one would expect
from setting α0 = 0.01.

The pre-change size estimate, S, tends to be very noise and biased
towards over estimating the true value.

We believe this is due to the näive ML approach for estimating the change
time, t − T , that we employ. This estimator tends to be ‘tricked’ by
outliers in Ŝk(t) at times near the lower-end of temporal window [t −N, t].

One possible solution is to restrict the search for t − T to the subset
[t − N + N, t]. Thus reserving N epochs for the sole computation of the
pre-change size.
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Simulations

Simulations - Static Network

One possible solution is to restrict the search for t − T to a subset
[t − N + N, t] of the temporal window. Thus reserving N epochs for the
sole computation of the pre-change size.
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Simulations

Simulations - Dynamic Network

We model a dynamic network in which agents are subject to failure by
allowing each node to be in one of two states: active or inactive.
At each epoch active nodes have a probability Pd = 0.01 of transitioning
to the inactive state while nodes currently inactive have a probability
Pb = 0.04 to transition back to the active state.
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Simulations

Simulations - Dynamic Network

The rate of false-positives has increased with respect to the previous case.
This is again due to over estimation of S.

This is the test case that motivated the introduction of the parameter σ in
the definition of H0 and H1.
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Simulations

Simulations - Distance to disconnected sub-graph

Information from the change detectors can be exploited to estimate one
node’s distance from the disconnected sub-graph. Let us define for each
node i ∈ N (t)

K(i)(t) :=
{

k : i detected a change in its k-steps

neighborhood at time t, k = 1, . . . ,D
}
.

Then one way of evaluating how far a node is (in hops/epochs) from the
disconnection is by employing the estimator

δ̂(i)(t) := min
j∈N (t)

{
K(j)(t)

}
.

δ(i)(t) is the smallest k for which node i detected a change in its k-steps
neighborhoods.
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Simulations

Simulations - Distance to disconnected sub-graph

In principle δ(i)(t) could be used to distribuitedly build a gradient towards
the disconnection
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Simulations

Simulations - Size preserving topology changes

Our approach, by design, can only detect changes in the size of a node’s
neighborhood but not on its ‘connectivity‘.
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