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Abstract

In this report we consider two problems. The first one is the dis-
tributed estimation of the number of nodes in a network under the
constraint of anonymity. We restrict our discussion to estimation
strategies in which statistical information on the network size is gen-
erated by exploiting consensus. In particular, we recall from [14] two
different size estimators, one based on average-consensus and the other
on max-consensus. In one case we are able to provide a refined bound
for the estimator error probability that sligtly improves the bound in
[14] (see also [15]).

The second problem we analyze is that of distributedly detecting
topology changes by employing an hypothesis test. To this purpose
we formulate a Generalized Likelihood Ratio (GLR) test based on the
max-consensus estimation strategy and characterize it in terms of type
I and type II error probabilities.

Aided by a set of simulations we then comment on the role played
by the test tunable parameters on the performances of the change
detection algorithm (e.g., the rate of false positives).

1 Introduction

In the past years the problem of estimating the size of a network with lim-
ited knowledge on its topology and dynamics has been increasingly gaining
momentum. Practical interest comes from the fact that on one hand it is
often not possible, or not practical, to track precisely changes in the time
varying structure of the network. On the other hand there is a plethora of
services which are enabled or rely on such estimates for achieving better per-
formances. Example applications range from cost-effective maintenance in
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(relatively) large networks to intelligent GPS routing that accounts for traffic
data.

Our reference setting is that of the so called anonymous networks. By
definition in an anonymous network it is impossible to distinguish between
the composing nodes and, as a consequence, it is impossible for any node to
uniquely identify its peers (see [7] for the definition and a discussion on what
kind of functions can be computed by anonymous networks).

The condition of anonymity characterizes the estimation problem in a
critical way. It can be shown that in this context, once the rather sensible
assumptions of arbitrary network topology and finite computational resources
are introduced, there is no algorithm with average limited (computational)
complexity that can provide correct estimates with probability one [8]. It fol-
lows that in any sufficently general estimation scheme the resulting estimate
is a non-deterministic function of the true size.

The scientific literature offers many partial solutions to this estimation
problem. All these approaches are mainly characterized by how nodes gener-
ate statistical information on the network size and can be grouped into three
main classes: random walks, sampling methods and consensus methods.

In random walk schemes a token is exchanged in some random way be-
tween active nodes. The time-of-return, i.e. the time interval between two
consecutive passages of the token at the same node, can be shown to be sta-
tistically correlated with the network size and used for statical inference. In
a variant, the token is endowed with a counter which gets decreased at each
hop; then the statistical information is provided by the token’s time-to-vanish
(see e.g. [9]).

In sampling methods a master marks a (random) subset of the active
nodes with certain properties, e.g. by assigning them IDs [10]. In some
schemes these markings are eventually propagated throughout the network.
The master can then draw an estimate of the network size by querying a
subset of the network asking those nodes whether they own a certain mark
or not.

Our focus is put instead on consensus based methods. In brief, each node
in the network starts by generating a local vector of data by sampling from a
common probability density. Then the network computes a function of these
initial values by iterating consensus. The key idea is that the outcome of
consensus is statistically correlated with the network size and can be used in
a statistical inference procedure [13, 14, 15].

In the second part of this report we concentrate on the problem of dis-
tributedly detecting topology changes. Although this is not a recent field
of reserch, it is difficult to find material in the scientific literature dealing
with the constraint of anonymity. There is apparently much more material
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dedicated to the analysis of how the network can react and or re-configure
itself once a change in topology has been detected (see e.g. [4]).

We will consider an hypothesis testing approach to the change detection
problem. Our contribution is a test, in the form of a GLR, which exploits
the max-consensus estimator from [14] and which we are able to statistically
characterize in terms of type I and type II error probabilities. As we shall see,
our approach GLR exhibits some optimality properties of practical relevance.

The structure of the report is the following. In Section 2 we consider the
case of network with static topology and recall two size estimator from [14]:
the first based on average consensus and the second using max consensus.
For the average consensus (paired with a common Bernoulli distribution) case
we provide a result that slghtly refines refines the bound on the estimator
error probability in [14] and [15]. In Section 3 we introduce the concept of
k-steps neighborhood and provide an estimation algorithm that generalizes
the max-consensus estimator from static to dynamic networks. In Section 4
we outline our GLR approach to change detection and in Section 5 we com-
ment on a set of simulations in which the algorithm is run distributedly on
the nodes a prototypical grid network.

A word on notations. In the following we let bold fonts indicate vectors,
plain italic fonts indicate scalars, capitalized plain italic fonts indicate matri-
ces. For notational simplicity we will often identify agents with the fictitious
indexes i and j.
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2 Estimating the size of a static network

In this section we recall some results on the problem of estimating the size of
an anonymous network by exploiting consensus. The analysis is restricted to
connected networks with static topology. To each such network we associate
a graph G = (N , E) where N ⊂ N+ is the set of nodes and E ⊂ N 2 is the set
of undirected edges such that (i, j) ∈ E if node i and node j can communicate
(bi-directionally). The true size of the network, S = |N |, is a deterministic
but unknown parameter that we wish to estimate.

The general estimation strategy in consensus based methods comprises
three main steps [13, 14]:

i) each node i ∈ N starts by generating a local vector of initial random
values, y(i) ∈ RM , by sampling M i.i.d. random variables with common
probability density p (·).

ii) the network distributedly computes a consensus function of these initial
values by local communication alone and without breaking anonymity.
Asymptotically each node reaches consensus on the quantity

f = F
({
y(i) : i ∈ N

})
,

where F (·) is the asymptotic consensus function.

iii) each node statistically infers an estimate of S by exploiting the corre-
lation between the consensus outcome and the network size.

This procedure can be specialized by fixing the means by which the infor-
mation is generated in step i and those by which is mixed in step ii, i.e.
the common density p (·) and the consensus function F (·) respectively. Since
one tipically assumes no a-priori knowledge on the network topology, the
guess drawn at step iii usually reduces to computing the Maximum Likeli-
hood (ML) estimate

Ŝ := arg max
R+

` (S ; f) ,

where we denoted by ` (a ; b) the likelihood of a given that b is observed.
The authors of [14] devised three such estimators: two of which are based

on average consensus paired with common Gaussian and Bernoulli distri-
butions respectively, and a third exploiting max consensus with a common
uniform distribution.

Remarkably, the estimator derived for the Bernoulli distribution case is,
to our present knowledge, the only in the literature with an error probability
decreasing exponentially fast with the number of local initial values M . In
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Section 2.1 we complement the reasoning and numerical results given in [14]
by providing a slightly refined bound for this error probability: the intuition
behind our approach is that the estimator error-probability can be computed
in closed form when S is a power of 2. However, due to the discrete nature
and high non-linearity of the estimator map, it is difficult to provide a closed
form probabilistic characterization for it. Moreover its accuracy depends in
a critical way on the hypothesis that the network topology does not change
during the consensus phase1, rendering it impractical.

On the other hand the size estimator based on max-consensus is a continu-
ous function of observations with a closed form probabilistic characterization
and exhibits both fast convergence rate and high scalability. Moreover, this
method is naturally extended to the size estimation of k-steps neighborhoods
(see Section 3). After Section 2.1 the effort of this report is mostly focused
on this max-consensus based estimator.

Following [14] we will henceforth assume the further simplified context in
which the effects of packet loss and quantization errors are negligible.

2.1 Average consensus and common Bernoulli distri-
bution

In this case the common density has a Bernoulli distribution with success
probability p and the consensus function is the average

f :=
1

S

∑
i∈N

y(i) . (1)

Since Sfm has a Binomial distribution, i.e. Sfm ∼ Bin (S, p), it follows
immediately that

P [fm ; S] =


(

S

fmS

)
pfmS(1− p)S−fmS if fmS ∈ {0, . . . , S}

0 otherwise ,

(2)

which, by independency, fully determines the distribution of f . Now suppose
that fm is observed. It follows from (2) that the likelihood of fm as a function
of S has (unbounded) support on the discrete set

supp ` (S ; fm) =

{
νS̄ : ν ∈ N+, f =

k̄

S̄
with (k̄, S̄) coprime

}
.

1It must be ensured that after a sufficient number of consensus steps the network
reaches practical consensus on a point where the estimator map is defined.
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By first showing that P [fm ; S] ≥ P [fm ; νS] for all ν ∈ N+ one can prove
that the ML estimator of S is the statistic [14, 15]

Ŝ(f) = min

(
M⋂
m=1

supp ` (S ; fm)

)
. (3)

Ŝ(f) is thus the smallest size which can explain the M independent obser-
vations, f1, . . . fM , in terms of (1). Due to the discrete nature of the initial
distribution and the discontinuousness of (3) it is difficult to provide a closed
form for the estimator distribution. A characterization of the estimator’s
error probability, i.e. the probability of incorrectly estimating the size, can
be given by means of the following argumentation. Define

α(p) = P [min (supp ` (S ; fm)) 6= S ; S] . (4)

Then α(p) is the exact error probability of (3) when M = 1. In [15] it is
claimed that this probability can be bounded from above by α = 1−φ(S)/S,
where φ(x) the Euler phi-function counting the number of totatives of the
natural x. The reasoning exploits the following facts:

i) the distribution of the totatives of S (for S large enough) is approxi-
mately uniform;

ii) in the case of M = 1, whenever the outcome of
∑S

i=1 y
(i) is a totative

of S then the ML estimator provides the correct size.

Since φ(S)/S < 0.15 at least up to S = 1010 (see [15]) one can argue that as
long as p is far from zero or one than α(p) < 0.85. Thus an upper bound for
the general case, M ≥ 1, is found by exploiting independency

P
[
Ŝ(f̄) 6= S ; S

]
≤ αM . (5)

The intent of the remaining part of this chapter is to provide a refinement
to this error probability. Our bound vanishes asymptotically faster in M than
(5) and provides some (minimal) insight on the role of the design parameter
p.

Define ψ : Q → N+ as the application mapping each rational into the
value taken by the denominator of its coprime representation with the con-
vention ψ (0) 7→ 1. Define the r.v.s. dm = ψ(fm), m = 1, . . . ,M and consider
the (unique) prime-number factorizations

S = 2γ23γ35γ5 ..., dm = 2γ
m
2 3γ

m
3 5γ

m
5 ... m = 1, . . . ,M .
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We will denote by primes(n) the set of distinct prime numbers in the prime-
number factorization of n ∈ N+. Then the ML estimator in (3) provides the
correct size if and only if the lowest common multiple of the M observations
d1, . . . , dM is exactly S. In turn this happens if and only if for each prime
number ν ∈ primes(S) there exist at least one m ∈ {1, . . . ,M} such that νγν

divides dm, in symbols νγν | dm. It follows immediately that

P
[
Ŝ 6= S ; S

]
≤

∑
ν∈primes(S)

M∏
m=1

P [νγν - dm ; S] . (6)

In order to provide a further bound on the rightmost term we shall first
introduce two small lemmas.

Lemma 1. Consider the following inequality

αpk−1(1− p)n−k+1 − βpk(1− p)n−k + γpk+1(1− p)n−k−1 ≥ 0 ,

where p ∈ [0, 1], α, β, γ, n ∈ R+, and k ∈ [1, n − 1] is real. A sufficient
condition for the inequality to hold is given by β2 ≤ 4αγ.

Proof. For p ∈ {0, 1} it is trivial. When p ∈ (0, 1) the inequality reduces to
the simpler

α(1− p)2 − βp(1− p) + γp2 ≥ 0 , (7)

and the polynomial on the left side has roots in

p1,2 =
2α + β ±

√
β2 − 4αγ

2(α + β + γ)
.

Whenever the determinant vanishes, i.e. β2 = 4αγ, the quadratic form in
(7) evaluates to (√

α(1− p)−√γp
)2

,

which is clearly non-negative. On the other hand when β2 < 4αγ the two
roots p1,2 are complex and by continuity reasons the inequality must still
hold true.

Lemma 2. Consider a r.v. b distributed as Bin (n, p). For all p ∈ [0, 1] the
following inequality holds

P [b = k − 1]− P [b = k] + P [b = k + 1] ≥ 0 , k = 1, . . . , n− 1 .
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Proof. By Lemma 1 a sufficient condition is given by(
n

k

)2

≤ 4

(
n

k − 1

)(
n

k + 1

)
,

and by explicitely computing the binomial coefficients one obtaines the equiv-
alent condition

k2 − kn+
n+ 1

3
≤ 0 .

The polynomial on the left, seen as a function of the real variable k, has just
one critical point in n/2, corresponding to a global minimum. By evaluating
the polynomial in k = 1 and k = n − 1 one finds that the inequality is true
as long as n ≥ 2, thus concluding the proof.

We are now in a position to prove the main result of this section.

Proposition 1. Let b ∼ Bin (S, p), d = ψ(b/S) and consider the following
prime-numbers factorization

S =
∏

ν∈primesS

νγν . (8)

Then for any p ∈
[
0, S/(S + 1)

]
the probability that a factor νγν does not

divide d, i.e. P [νγν - d], is less or equal then the probability that b is even.

Proof. For any νγν in the factorization (8) it holds

P [νγν - d] = P
[
b ∈

{
kν : k = 0, 1, . . . ,

S

ν

}]
. (9)

Consider the case of S even. For ν = 2 the probability in (9) is exactly the
probability P [b is even]. For any other prime factor ν ′γν′ of S, ν ′ > 2, we
have

P [ν ′γν′ - d] = P [b = 0] +
∑

k : ν≤kν<S

P [b = k] + P [b = S] , (10)

and this quantity can be bounded by exploiting Lemma 2 for all the proba-
bilities appearing in the sum with kν odd. Since this can be done without
including any term P [b = 2k] more than once one obtains

P [ν ′γν′ - d] ≤ P [b is even] , ν ′ ∈ primes(S) and ν ′ > 2 .

Assume now S odd. The probability of a factor νγν not dividing d is again
given by (10) and the middle term can be bounded by the same procedure
of the S-even case. The remaining term P [b = S] can be bounded with
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P [b = S − 1] (S − 1 is a multiple of 2 at this point) by using the fact that
for p < S/(S + 1) it holds

P [b = S − 1] =

(
S

S − 1

)
pS−1(1− p) ≥

(
S

S

)
pS = P [b = S] ,

concluding the proof.

Since the M variables f1, . . . , fM are i.i.d. and by recalling (6) we have
the following straightforward corollary

Corollary 1. If p ∈ [0, S/(S + 1)] then

P
[
Ŝ(f̄) 6= S ; S

]
≤ |primes(S)| β(p)M , (11)

where β(p) is the probability that the outcome of a binomial random variable
with susses probability p and a number of experiments S is even, i.e.

β(p) :=
1 + (1− 2p)S

2
. (12)

We remark that (11) is the exact error probability when S is a power of
two. This means that if we consider as optimization strategy for p that of
minimizing the worst case error probability over a certain range of possible
sizes [1, Smax] then the optimum is given by p = 0.5 corresponding to a global
minimum of β(p) for any S power of two.

We conclude this section by the graphical comparison in Figure 1 where
we plot the bounds (5) and (11) as functions of M .

2.2 Max consensus and common uniform distribution

In this case the common distribution is uniform over [0, 1], i.e. y
(i)
m ∼ U [0, 1],

and the consensus function is the component-wise maximum. Asymptotically
the network reaches consensus on a point f ∈ [0, 1]M such that

fm := max
i∈N

y(i)
m , m = 1, . . . ,M . (13)

The distribution of each outcome fm is given by the S-th order statistic

P [fm ≤ a] =
∏
i∈N

P
[
y(i)
m ≤ a

]
=

{
aS 0 ≤ a ≤ 1

0 otherwise.
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Figure 1: Comparison of the two error probability bounds given in (5) and
(11). We have set α = 0.85 in (5) while for the bound in (11) we have
considered the range of sizes [1, 106] for which we have found numerically
maxS∈[1,106] |primes(S)| = 16 and set p = 0.5.
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By exploiting independency, this provides in turn the joint probability density
of f

p (f ; S) =

S

M∏
m=1

fS−1
m 0 ≤ fm ≤ 1 , m = 1, . . . ,M

0 otherwise

(14)

Given f and by interpreting the (unimodal) density (14) as a likelihood, one
finds

Ŝ(f) = arg max
S∈R+

p (f ; S) =
M∑M

m=1−log (fm)
. (15)

It can be seen that except from a scaling factor, the r.v. Ŝ(f) is distributed
as an inverse gamma variable and for M > 2 its mean and variance can be
written in explicit form

E
[
Ŝ;S,M

]
= S

M

M − 1
, var

[
Ŝ ; S,M

]
= S2 M2

(M − 1)2(M − 2)
.

Using these relations one can show that the estimator relative mean square
error depends only on M and is strictly decreasing (in N+)

E

(S − Ŝ
S

)2

; S(t),M

 = 2
M − 1

M2 − 3M + 2
, M > 2 .

In Section 5 we will verify on a qualitative level that this property implies
that, once M is fixed, the estimator in (15) exhibits approximately the same
relative accuracy with varying S.

As a last remark, we notice that this is the same ML estimator (with
the same statistical properties) of the one presented in [5] where the consen-
sus function is the component-wise minimum and the common probability
distribution is exponential.
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3 Estimating the size of neighborhoods

Being able to estimate the size of a network only as a whole is limiting in
practice. It is often the case for networks to consist of multiple clusters, i.e.
smaller, more tightly connected sub-networks, in which information on the
size of a node’s neighborhood can be as important as information on the size
of the whole network.

In the following we briefly review a more general estimation procedure
which exploits the same basic ideas behind the max-consensus estimator in
Section 2.2 extending it to the case of networks with dynamic topology.

This background material is preparatory to the hypothesis testing ap-
proach for detecting topology changes that we present in Section 4.

3.1 The max-consensus case

We start by introducing an assumption on the communication protocol used
by nodes in the network. This jointly provides a natural way to partition
time that allows us to deal with the effects of size changes in an aggregate
fashion.

Protocol 1. The time is divided in epochs, indexed by t = 0, 1, 2, . . .. Every
agent broadcasts its information exactly once per epoch. The order of the
broadcasting operations is irrelevant, and can change in time. When an agent
broadcasts its information, it broadcasts the information that it had at the
beginning of the epoch.

In the following we will use the terms ‘epoch‘ and ‘time‘ interchangeably,
we remark however, that t is just the epoch index and does not represent a
physical quantity (e.g. seconds).

Given protocol 1 it is meaningful in this context to consider the following
network model: at each epoch t the we describe the network by means of
a graph, G(t) := (V(t), E(t)), where V(t) is the set of agents active at time
t and E(t) ⊆ V(t) × V(t) is the set of communications among active agents
at time t: (i, j) ∈ E(t) indicates that agent i has successfully broadcast its
information to j.

Assume now that information is generated as in Alg. 1; intuitively, this
scheme is a parallelization of the procedure described in Section 2.2. Now,
however, each agent i is endowed with matrices F (i)(t) ∈ RM×D, where M
and D are fixed a-priori and t is the epoch index. For notational brevity, we
will let f

(i)
k (t) denote the k-th column of F (i)(t), and f

(i)
m,k(t) the element in

the m-th row and k-th column of F (i)(t) (k = 1, . . . , D, m = 1, . . . ,M).
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Algorithm 1 Information generation scheme

1: for t = 1, 2, . . . do
2: (Information Update) each agent i computes F (i)(t) by shifting the

columns of F (i)(t − 1), in the sense that f
(i)
k (t) = f

(i)
k−1(t − 1) for

k = 2, . . . , D. f
(i)
1 (t) is instead filled with M new i.i.d. random values

f
(i)
m,1(t) ∼ U [0, 1], m = 1, . . . ,M ;

3: (Communication) every agent broadcasts F (i)(t) to its neighbors fol-
lowing the communication protocol 1;

4: (Information Mixing) each agent i updates its F (i)(t) by means of the
F (j)(t)’s received from its neighbors. More specifically

f
(i)
m,k(t)← max

(j,i)∈E(t)

(
f

(i)
m,k(t),

{
f

(j)
m,k(t)

})
(16)

for m = 1, . . . ,M , k = 1, . . . , D.
5: end for

With this it is possible to precisely define which agents contributed, from
a statistical point of view, to the generation of the k-th column of F (i)(t):

Definition 1. Given the communication protocol 1 and Alg. 1, the set of
k-steps neighbors of agent i at time t is defined for k = 0 as V(i)

0 (t) = {i}
and, for k ≥ 1, through the recursion

V(i)
k (t) :=

⋃
(j,i)∈E(t)

V(j)
k−1(t− 1) .

Let S
(i)
k (t) denote the size of V(i)

k (t), i.e. S
(i)
k (t) :=

∣∣∣V(i)
k (t)

∣∣∣. Since f
(i)
k (t)

aggregates information just from the agents in V(i)
k (t), it follows from Sec-

tion 2.2 that the statistic

Ŝ
(i)
k (t) :=

M∑M
m=1−log

(
f

(i)
m,k(t)

) , (17)

is the ML estimator of S
(i)
k (t) given f

(i)
k (t). Thus, at each time t, any node i ∈

N (t) possesses locally D size estimates, one for each k-steps neighborhood,
k = 1, . . . , D.
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4 Change detection

Intuitively, identification of changes in the size of the generic k-steps neigh-
borhood of the generic agent i can be performed by inspecting the temporal
evolution of F (i)(t).

In this chapter we exploit the estimation scheme of Section 3 in order
to formulate and characterize an hypothesis test in the form of a GLR that
nodes can run locally at each epoch to test topology changes in their k-steps
neighborhoods.

Our working context is framed by the assumption that the process trough
which the network changes its topology and size in time is either non-random
or random with unknown distribution. Moreover, as customary in the change
detection literature (see e.g. [6]), we assume at most one sensible change in
the true size over the time window the test is performed on.

We brifly recall some definitions relevant to hypothesis testing in Sec-
tion 4.1, then, in Section 4.2 we outline the change detection algorithm and
in Section 4.3 we provide its statistical characterization.

4.1 Background material on hypotheses testing

Consider a r.v. f with absolutely continuous probability density in a parametrized
family {pθ}θ∈Θ, where θ is in general a vector and Θ is the set of all a-priori
possible values taken by the parameter. Without loss of generality, let H0

and H1 be two complementary hypotheses on θ

Hi = {f ∼ pθ with θ ∈ Θi} , i ∈ {0, 1} , (18)

To the problem of deciding between H0 and H1 is naturally associated, by
the Neymann-Person Lemma (see e.g. [12, 11, 6]), a decision function g(f)
with range {0, 1}. g partitions the space of outcomes for f in two regions: the
acceptance region R := {f s.t. g(f) = 0} and the critical region Rc. When
testing between H0 and H1 there are two kinds of possible error: selecting
H1 when H0 is true, this is said to be an error of type I or accepting H0

whenH1 is true, i.e. an error of type II. For each test, with associated critical
function g, one can define the test power function

βg(θ) := E [g ; θ] . (19)

βg(θ) characterizes the statistical performance of g in terms of the probability
of deciding H1 for a fixed θ ∈ Θ. In particular, the worst case type I error
probability, a.k.a. the size of the test, is defined as a function of βg by means
of

α0(g) := sup
θ∈Θ0

βg(θ) . (20)
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Moreover, when θ ∈ Θ1, βg(θ) is the probability of not committing errors of
type II for that particular θ.

A decision function g is said to be Uniformly Most Powerful (UMP) in
the class Kε := {g̃ s.t. α0(g̃) = ε} (namely, the set of tests of given size ε) if
βg(θ) ≥ βg̃(θ) for all g̃ ∈ Kε and for each θ ∈ Θ1.

4.2 The GLR approach

The following computations involve only local quantities. We assume that
the agent index i and the neighborhood k have been already chosen by the
user. Thus we drop all the superscripts (i) and subscripts k for notational

brevity. We shall then indicate f
(i)
k (t) with f(t), χ

(i)
k (t) with χ(t), V(i)

k (t)

with V(t) and S
(i)
k (t) with S(t).

Consider the time window t − N, . . . , t, of length N + 1 with N given,
and the following set of hypotheses

H0 : S(t−N) = . . . = S(t− T ) = S,
S(i) ≥ σS for all i ∈ {t− T + 1, . . . , t}

H1 : S(t−N) = . . . = S(t− T ) = S,
exists i ∈ {t− T + 1, . . . , t} s.t. S(i) < σS

(21)

parametrized both in T ∈ {1, . . . , N} and in σ, S ∈ R+. (21) involves thus 3
unknown parameters: the pre-change value S, the unknown time of change
T , and the post-change value.

Deciding between the composite hypothesisH0 andH1 can be interpreted
as testing a trend of decrease in size, with the size amplitude described by
parameter σ ∈ (0, 1]2.

We implicitly assume that no prior information is available on the vari-
ous estimands and thus estimate all the unknown quantities from the data
through ML approaches, see [6, Chap. 2.6.2].

Assume that σ and N have already been chosen (these are both design
parameters whose role is discussed in Section 5). Testing between H0 and
H1 in (21) can thus be performed running Alg. 2 for each t in Alg. 1.

The algorithm performs as follows: it starts computing, for all the plausi-
ble change times, the ML estimates of the pre-change and of the post change
values under no constraints and under hypothesis H0 (equations (22), (23)
and (24) respectively). Then it computes all the possible GLRs in (25), from
which it is possible to estimate the most likely change time in (26) and thus
decide between the hypotheses in (27).

2The specular set of hypotheses, in which the inequalities are reversed, leads a test for
testing against a trend of size increase.
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Algorithm 2 Neighborhood change detection

1: (cycle on all the plausible change times)
2: for T = 1, . . . , N − 1 do
3: (estimation of the pre-change value)

S(T ) =
M(N − T + 1)∑t−T

τ=t−N
∑M

m=1−log (fm(t))
(22)

4: (estimation of the post-change values under no hypotheses and under
H0)

5: for τ ∈ {t− T + 1, . . . , t} do

Ŝ(τ) =
M∑M

m=1−log (fm(t))
(23)

Ŝ0(τ) =

{
Ŝ(τ) if Ŝ(τ) ≥ σS(T )

σS(T ) otherwise
(24)

6: end for
7: (computation of the GLR)

Λ(T ) =

t∏
τ=t−T

`
(
Ŝ0(τ) ; f(τ)

)
t∏

τ=t−T

`
(
Ŝ(τ) ; f(τ)

) (25)

8: end for

9: (computation of the optimal change time)

T = arg min
T ∈{1,...,N−1}

Λ(T ) (26)

10: (decision between H0 and H1)

g (f(t−N : t)) =

{
0 if Λ(T ) ≥ λ
1 otherwise.

(27)

4.3 Statistical analysis of Algorithm 2

We now characterize the decision function (27) in terms of its power, provide
some optimality results and discuss the role of the tunable parameter M in
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connection with the test performance. Throughout this section we assume
that T and σS are fixed, i.e. they have been computed according to Alg. 2.

The following proposition and corollary establish a partial order in the
parameters space:

Proposition 2. Consider g of the form (27) as a function of the T -dimensional
vector [S(t− T + 1), . . . , S(t)], with each scalar component in R+. Then for
any t ∈ {t−T+1, . . . , t} and fixed S(t−T+1), . . . , S(τ−1), S(τ+1), . . . , S(t)
the power of

g
(
S(t− T + 1), . . . , S(τ − 1), S(t), S(τ + 1), . . . , S(t)

)
is strictly monotone decreasing with S(t).

Proof. The probability of rejecting H0 as a function of the parameters S(t−
T + 1), . . . , S(t) is by definition

P

[
t∑

τ=t−T+1

log
p0 (f(τ) ; S(τ))

p (f(τ) ; S(τ))
< log λ

]
.

We will show that the thesis holds in the particular case t = t. By the
problem’s symmetry, this will prove that the proposition remains true for
any t ∈ {t− T + 1, . . . , t}.

Define

λ(τ) = log
p0 (f(τ) ; S(τ))

p (f(τ) ; S(τ))
, τ = t− T + 1, . . . , t (28)

and

λ = log λ−
t−1∑

τ=t−T+1

λ(τ) .

By the law of total probability the test power function can be computed by
evaluating the multi-dimensional integral∫

· · ·
∫

P
[
λ(t) < λ

∣∣λ ; S(t)
] t−1∏
τ=t−T+1

p (f(τ); S(τ)) df(τ) .

We note now that only the first factor of the integrand depends on S(t)
and that the same factor can be rewritten as the linear convex combination

P
[
λ(t) < λ

∣∣λ ; S(t)
]

=

P
[
λ(t) < λ

∣∣∣λ, Ŝ(t) < σS ; S(t)
]
P
[
Ŝ(t) < σS ; S(t)

]
+ P

[
0 < λ

∣∣ λ]P [Ŝ(t) ≥ σS ; S(t)
]
,

17



where P
[
0 < λ

∣∣ λ] ∈ {0, 1} does not depend on S(t). It suffices then to
show that

P
[
λ(t) < λ

∣∣∣λ, Ŝ(t) < σS ; S(t)
]
P
[
Ŝ(t) < σS ; S(t)

]
=

P
[
λ(t) < λ, Ŝ(t) < σS

∣∣λ ; S(t)
]
,

is a strictly decreasing function of S(t) (whenever it is not one). Indeed, by
explicitly computing λ(t), one finds

λ(t) =
(
Ŝ(t)− Ŝ0(t)

)
x+M log

Ŝ0(t)

Ŝ(t)
,

where

x :=
M∑
m=1

− log fm(t)

has apriori distribution Gamma (M,S−1(t)) (see [13]). Under the condition

Ŝ(t) < σS, λ(t) is a strictly decreasing function of x, e.g. λ(t) = h(x) and
such h(·) is easily seen to be a bijection. It follows immediately

P
[
x > h−1(λ) , Ŝ(t) < σS

∣∣λ ; S(t)
]

= P
[
x > h−1(λ) , x >

M

σS

∣∣λ ; S(t)

]

=


Γ(M,S(t)h−1(λ))

Γ(M)
h−1(λ) >

M

σS

0 otherwise

Where Γ(·, ·) and Γ(·) are the upper incomplete and the usual gamma func-
tions respectively. Γ is strictly decreasing in its second argument and thus
the power function is strictly decreasing as a function of S(t).

The following corollary follows immediately

Corollary 2. If
[S(t− T + 1), . . . , S(t)] ,

[S ′(t− T + 1), . . . , S ′(t)] ,

are s.t. S(τ) ≤ S ′(τ) for all τ = t− T + 1, . . . , t, then

βg (S(t− T + 1), . . . , S(t)) ≥ βg (S ′(t− T + 1), . . . , S ′(t)) .

Moreover the inequality is strict if there exists at least one τ ∈ {t − T +
1, . . . , t} such that S(τ) < S ′(τ).
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We are now in a position to prove the following:

Proposition 3. The size of a most powerful test deciding between H0 and
H1 can be computed by evaluating the test power function at the point on the
boundary S(τ) = σS̄, τ = t− T + 1, . . . , t, i.e.:

α0 = βg
(
S(τ) = σS̄, τ = t− T + 1, . . . , t

)
. (29)

Proof. This is trivial by recalling the definition of size of g in (20) and by
exploiting Corollary 2

It turns out that the GLR test formulated in Sec. 4 exhibits two properties
of remarkable practical importance. The first one being optimality of the
decision rule (27) when testing against any simple alternative

Proposition 4. For any given size α0 the test of H0 against H1 induced by
the decision function (27) is UMP.

Proof. This is a direct consequence of the independence of α0 from any simple
alternative in H1.

For the sake of clarity, let us now emphasize the dependence of the deci-
sion rule from the boundary constraint in (21) by writing g := g(σS). The
following proposition states a sort of independency of the power function
from σS.

Proposition 5. Consider the two decision functions g(σS) and g(σ′S
′
) cor-

responding to two different boundary constraints in the hypotheses (21) and
define

β := βg(σS) (S(t− T + 1), . . . , S(t)) ,

and
β′ := βg(σ′S

′
) (S ′(t− T + 1), . . . , S ′(t)) .

If for all τ = t− T + 1, . . . , t there exists reals ρ(τ) such that

ρ(τ) =
S(τ)

σS
=
S ′(τ)

σ′S
′ , (30)

then β = β′.
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Proof. For the sake of a simpler notation, in the following we omit the
parameters when writing probabilities and densities. Let us define T =
{t−T +1, . . . , t} and denote by P the set of all possible subset of T . Futher-
more for each τ ∈ T let

P1(τ) := P
[
Ŝ(τ) < σS

]
, P0(τ) := P

[
Ŝ(τ) ≥ σS

]
.

By the law of total probability and Bayes rule, the type I error probability
can be computed by means of

∑
p∈P

P

[∑
τ∈p

λ(τ) < λ , Ŝ(k) < σS if k ∈ p

] ∏
τ∈T \p

P0(τ) ,

where λ(τ) has been defined in (28). By explicit computation of the first
factor in each term of the sum one finds

P

[∑
τ∈p

M

(
1 + log

σSx(k)

M

)
− σSx(τ) < log λ ,

M

x(k)
< σS if k ∈ p

]
,

(31)
where x(τ) is again the r.v.

M∑
m=1

− log fm(τ) ,

with distribution Gamma (M, (S(τ))−1). By introducing the new set of r.v.s.
x̄(τ) = σSx(τ) and substituting in (31) one finds

P

[∑
τ∈p

M

(
1 + log

x̄(τ)

M

)
− x̄(τ) < log λ , x̄(τ) > M if k ∈ p

]

and since by the scaling property of gamma distributions, each x̄(τ) is dis-
tributed as Gamma

(
M,σS/S(τ)

)
. This probability depends only on the

ratios in (30). Following along these lines, the same is easily proved also for

the terms P
[
Ŝ(τ) ≥ σS

]
.

The following result follows immediately

Proposition 6. (computing the test threshold λ) Consider a most-powerful
test g with size α0. The test threshold λ does not depend on the value of σS.

20



Proof. By proposition 2, when considering the worst case for (20), we can
assume S(τ) = σS for all τ = t− T + 1, . . . , t. Futhermore, by the previous
proposition, the power will depend only on the ratios ρ(τ) := S(τ)/(σS),
τ = t− T + 1, . . . , 1. The proof is concluded by noting that for any outcome
of S and fixed σ these ratios are all equal to one.

As a consequence, λ depends only on M , α0 and T , where M and α0

are parameters fixed a-priori and the optimal change time T is estimated at
each epoch t by means of (26). Thus, a string of thresholds, one for each
T ∈ {1, . . . , N}, can then be computed offline, e.g., by taking σS = 1 and
S(τ) = 1, τ = t−T + 1, . . . , t. At run-time, each node needs only to test the
GLR outcome against the saved threshold, corresponding to the estimated
value of T .

In Figures 2 and 3 we plot the test power as a function of T , M and
ρ := S(τ)/σS, τ = t − T + 1, . . . , t for α0 = 0.05 and α0 = 0.01 respec-
tively. To produce these plots the distribution of the GLR has been evalu-
ated numerically using the Monte Carlo method (see the scripts in the folder
/scripts/matlab and in particular testpower.m). As we expect from the
consistency property of ML estimators the the type II error decreases with
increasing M (when the values of the remaining parameters are fixed). Then
M realizes a thread-off between a test with higher power and the usage of
(possibly shared or limited) communication resources, eg. shared buses or
limited data throughput.

We conclude this section by noticing that, as one migth intuitively expect,
the higher values assumes T the more probable is to decide for H1 when H1

is true.
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Figure 2: Type II error probability as a function of M , T and ρ := S(τ)/σS,
τ = t− T + 1, . . . , t; the test size is α0 = 0.05.
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Figure 3: Type II error probability as a function of M , T and ρ := S(τ)/σS,
τ = t− T + 1, . . . , t; the test size is α0 = 0.01.
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5 Simulations

Here we comment some simulations of the change detection algorithm pro-
posed in Section 4. In particular, we analyze the effects of changing the
tunable parameters and discuss the algorithm’s main shortcomings.

For the purpose of this section a custom simulation library, python-netsim,
has been written in the python language [3]. The library allows the simu-
lation of our GLR approach on arbitrary networks even with time-varying
topology and is built on industry standard packages for numerical computa-
tion and analysis of complex networks [2, 1]. The library can be found under
the folder /scripts.

In the following we will concentrate on a prototypical network with a
grid topology of side 10. Each node in the network is identified by a tuple
(x, y), x, y ∈ N. Due to the naming convention used by the network-analysis
library we employ, the lower-left node is given the id (0, 0) and for a 10-sided
grid the upper-right node is identified by the id (9, 9). We have developed
two different ways of visualizing information on the evolution of the change
detection algorithm. In the first one we concentrate on a single node and
plot the evolution of some relevant quantities over a window of N+1 epochs.
An example frame from one of the attached videos is in Figure 4:

• in the upper border we report the values of the parameters chosen for
the given simulation. The value of k, defining which k-steps neighbor-
hood the quantities refer to, and the node id are reported here too.

• the trajectory of the selected k-steps neighborhood size estimate is
plotted with a solid line. This line is black unless the tracked node
has not yet acquired at least a window of N + 1 observations, in which
case is drawn in yellow (this can happen, e.g., right after the simulation
start).

• the exact size of the k-steps neighborhood (recall Definition 1) is plotted
as a dashed black line.

• the boundary constraints defining the hypotheses H0 and H1 in (21)
are plotted as a dashed red line. Cyan and gray shaded areas enclose
the points used in the computation of S , i.e. the points in the range
[t−N, t−T ] where T is the optimal change time in (26). On the right
of the gray shaded area are the points over which the change-detection
test is performed at the given epoch. Therefore the dashed red line
assumes the value S in the cyan and gray areas and the value of σS
on their right. The exact meaning of the cyan area is explained in
Section 5.1.
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• whenever a change is detected at time t, this epoch index is recorded
and at every successive frame a red vertical panel is overlaid around
the list of past and current alarm times.

• the text at the lower left corner of each frame reports the number of
active nodes at the current epoch over the total number of nodes in the
network (active and inactive) and aggregate information on the alarm
status of the tracked node as a string of the form

alarms x(i)(t) in y(i)(t)↔ z(i)(t) .

Here x(i)(t) ∈ {0, 1, . . . , D} is the number of alarms that the tracked
node i fired at the current iteration. Let us define for each node i ∈
N (t)

K(i)(t) :=
{
k : i detect a change in its k-steps

neighborhood at time t, k = 1, . . . , D
}
.

Then x(i)(t) :=
∣∣K(i)(t)

∣∣. y(i)(t) and z(i)(t) are the minimum and the
maximum k ∈ {1, . . . , D} for which the tracked node fired an alarm
at time t, i.e. y(i)(t) := min

(
K(i)(t)

)
and z(i)(t) := max

(
K(i)(t)

)
. In

Figure 4 eight alarms were fired at the current epoch and the changes
were detected for eight different values of k between 1 and 11 (in par-
ticular the 1-step and 11-steps neighborhood change detectors fired an
alarm).

In the following we will also use a second, more global, way to visualize
information on the workings of the change-detection algorithm. An example
frame of this view is in Figure 5

• nodes are drawn as circles with different colors according to their status.
Gray nodes are inactive nodes which do not take part in consensus
during the current epoch (although they are draw as part of the network
topology this nodes are not contained in N (t)); all other nodes are
active. Nodes that fired alarms in the current epoch, i.e. those nodes
i ∈ N (t) for which K(i)(t) 6= ∅, are drawn with different shades of
red. The shade of red used is bright red when min

(
K(i)(t)

)
= 1 and

dark red when min
(
K(i)(t)

)
= D. Active nodes that did not detect

any change in their k-steps neighborhoods for any k = 1, . . . , D are
drawn white. Yellow nodes instead are active nodes which haven’t yet
acquired a window of N + 1 observations: they take part in consensus
but cannot yet run the change-detection algorithm.
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Figure 4: Example trajectories for the change detection algorithm over a
window spanning N + 1 epochs. See the text for an explanation of the
conventions used.

26



• in the lower left corner we report the current epoch index, the number
of active nodes over the total number of nodes (active and inactive) in
the network and a string carrying aggregate information on the alarms
that fired in the current epoch of the form

alarms a(t)/b(t), bkc c(t)↔ d(t) dke e(t)↔ f(t) .

a(t) is the number of (active) nodes that fired at least one alarm in the
current epoch while b(t) is the total number of alarms that fired in the
network at time t

b(t) :=
∑
i∈N (t)

∣∣K(i)(t)
∣∣ . (32)

The remaining statistics provide further information on what change-
detectors are firing in the current epoch and, in a sense, how they are
distributed:

c(t) := min
i∈N (t)

{
K(i)(t)

}
, d(t) := max

i∈N (t)

(
minK(i)(t)

)
,

e(t) := min
i∈N (t)

(
maxK(i)(t)

)
, f(t) := max

i∈N (t)

{
maxK(i)(t)

}
.

It is simpler to start by analyzing first the case of a static network; we do
so in Section 5.1. In Section 5.2 instead we consider network with dynamic
topology; this is the case motivating the introduction of the parameter σ in
the definition of the hypotheses H0 and H1.

5.1 Static network

As we shall see the pre-change size estimate, S, has a dramatic effect on the
test performance. Let us consider the following choice of parameters

M = 50, D = 20, N = 25, α0 = 0.01, σ = 0.01 .

The attached video 00-static-net.avi pictures the evolution of the change
detection algorithm applied to the 20-steps neighborhood, for the node with
id (0, 0) on the lower-left corner of a grid network with static topology. The
pre-change size estimates tend to be very noise and biased towards over
estimating the actual value, which in this simulation is constant and equal
to 100 (the number of nodes in the network) after an initial transitory. In

particular out-lier outcomes of Ŝk(t) at times near the lower part of the range
[t−N, . . . , t] tend to trick the change time estimator into selecting high values
for T leading to over-estimating the true pre-change size; see for example the
extreme case at time t = 130 in the video.

27



Figure 5: Global view example of the compressed status of each node in
the network at a given epoch index. See the text for an explanation of the
conventions used.
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A partial solution to this problem is to reserve a number N of past ob-
servations at the lower end of the observation window (i.e. for times near
t−N) for the sole computation of S. This can be done by restricting the set
of possible values of T over which the search for the optimal change time is
performed in Algorithm 2 to {1, N −N}. In 01-static-net.avi we picture
a realization of the trajectories for the same parameters of the previous case
but with N set to 5. Now the number of false alarms is greatly reduced al-
though the rate at which they are fired is still sensibly higher than α0 = 0.01.
It is evident how, as in the previous case, (false) alarms are fired only when
the estimate of S is inaccurate, i.e. whenever S is sensibly higher than the
number of active nodes.

We have found that choosing N ≈ 5 tends to provide good results with-
out introducing to much lag due to its filtering effect (even when the network
has time-varying topology). We notice that the behavior of the change de-
tection test remains qualitatively the same even when increasing the number
of nodes: see for example the realization in 02-net-static.avi in which we
consider a grid network with a side increased to 20 nodes.

5.2 Dynamic network with unreliable nodes

Here we simulate unreliable networks, which we model by allowing each node
to be in any of two states: active or inactive. Only active nodes take part in
consensus and only nodes which are active from at least N + 1 epochs also
run the change-detection algorithm.

We first analyze, in Section 5.2.1, the case in which transitions from the
active to the inactive state and vice versa are regulated by a birth-death
like process. Then in Section 5.2.2 we comment briefly on the problem of
distributedly detecting the ‘direction‘ in which a disconnection happens.

5.2.1 Random state transitions

In this case the transition between the active and the inactive state is reg-
ulated by the following simple model: at each epoch each active node has
a probability Pd = 0.01 of becoming inactive while each currently inactive
node has a probability Pb = 0.04 of transitioning back to the active state.

In 03-dynamic-net.avi and 04-dynamic-net.avi we picture two real-
ization of such process for k = 20 and k = 10 respectively. The added noise
due to the time-varying nature of the network topology deteriorates sensibly
the estimation of the pre-change size canceling out the improvement achieved
by increasing N ; this effect is even more extreme in the noisier k = 10 case.
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This is again an effect of the over-estimation of S which in turn leads to a
set of hypotheses defining a ‘ill-posed‘ change-detection test.

This is test case motivated the introduction of the parameter σ in our
formulation of the hypotheses in (21). The rationale is that one might not
always be interested in all kind of changes, but just in those disconnections
involving a sensible amount of nodes. In practice using σ < 1 has also the side
effect of greatly improving the rate of false alarms (even for static networks).

In 05-dyn-net.avi and 06-dyn-net.avi we picture two realizations for
k = 20 and k = 10 respectively and the sensibility threshold σ set to 0.9. Now
the test is able to both contrast the bias in the pre-change size estimate and
still effectively detect size changes which have sensible effect on the k-steps
neighborhoods.

Smaller values of σ do improve further the false alarm rate reducing it.
However, the smaller σ the less sensitive the test becomes at detecting small
variations in the given neighborhood size.

As a last resort, when one wants to more reliably detect even the smallest
disconnections,it becomes necessary to increase M ; this however comes at the
cost of increased usage of computational and communication resources. In
07-dyn-net.avi and 08-dyn-net.avi we picture two realizations for k = 10
and M equal to 100 and 500 respectively (see also the ‘global view‘ in video
09-dyn-net.avi in which we have set M = 100).

5.2.2 Building a gradient towards the disconnection

In principle information from the change detectors can be exploited in order
to distributedly build a gradient towards the disconnection, i.e. somehow
‘identifying‘ the direction in which the disconnection happened. An intuitive
way to do so is to build gradients using the estimates of each nodes distance
from the disconnected subgraph. One way of measuring this distance in
hops/epochs is to employ the estimator

δ̂(i)(t) := min
j∈N (t)

{
K(j)(t)

}
.

Thus δ(i)(t) is the smallest k for which node i detected a change in its k-steps
neighborhoods.

In the attached video 10-dyn-net.avi we deactivate and then activate a
group of nodes on the upper-right corner of the grid every 30 epochs. Recall
that nodes with local alarms are drawn with shades of red: bright red if
δ(i)(t) = 1 and darker reds as δ(i)(t) increases towards D. The animation
shows how a gradient is naturally build towards the disconnection.

30



The same qualitative results are obtained also for other kinds of network
failures. See for example 11-dyn-net.avi in which a hole like disconnection
happens in the center of the grid.

In these examples all the nodes still active in the network after the failure
event where able to detect the change of topology. More subtle behavior
emerge when the network fails in a way that effects only the communication
channels such that all the component nodes are still active and part of a
single connected component. One such example is given in 12-dyn-net.avi

where we disable some of the communication links leaving the graph with a
comb like topology. Unintuitively (although correctly) the nodes in the two
lower rows of the grid do not detect any change in their neighborhoods. This
is in the nature of our approach: by design it can only detect changes in the
size of a node’s neighborhood.

We believe however that our approach could in principle be extended to
detect changes in the connectivity of a given k-steps neighborhood. Let us
consider again the initial part of 02-static-net.avi. The video shows how
the evolution of Ŝ40(t) starts with a slow increase, followed by higher rate of
increase as the tracked node aggregates information from the (more tightly
connected) center part of the grid, followed again by a slower increase rate
when the tracked node finally receives information that had been generated
by nodes on the opposite corner of the grid. Thus, intuitively detecting
changes on the level of connectivity of a given neighborhood could be per-
formed by inspection of the evolution of the differences Ŝk(t) − Ŝk−1(t) as
time passes.
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6 Conclusion

In this report we have considered two problems: the first was estimating the
size of a network under the constraint of anonymity by exploiting consensus
and the second was formulating a test for detecting topology changes based
on such estimates.

We started by recalling some results for two size estimators from [14]: one
estimator for the average-consensus and common Bernoulli distribution case
and a second estimator in which max-consensus is paired with a common
uniform distribution. We have found a refined a bound on the error prob-
ability of the estimator in the Bernoulli case which performs slightly better
than the previous state of art. Unfortunately this result has little practical
interest due to the slow convergence rate and poor scalability of average con-
sensus. Moreover given the discrete nature of the estimator statistic and its
high non-linearity this strategy is higly sensitive to numerical errors (see also
the comments in [15]).

In the second part of the report we have first introduced the concept
of k-steps neighborhood and provided an estimation algorithm which gen-
eralizes the max-consensus estimation strategy for static network. We then
formulated a GLR test for detecting topology changes exploiting such neigh-
borhood size estimates and precoded to its characterization in terms of the
type I and II error probabilities proving also some optimality results.

A set of simulations has highlighted the biggest shortcoming in our ap-
proach in the noisiness and biased nature of the pre-change estimate. Two
tunable parameters were introduced, N and σ, in order to contrast the dele-
terious effects of inaccurate pre-change size estimates and have provided di-
rections for tuning these parameters in order to optimize the rate of false-
positives.

At last we have discussed how the network could distributedly build a
gradient towards the disconnected subgraph starting from the outcomes of
our change-detection test.

Future directions could be enhancing the pre-change size estimator and
the change time estimator by introducing a model of how the network changes
topology over time. Perhaps, even without introducing such stochastic model,
a less näıve way of estimating the change time could be devised then the cur-
rent ML procedure.
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