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. directed graph
G = (V,E, a,r)

. matrix of incidence A

- voltages and currents
y(t) = \ y\\/i sin(w,t + Ly)




Smart grids - Model
Initial model equations
e (KLC) and (KVL) laws
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Approximate model(1)

Laplacian matrix, L = A'Z7A

Green matrix, X satisfying:

(XL =1-11,
| x1, =0
4 )

Solution for the currents:
1= Lu
\_

J




Approximate model(2)

The system can be rewritten in the following form:
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Smart grids - Compensation

Reactive power flows contribute to:
 power losses on the lines

e voltage drop
* grid instability

Problem of optimal reactive power compensation

/ Bolognani, S., and Zampieri, S. (2011)
= Distributed control strategy for optimal reactive power compensation in smart microgrids.



Smart grids - Compensation
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where it has been used the Taylor approximation of i(UO ) for Iarger
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Being 7(Uo,s) infinitesimal, we have an uncoupling phenomenon

QUADRATIC LINEARLY CONSTRAINED PROBLE



Smart grids - Compensation

QUADRATIC LINEARLY CONSTRAINED PROBLEM

gin J(q), whereJ(q)= 1 q RC(X)Q
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Lagrange Multipliers-Theory(1)

2 Duality theory
* Primal min f,(x)s.t f,(x)<0, h.(x)=0
* Lagrangian g(A,v)=inf L(x,A,v)
* Dual max g(A,v)stA=0

Primal+dual mmmp A" v



Lagrange Multipliers-Theory(2)

* . .
P Primal solution

U; Constraint perturbation

Optimal Lagrange multipliers ‘ LOCAL SENSITIVITIES



Lagrange Multipliers-Application(1)

* Objective function J(q)

* Constraints on loads and compensators

qg=0, q9=0,

* Lagrangian
L(g,A) =J(@)+A (- 0)

e Solution




Lagrange Multipliers-Application(2)
Solution requires global knowledge of network topology

‘ Centralized algorithm

e Centralized unit

* High computational cost with large number of nodes
* Broadband communication system

 Change in network topology



Lagrange multipliers-Graphic

Exploiting the perturbation theory of duality
we identify the losses parabola
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Gradient estimation =

Beginning from the Lagrangian with constraints on
both

loads and cor \u%|

a(A) = 5= Re(X) ™A

Solving for A: Mg) = 2R€§X) q
ug]
Re(X)q Re(X)q

’timation




Gradient estimation (1)

* Using PCC voltage
Each node receives information from the PCC

L Au) = ZCosé’Im[e_ (u —uol)] }

U

© phase shift
e constant overestimate results
 between node and PCC
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Gradient estimation (2)

* Distributed
Two nodes exchange information between each other

-
2
cosd = =
P A=A, +———Imle Jﬁ(up+uc)(up—u
\ | u;
g
C

© phase shift
e Between the two nodes underestimate

results
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10° Compare Lambda: From Parent v Graphs (Distributed)
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Validation test for A estimation

~

Real A
analysis

Estimate A
analysis
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1° observation

Branch with no power flowing (A = 0)
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2° observation e o
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Lambda

3° observation
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Performance of the A estimation ;0 ©

Simple grid
Different absorptions

Many compensators

, : 1 |

-Not homogeneus grid

-Depth tree

.



Hypothesis of no homogeneity

If we have different impedance phase angles:

X = X

then the assumption done on Re(X) isn’t true
and we can’t extract the phase angles from X

I
S
Anyway ,the homogeneus hypothesis is a
realistic assumption in the smart microgrid
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The error increases with the increase of
depth tree. This is due to two errors:

from parent A from upgrade

Nevertheless :

Iy
\./
* we can consider compensator information I

e generally, we have 12-20 levels of depth
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* Right upgrades

Ordered

Ak e Time: # levels -1

- * Wrong upgrades

Rand d

OO o Time: 2 # nodes-1
cemiralizes) | O,”"’ voltage needed

e Time: 1 step




Shadow prices interpretation

Ai tells us approximately how much more profit
the process could make for a small increase in

availability of resource q;

Lagrange Multiplier Shadow Price

However, the cost function fo(x) doesn’t consider all
the benefits related to reactive power

Lagrange Mulfip adow Price



Storage strategy

fo(x) doesn’t consider:
* voltage constraints

* congestion constraints 4

We define a storage strategy in order to evaluate
what is truly convenient for a compensator:

Sell or Store active power?



Compensator limitations

A compensator provides an apparent power A that
is function of the active power P and of the
reactive power Q.

These quantities are linked by Boucherot theorem:

Where bars indicate the available active power or
the reactive power required.



The inverter installed on the compensator
is characterized by an apparent power

limitation M. Thus, we have two cases:

o V[ > A No limitation

o M < A Limitatiis active

: We must decide whether to sell or to
- store active power

.IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII’

AaEEEEEnR?®



What to do in case of limitation?

Time t=0

At the initial time we suppose to provide the whole
active power and produce a quantity Q(t=0) of
reactive power

The corresponding inverter limitation is:

¢ ¢ ¢ —) ¢
A"[(to)2 . P(fo>2 in Q(to)z =Tl Q(to)z

Where the reactive power tends to zero.



Time t=1
Suppose to increase the reactive power to:

Q(t1) = Q(to) + dC

Due to active limitation, we must decrease the
active power sold and store a certain quantity:

dS(t1)> = Q(t1)* — Q(to)” mPpdS(t,) = dQ\/(l + 2(25;2))

For any production increment of reactive power
we can consider an equal storage quantity:

[S=dQ
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con5|der|ng the storage inefficiency n :

i

dC' = ndS $p=ndQSp

Where 3 p is the unit price of active power




Gain function using A

For an infinitesimal variation of reactive power
we assume a linear increasing of active power

dP = \dQ

From which we obtain the gain function:

Where $p is the unit price of active power
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To have profits we need to comply with:

Solving the inequality we obtain:

We have a confirmation that A hasn’t all the
necessary information for pricing
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Gain function with Q price
Assuming to know the correct reactive e
power price $, we can define the gain:

Solving the profit inequality, we obtain:

It is plausible that in some cases reactive power
importance is very high even higher than the active

power one



Conclusions

A # shadow price for
* Voltage limits
e Risk of congestion

Pricing Storage strategy

Future developments

* Define a new cost function
e Build different Lagrangians
 Abandon Lagrange theory




