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Abstract

The aim of this project is to develop a reactive power pricing method exploiting the

theory of duality and the Lagrange multipliers in their sense of economic shadow prices.

Our work is based on the results presented in a recent article by a research team of

Padua University [1] where it has been considered the problem of optimal reactive power

compensation in order to minimize the power distribution losses in a smart microgrid. As

a matter of fact, we start precisely from the cost function of the article J(q) which denotes

the total reactive power losses of the grid and thanks to it we define the Lagrangian

function associated with our problem. The Lagrange multipliers are attained by using two

different methods: the first one applies the duality theory directly (centralized system)

while the other is based on the gradient estimation (distributed system). However, having

neglected the voltage and capacity limits of the grid, the information we obtain in relation

to the calculated lagrange multipliers is not sufficient to let us interpret them as shadow

prices. Owing to the impossibility of operating a standard pricing, we consider other

ways to obtain useful economical information related to reactive power. Hence, we define

a storage strategy which basically indicates if it is worth storing active power or whether

it is preferable to inject less reactive power than that required.

2



Summary

• In section 1, we present smart grids: the reasons for their introduction, their

structure and modelization using a graph. Moreover, we focus on the problem of

reactive power compensation in order to minimize power losses.

• In section 2, we introduce the theory of duality and derive the Lagrange multiplier

λ useful to formulate the cost function of the problem. Finally, we provide a graphic

calculation of λ that will constitute a reference for all the next calculations.

• In section 3, to avoid some problems of approximation characterizing the previous

method, we calculate the Lagrange multiplier towards a gradient estimation; at first

we present an estimation which uses the PCC voltage and then a distribution-like

way of estimation in which two nodes of the network exchange information with

each other.

• In section 4, we provide some considerations about the communication strategies

relating to the gradient estimation method parent-child.

• In section 5, we show some validation tests for the calculations exhibited formerly.

• In section 6, we start presenting the well-known economic theory of the Lagrange

multipliers and we demonstrate that this theory is not applicable to our case of

study. Then we discuss the storage strategy in the reactive power management as

well as its limits of application.

• Finally, in section 7, we take stock of the different results obtained and discuss

possible future developments.
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1 Introduction

The current global energy system shows the preponderance of a few large-scale generating

stations far from load centers. This complex and expensive infrastructure, which signif-

icantly affects final electricity price, is characterized by a certain rigidity essentially due

to an unidirectional flow. In this context, the final user has a passive role which consists

in being only a consumer. Recently, a push for change has come from the emergence of

new factors [2], [3]:

• energy market liberalization

• improvement of the the grid efficiency and stability

• exploitation of renewable sources.

The best answer to all these points can be found in a distributed generation approach that

employs small-scale technologies to produce electricity close to the end users of power.

In many cases, distributed generators can provide lower-cost electricity and higher power

reliability and security with fewer environmental consequences than can traditional power

generators. Particularly, the introduction of new energy sources suggests that in the

future much more people will become energy producers thanks to the increasing scientific

interest in this field. The main goal of this new energy dispatch concept is to pass from

the centralized electricity system which primarily delivers electricity in a one-way flow

from generator to outlet, to the bidirectional flow of both electricity and information.

This has two important consequences. It allows consumers to become active part of

the energy supply process, giving them access to the demand response mechanism, and

fosters the diversification of energy sources. The introduction of modern technology in

utility electricity delivery systems is accompanied by the idea of dividing the electric

grid into smaller portions called microgrids. Like the bulk power grid, smart microgrids

generate, distribute, and regulate the flow of electricity to consumers, but do so locally.

Together with the loads connected to the microgrid, we find microgeneration devices.

These are connected to the microgrid via electronic interfaces inverters which not only

enable the injection of the produced power into the microgrid but also perform different

other tasks denoted as ancillary services [4], [5]: reactive power compensation, harmonic

compensation, voltage support. As a result, the network appears to be parcelled into

many autonomous subunits each one aiming at the enhancement of the global electricity

service quality.
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1.1 A smart grid model

The microgrid has been modelled using a directed graph G = (V, E , σ, τ) where V repre-

sents the set of nodes with n = |V|, E corresponds to the set of edges with r = |E| and
finally σ, τ : E 7→ V are two functions which associate to each edge e its source node

σ(e) and its terminal one τ(e).

Figure 1 Graph model: circled nodes represent microgenerators and the edge orientation is

consistent with the sign of the power line currents

A practical way to describe the topology of the grid is given by the incidence matrix

associated with the graph which is defined as

[A]ev :=























−1 if v = σ(e)

1 if v = τ(e)

0 otherwise

From a physical perspective, each edge corresponds to a power line while each node

represents both loads and generators connected with the microgrid. These include res-

idential and industrial consumers, microgenerators and the PCC which is the point of

connection of the microgrid to the transmission grid. Assuming a steady state operating

system, we have that all voltages and currents are sinusoidal signals at the same fre-

quency ω0. Therefore, each of them can be represented by a complex number such as

y(t) = |y|
√
2 sin(ω0t + ∠y) where |y| and ∠y are the absolute value and phase of y at

t = 0. With regard to the system variables they are respectively:

• u ∈ Cn,where uv is the voltage at node v;

• i ∈ Cn,where iv is the current injected by node v into the grid;

• ξ ∈ Cr,where ξe is the current flowing on the edge e into the grid;
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Using these together with the incidence matrix, we can write the Kirchhoff’s current

(KLC) and voltage (KVL) laws in a compact way obtaining the following constraints

AT ξ + i = 0

Au+ Zξ = 0
(1)

where Z = diag(ze, e ∈ E) is the diagonal matrix of line inpedances.

Figure 2 Electric network where black diamonds are microgenerators, white diamonds are

loads and the left-most element of the circuit represents the PCC

We choose to model the PCC node as a costant voltage generator, i.e.

u0 = U0 (2)

while the other ones satisfy the following law

uv īv = sv

∣

∣

∣

∣

uv

U0

∣

∣

∣

∣

ηv

, ∀v ∈ V\ {0} (3)

with sv the nominal complex power and ηv the characteristic parameter associated with

the respective node. This model, widely adopted in the literature of power flow analysis

[6] as a generalization of the ZIP one, is called exponential model [7] and according to

the value assumed by the parameter ηv it represents the behaviour of:

• constant power devices, for ηv = 0

• constant current devices, for ηv = 1

• constant impedance devices, for ηv = 2

Instead of solving the system relative to equations (1), (2), (3), we introduce two

important matrices L, X which will be used in order to obtain an approximate model
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for the microgrid state. In particular, matrix X will come in handy when deriving the

reactive power compensation distributed algorithm. Back to L, this is the Laplacian

matrix and is defined as

L = ATZ−1A

which substituted in (1) gives a solution for the current vector of the microgrid, i.e.

i = Lu (4)

The task of deriving a similar expression for the voltages can be handled by finding a

matrix which allows to express the vector of voltages as a function of that relating to

currents. Since L is not invertible, we resort to matrix X, called Green matrix [8]. This

is defined by the following lemma whose proof is to be found in [1].

Lemma Let L be the complex valued Laplacian L = ATZ−1A. There exists a unique

symmetric matrix X ∈ Cn×n such that











XL = I − 11T
0

X10 = 0
(5)

where I is the identity matrix and [10]v = 1 for v = 0 and 0 otherwise. Thanks to X, it

is now possible to express the voltage u as a linear function of the current i, i.e.

u = Xi+ U01 (6)

The last equation found allows us to write the system in the following form























u = Xi+ U01

1T i = 0

uv īv = sv

∣

∣

∣

uv

U0

∣

∣

∣

ηv

, ∀v ∈ V\ {0}

(7)

Finally, using the Taylor approximation of i(U0) for large U0, we obtain a useful

expression for currents which is used to formulate the power losses minimization problem

and whose proof can be found in [1]

iv(U0) = (s̄v + δv(U0))
1

U0

(8)

where δv(U0) → 0 when U0 → ∞
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1.2 Reactive power compensation problem

Reactive power contributes to no useful work, however it is required to maintain the

voltage to deliver active power through transmission lines. A shortage of this kind of

power results actually in a voltage drop which makes impossible to push the power

demanded by loads through the lines. From a physical perspective, reactive power is

present when voltage and current are not in phase and therefore it occurs in AC electric

systems. Anyway, it becomes particularly relevant when inductive or capacitive loads

are connected to the grid. As a consequence, we have an extra current which increases

Joule heating of the transmission lines. All this compels the electric companies to install

heavier wires capable of tolerating the excess current and the result is extra charges for

the users. It is evident that reactive power flows across the lines concur to power losses

and induce voltage drop making the grid at risk of instability. Thus, reactive power flows

need to be minimized by producing it as close as possible to the users that require it [9].

As previously mentioned, since our work is based on the results presented in the re-

cently released article “A distributed control for optimal reactive power compensation in

smart microgrids” [1] which considers the problem of optimal reactive power compensa-

tion in a smart microgrid, we are going to outline the main points of the solving algorithm

designed by the researchers. Anyhow, it must again be stressed that our contribution

starts with this algorithm which, though, is applicable to any kind of scenarios. Indeed,

the estimation of reactive power prices does not necessarily depend on the presence of a

control algorithm in action, nor on the type of algorithm used.

First of all the original problem needs to be approximated to a convex quadratic

optimization one. Choosing total active power losses as a metric for optimality of reactive

power flows and exploiting the Taylor expansion of i (see expression 8), the cost function

relating to the active power losses can be written as

J
′

= īTRe(X)i =
1

|U0|2
s̄TRe(X)s+

1

|U0|2
J̃(U0, s)

=
1

|U0|2
pTRe(X)p+

1

|U0|2
qTRe(X)q +

1

|U0|2
J̃(U0, s)

(9)

where J̃(U0, s) is infinitesimal for large U0 and s = Re(s) + Im(s) = p + q. The found

expression is of notable interest as discloses two important aspects:

• power losses can be approximated as a quadratic function of the injected power s

• the problem of optimal power flows can be divided into the problem of optimal

active and reactive power injection
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On the basis of this uncoupling phenomenon, it is possible to formulate the problem

of optimal reactive power injection as a quadratic linearly constrained problem. Let

C ⊂ V be the subset of the nodes (with cardinality m := |C|) of the microgrid which

can be commanded. Moreover, suppose that for each agent is only allowed to control the

amount of reactive power injected into the grid as the decision on the amount of active

power abides by economic rules. Thus, the problem of optimal reactive power injection

becomes

min
q

J(q), where J(q) =
1

2
qTRe(X)q,

subject to 1T q = 0

qv = Im(sv) ∀v ∈ V\C

(10)

qv = Im(sv) ∀v ∈ V\C being the nominal amount of reactive power injected that cannot

be commanded. The distributed approach, chosen by the researchers, is based on a

neighbour to neighbour exchange of information and essentially consists in decomposing

the optimization problem into smaller, tractable subproblems which are assigned to small

groups of agents. Consider the family of subsets of C, {C1, ..., Cl} such that
⋃l

i=1 Ci = C.
In the light of this it is convenient to partition q as

q =





qC

qV\C



 (11)

where qC ∈ ℜm and qV\C ∈ ℜn−m. As a consequence, Re(X) results to be partitioned in

the following way

Re(X) =





M N

NT Q



 (12)

the i-th optimization subproblem is

min
∆q

J(q +∆q) subject to ∆q ∈ Si (13)

where

Si :=

{

qC ∈ ℜm :
∑

j∈Ci

[qC]j = 0, [qC ]j = 0 ∀j /∈ Ci
}

Every time a cluster Ci is randomly chosen, the optimization algorithm works executing

the following sequence of steps:

1. agents not belonging to Ci keep their amount of reactive power constant while those

belonging to Ci sense the network and calculate an estimate of the gradient

ν
(i)
k =

[(

e−jθ 1

|Ci|
∑

v∈Ci

ūv

)

uk

]
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2. on the basis of the computed gradient, the agents belonging to the cluster determine

a feasible update step which minimizes the given cost function, coordinating their

actions, and finally update the respective state qv

2 Duality results for reactive power pricing

Having seen the motivations which make reactive power a fundamental issue, it becomes

of primary importance to establish a mechanism which allows a financial compensation

of this service, that is the problem of reactive power pricing.

2.1 Theory of duality and Lagrange multipliers

We start our analysis looking for the parameters which allow us to theorize a correct

pricing and so we consider the original problem of reactive power compensation, trying

to solve the optimization problem using the theory of duality [10] and the Lagrange

multipliers method. We consider the optimization problem in the standard form:

min f0(x)

s.t fi(x) ≤ 0, hi(x) = 0
(14)

and denote the optimal value of (14) by p∗. The basic idea in Lagrangian duality is to

take the constraints into account by augmenting the objective function with a weighted

sum of the constraints fuctions. In this way, we define the Lagrangian function associated

with the problem as follows:

L(x, λ, ν) = f0(x) +

n
∑

i=1

λifi(x) +

n
∑

i=1

νifi(x) (15)

where we refer to λi and to νi as the Lagrange multipliers.

We define the Lagrange dual function as

g(λ, ν) = inf
x∈D

L(x, λ, ν) (16)

For each pair (λ, ν), the Lagrange dual function gives us a lower bound on the optimal

value p∗ of the optimization problem. In order to obtain the best one from the dual

function, we formulate the following new problem

max g(λ, ν)

s.t λ ≥ 0
(17)
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and we refer to λ∗ and ν∗ as the Lagrange optimal multipliers if they are optimal for the

problem above.

It is proved [11] that if x∗ and λ∗ are the primal and dual optimal points for a problem,

they form a saddle point for the Lagrangian; the optimal dual variables so provide very

useful information about the sensitivity of the optimal value with respect to the con-

straints perturbation. Suppose that p∗(u, v) is differentiable at u = 0 and v = 0, then

the optimal dual variables are related to the gradient of p∗ at u = 0 and v = 0 as:

λ∗
i = −∂p∗(0, 0)

∂ui

ν∗
i = −∂p∗(0, 0)

∂vi
(18)

This property, where −λ∗ is the slope of p∗ near u = 0 is explained and demonstrated

in the appendix. Thus, we can conclude that Lagrange multipliers can be seen as the

local sensitivities of the optimal value with respect to the constraints perturbation.

2.2 Load and compensators constraints analysis

At this point, we are ready to apply the illustrated theory to our initial problem. Let us

consider the following partitions:

q =









qPCC

qc

ql









where qc and ql are the reactive powers pertaining to compensators (except the PCC)

and loads respectively. In order to find the solution to the problem, we first consider the

Lagrangian function:

L(q, λl) =
qTRe(X)q

|u2
0|

+ λT
l (q −Ql) (19)

where λT
l (q−Ql) represents the equality constraints on load reactive power and Ql is

the load limit.
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λl =





0m

λ
′

l



 Ql =





0m

Q
′

l





Note that, thanks to this partitioning, only the load part of vector q appears to be

constrained.

Deriving with respect to vector q:

∂L(q, λl)

∂q
=















∂L(q,λl)
∂q1

∂L(q,λl)
∂q2
...

∂L(q,λl)
∂qn















=

















2eT
1
Re(X)q

|u2

0
|

+ λl1

2eT
2
Re(X)q

|u2

0
|

+ λl2

...
2eTnRe(X)q

|u2

0
|

+ λln

















=
2Re(X)q

|u2
0|

+ λl (20)

we obtain:

q∗(λl) =
|u2

0|
2

Re(X)−1λl (21)

and, substituting q into the Lagrangian, we obtain the following dual function:

g(λl) = −|u2
0|
4

λT
l Re(X)−1λl − λT

l Ql

= −|u2
0|
4

[

0m λ
′T
l

]

Re(X)−1





0m

λ
′

l



−
[

0m λ
′T
l

]





0m

Q
′

l





(22)

Operating as above:

∂g(λ
′

l)

∂λ
′

l

=





























0m

− |u2

0
|

2
eTm+1Re(X)−1





0m

λ
′

l



− eTm+1Ql

...

− |u2

0
|

2
eTnRe(X)−1





0m

λ
′

l



− eTnQl





























=





0m

− |u2

0
|

2
Dλ

′

l −Q
′

l



 (23)

where we assume that:

Re(X)−1 =





B C

CT D





Finally, imposing the derivative equal to zero, we find:

λ
′∗
l = − 2

|u2
0|
D−1Q

′

l (24)
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which inserted in q∗(λl) gives q
∗. This one collects the amounts of reactive power that

have to be injected into the network in order to minimize the losses. The found solution

can only be implemented using a centralized algorithm which requires a global knowledge

of the network topology and the existence of a central unit whose task is to collect the local

information coming from compensators. The weakness of such type of solution is related

to the size of the network (i.e. the number of micro-generators) that can be quite large.

This leads to a very high computational cost and consequently to the need of a robust,

efficient and broadband communication system. Besides, the network topology can be

very changeable as a generator can become a load at every instant, for instance when it

cannot satisfy the energetic demand; in this case or when the central unit is damaged, the

system requires expert personnel to reset it. Furthermore, we notice that this solution

calculates λ∗
l without knowing the reactive powers vector q. Since compensators supply

their reactive power through an inverter which has a limitation on the maximum power

delivered, and considering the fact that compensators have always to supply and not to

absorb reactive power, we take into account only the positive limitation. Then we define

λT
c (q − Qc) which represents the inequality constraints on the maximum reactive power

generated by compensators where Qc is the inverter limit.

λc =





λ
′

c

0p



 Qc =





Q
′

c

0p





from which we obtain the Lagrangian function:

L(q, λl, λc) =
qTRe(X)q

|u2
0|

+ λT
l (q −Ql) + λT

c (q −Qc) (25)

Performing calculations as above, the solution clearly becomes quite arduous. Hence, we

have another reason (in addition to the disadvantages mentioned before) for abandoning

this way of proceeding.

2.3 Graphic calculation of Lagrange multiplier

Exploiting the perturbation theory of duality [11], we derive a Lagrange multiplier which

can be considered ‘correct’. Precisely because of this theory, this parameter can be used

as a valid criterion for analyzing the performance of the different multipliers estimation

methods.

The calculation of a minimum point of the Lagrangian function (n+1-dimensional) cor-

responds to find the vector associated with the reactive powers of all the nodes which
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minimizes the grid losses. Assuming the optimal powers q∗ of all the nodes to be known

eccept the i-th one (qi 6= q∗i ), we manage to obtain a two-dimensional quadratic function

(parabola) consisting in an input equal to the reactive power value relative to the i-th

node and an output equal to the value of the grid losses.

In order to generate the i-th curve, we compute some grid losses values obtained by mak-

ing the i-th node varying its qi. So there are two cases: if the node is a load it is sufficient

to change its absorbed reactive power; if on the other hand we deal with a compensator,

this one has to be removed from the compensators set and inserted in that referring to

the loads. For each node (except the PCC since the corresponding curve does not exist),

we calculate 21 points in a range of ±200 kVAR and then we identify the parabola which

goes through these points. Once we have found such curve, we differentiate it obtaining

the equation of a straight line. Eventually, we calculate λ∗
i which corresponds to the

reactive power q∗i i.e. the real value of the Lagrange multiplier.

Relating to the curves generation method, it is appropriate to make some considera-

tions about PCC and compensators:

PCC: with regard to the PCC, it makes little sense to consider the losses curve as a

function of its injected reactive power. As a matter of fact, the PCC can’t vary this

parameter at will but it must provide the reactive power required by the grid. This

is particularly evident when looking at the additional equation which let us define the

Green matrix q1 = 0. The mentioned matrix makes an element belonging to the vector

q linearly dependent from the others and this element is precisely that corresponding

to the PCC. In the light of these qualifications, the reason why the lambda associated

with the PCC is set equal to zero has to be found in the fact that we cannot create the

respective perturbation curve;

Compensators: focusing on compensators, we notice that if these devices have no power

supply limitations (or they do not reach them) they tend to approach the operating point

corresponding to losses minimization. As they already work at their minimum point, they

are characterized by λ = 0. In the event that the inverter limitations come into play, we

can imagine it to be substituted by a load which supplies an amount of reactive power

equal to the limitation of the inverter. Therefore, we realize that λ ≤ 0 and that the

minimum of the curve is located on the right. Precisely because of these reasons, it has

also been decided not to create the curves associated with the compensators as we assume

them to be operating within the respective limits. If we did not make this hypothesis, the

camparison between the estimated lambda and the graphical ones would become overly

complicated.
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At any rate, if we want all the compensators to respect the limits allowed, it is necessary

to follow the next steps:

1. compute the vector q∗ omitting the respective limitations;

2. check if there is a compensator which exceeds the limits allowed;

3. insert the compensators which exceed the allowed limits into the loads set and set

their supplied reactive power equal to the limitation value;

4. recalculate the vector q∗ in the new configuration;

5. if there are some other compensators which exceed the allowed limitations, the

whole sequence of actions (starting from the second point) has to be repeated until

it is sure that all the devices respect the limits allowed

In order to generate the curves, estimate the graphical lambda and save all these data,

it has been implemented the function ‘LambdaGraphicsCreator’ which is to be found

in the appendix. This subroutine allows to calculate the losses via distributed or direct

(‘offline’) algorithm.

The following two graphs represent real lambda in the case of a load and a compensator:
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Figure 3 Real lambda relating to a load
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3 A pricing strategy via gradient estimation

Since lambda calculation is complex and difficult to implement, we go back to the theory

of duality in order to obtain a function which is able to compute the parameter λ having

as input the reactive powers vector q. In this way, we manage to obtain the parameter in a

transitory configuration with q not being at its optimum. Beginning from the Lagrangian

with constraints on both loads and compensators (25) and deriving with respect to vector

q, we obtain:

q(λ) =
|u2

0|
2

Re(X)−1λ (26)

where we assume λ =





λ
′

c

λ
′

l



 and q is supposed to be different from q∗ in order to stress

its generality. Solving for λ we have:

λ(q) = −2Re(X)

|u2
0|

q (27)

where Re(X)q is the gradient [1].

3.1 Gradient estimation using PCC voltage

In order to calculate λ without using matrix X and vector q, which require the whole

network knowledge, we use Re(X)q estimation in place of its real value.

Starting from the voltages vector equation:

u = ejθRe(X)i+ u01 (28)
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and from the current vector estimation:

i ∼= s

u0

(29)

we find:

Re(X)s ∼= e−jθu0(u− u01) (30)

At first we assumed θ (phase shift of transmission lines) to be constant and precisely

equal to θave (i.e. equal to the average of the different phase shifts). Seeing as the results

obtained adopting this hypothesis were not correct, we then decided to consider θ as the

vector of phase shifts between each node and the PCC.

Noting that

cosθXq = Re(X)q = −Im[Re(X)s] ∼= −Im[cosθ e−jθu0(u− u01)] (31)

and substituting this expression into (27)

λ(u) =
2

|u2
0|
Im
[

cosθ e−jθu0(u− u01)
]

(32)

Knowing also that |u2
0| = u0u0 and cosθ are real, we obtain

λ(u) = 2cosθ Im

[

e−jθ(u− u01)

u0

]

(33)

As the resulting λ parameters are uncorrectly overestimated, we need to devise another

method to estimate the gradient. We presume that the wrong results come from an

incorrect interpretation of parameter θ which shouldn’t depend only on the impedance

between two nodes but also on the phase shifts of the other branches.

To show this, we have solved the function (33) for θ. Using the graphical lambda and

the voltages obtained by losses minimization, we manage to find the experimental values

of θ which, besides not corresponding to those we started with, they also don’t seem to

be a linear combination of theabove-mentioned θ.
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3.2 Distributed gradient estimation

For these reasons, we try to find out a different way to calculate the gradient estimation

in order to have a phase shift θ less subject to such errors. Going back to the equation:

ν
(i)
k := Im

[(

e−jθ 1

|Ci|
∑

v∈Ci

uv

)

uk

]

(34)

which represents the gradient estimation in a cluster, instead of considering a cluster, we

focus on a pair of grid nodes (parent-child) and we rewrite the formula as:

νc = Im

[

e−jθ

2
(up + uc)uc

]

(35)

νp = Im

[

e−jθ

2
(up + uc)up

]

(36)

where p stands for ‘parent’ and c stands for ‘child’. Defining:

∆νp,c := νp − νc = Im

[

e−jθ

2
(up + uc)(up − uc)

]

(37)

from which:

νc = νp −∆νp,c (38)

Given that

λc = −2cosθνc
|u2

0|

and inserting (38)

λc = −2cosθνp
|u2

0|
+

2cosθ

|u2
0|

Im

[

cosθ e−jθ

2
(up + uc)(up − uc)

]

= λp +
cosθ2

|u2
0|

Im
[

e−jθ(up + uc)(up − uc)
]

(39)

where θ is the phase shift between two nodes of the transmission lines. The results

we get by using such method are substantially different from those previously found and

this can be seen looking at the following graph.
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Figure 5 Comparison of lambda obtained with different methods

Performances and limitations will be discussed later.

4 Communication strategy

The analysis of the λ estimation formula (39) shows that, in order to obtain a correct

update of the values, each child node belonging to the tree needs to receive the correct

updated data from its respective parent. In this way, the algorithm converges to the

optimal solution imposing an ordered communication starting from the PCC and going

through each next level of the tree. The overall process takes a number of steps equal to

the maximum number of tree levels minus one. On the other hand, using a random com-

munication between the various nodes, the correct result would be obtained in a number

of steps not less than (equal to) that we would get exploiting an ordered communication.

In the case of random communication, it can easily happen that the temporal lambda

calculated by the node turns out to be wrong. As a matter of fact, if a node updates its

lambda value making use of that not correctly updated by the parent node in combination

with the voltages corresponding to the new configuration, then it finds a value which does

not reflect neither the previous state nor the up-to-date one. Translated into economic

terms, employing an incorrect lambda value may lead to price instability therefore sug-
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gesting it is preferable to use lambda values correctly updated in the minimum number

of steps. In particular, since electric powers are paid hourly rates on average cost basis,

there is no point in tracking the real value instant-by-instant incurring the risk of finding

transition values not so close to the real ones. Anyhow, it is worth recalling that the

absorption variations of the grid are very slow (almost stationary) compared to the time

complexity of the algorithms for the minimization of the losses. Hence, we can consider

the lambda estimation as belonging to an upper management level and so not needing

a reconstruction speed equal to that of the inferior levels. The explanation for this is

found in the fact that lambda represents a parameter which does not directly affect the

physical stability of the grid, but influences the prices characterized by larger ranges of

variation in temporal indices. Eventually, as regards the data to be exchanged, these are

two: the voltage value and the lambda associated with the parent node in relation to its

children. In view of such a small amount of data, it is convenient to opt for a centralized

communication strategy.

Much more delicate is the correct management of the grid information flow choosing

an ordered communication or a centralized one. In the case of an ordered communication

(i.e. through each level), the best solution consists in making each parent node to pass

its data packets to all its children at each instant. This kind of communication is by

far the most convenient in terms of execution times, however it appears to be more

difficult to implement. Indeed, it requires that the grid allows to transfer various types

of information along different paths at the same time and besides, that the nodes are

able to read and write simultaneously. Thus, it turns out to be much easier to impose

a single communication between two nodes at each instant, activating the various nodes

according to an ordered sequence. The weak point of this strategy is its time complexity

as it takes a number of steps equal to the number of nodes minus one to converge to

the optimal solution. Opting for a centralized communication, on the other hand, it is

possible to make the central node ask for the necessary data (voltages) to each other

node following a certain order or let each single node send all its data to the central node

independently.

5 Simulations and validation

In order to test the Lagrange multipliers calculation methods, we have created some

simple grids. These give us a better understanding of the way the Lagrangian parameters

vary and an idea of the factors by which they are influenced.

21



In particular, we created three different grid configurations: a 6-node and a 12-node grid

both presenting aligned nodes and a 7-node grid with symmetric bifurcation (i.e. a ‘Y’

shape).

First of all we analyse the behaviour of real lambda (i.e. the graphical ones) trying to find

a connection between such behaviour and the grid context which takes into consideration

the load and the compensator configurations.

5.1 Real lambda analysis

To determine graphical λ, we implemented the function ‘LambdaTester()’ with argument

‘CalDist’ which is to be found in the appendix. Let us assume that all the edges length

and the respective phase angles are equal. In the first test configuration we consider the

6-node linear grid in which the first node coincides with the PCC while all the others

represent the loads. We set all the loads to zero (S = 0+ j0) except the third one which

is enabled to absorb active and reactive power. As a consequence, the power flows only

in the grid portion within the PCC and the third node. Besides, since the subsequent

nodes are all off and the respective edges are interested by no current we should expect

the corresponding lambda to be null.
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Figure 6 6-node linear grid whith the 3
rd node active and all the others off
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However, looking at the graph in figure 6, which shows the graphical lambda obtained,

we notice indeed that the lambda of the third node is very similar to those characterizing

the subsequent ones. Investigating the matter, we realize that these nodes can be excluded

from the grid but, in the case they inject an infinitesimal amount of reactive power, their

contribution is similar to that we would obtain injecting such power quantity at the third

node. This fact appears to be true because we have no power flow interesting the edges.

Consequently, the losses of the grid are equal to zero and a minimal increment cannot

alter them. As regards the second node, we find out that its value is approximately

intermediate between the PCC one and that relating to the third node.

We exploit the same grid to do another simulation. This time we enable only the last

node to absorb current while all the others are off. Actually, we want to analyze the way

the lambda associated with the inactive nodes varies knowing that in this new situation

we have a power flowing through the edges.
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Figure 7 6-node linear grid whith the last node active and all the others off

Examining the graph in figure 7, it is evident that lambda parameters grow linearly

from 0 associated with the PCC to the maximum value relating to the sixth node which

is enabled to absorb current from the grid lines. This can be easily explained bearing in

mind the assumption made on the edges all characterized by the same length and phase

angle and therefore interested by identical losses. It follows that the injection of reactive

power would make the overall grid losses linearly decrease depending on the proximity
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of the node which is absorbing. In support of this consideration, we notice that it would

be the maximum benefit if the sixth node started injecting reactive power as this would

lead to lower its demand and besides to a considerable decrease of the reactive power

circulating through the lines. Conversely the second node, being the furthest one, would

not be of great support. In fact, it would only reduce the power circulating in the first

edge which is exclusively related to the PCC.

From these two analysis, we deduce that in a grid having identical transmission lines, the

effect of an absorbing node, expressed by λ multipliers, is exactly the same for all the

downstream nodes while as regards the upstream ones its influence follows a linear law

of increase.

Now, we focus on the 12-node grid (presenting aligned nodes) where the fifth and tenth

nodes are active while all the others are off. On the basis of this configuration, we analyze

how λ vary and how they affect each other.
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Figure 8 12-node grid with the 5
th and 10

th nodes and all the others off

Looking at figure 8, we notice a superposition of the various effects due to the ab-

sorptions at the different nodes. Particularly, the function behaviour changes identifying

three sections each one characterized by a different constant slope:

• in the first tract, the slope is greater since the first edges are interested by the losses

due to the power transfer of both nodes;
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• in the second tract, the slope decreases owing to the power absorbed by the tenth

node;

• finally, in the third tract, the slope is almost horizontal because there is no power

flow through the transmission lines.

We continue doing a test where the 12-node grid impedances are all different.
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Figure 9 12-node grid whose impedances are all different

By observing the graph presented in figure 9, we see how λ vary according to broken

lines as in this configuration the different grid portions are no more identical. Thus,

we can conclude that in a real network, where all the nodes absorb or generate power

and where all the transmission lines are different, it becomes difficult to have a priori

estimation of λ behaviour.

Eventually, we test the 12-node grid in which all the nodes are active and with the

insertion of two compensators occupying positions 6 and 11. We should expect λ corre-

sponding to the positions occupied by compensators to be close to zero and besides to

have a symmetric behaviour similar to a parabola for the loads placed between the two

compensators. This is due to the fact that all the grid nodes are identical as it can be

noticed from figure 10.
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Figure 10 12-node grid with all nodes active and the insertion of 2 compensators

5.2 Distributed λ analysis

We are now going to test the performance of the λ estimation we found comparing the

obtained results with the graphical lambda. In order to do that, we use the function

‘LambdaTester()’ with argument ‘Com’ (Compare) which is to be found in the appendix.

At first we validate the results on the 7-node ‘Y’ grid so we can verify their correctness

in the presence of branches. Then we adopt two linear grids formed by 12 and 25 nodes

respectively to check the correctness of the obtained results when the tree-width increases.
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Figure 11 Test 1: ‘Y’ grid with only an active leaf
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Figure 12 Test 2: ‘Y’ grid with node 2 and all the leaves active
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Figure 13 Test 3: ‘Y’ grid with all nodes active and different powers
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Figure 14 Test 4: ‘Y’ grid with all nodes active and the insertion of a compensator among

the terminal nodes
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Figure 15 Test 5: ‘Y’ grid with more compensators
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Figure 16 Test 6: ‘Y’ grid with more compensators and different values for each branch

impedance
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Figure 17 Test 7: 12-node grid with 2 compensators and all the nodes active
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Figure 18 Test 8: 25-node grid with 2 compensators and all the loads active
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Figure 19 Test 9: 25-node grid with only one active node
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By reference to tests 1 and 5, we notice how the estimated λ have good performances

in the case of a branched grid.

On the other hand in test number 6, where there are grid portions having different

impedance phase angles, it is evident that the algorithm performance worsens consider-

ably precisely because there is no grid homogeneity. In fact, analysing the mathematical

procedure by means of which we defined the estimations, we realize that we imposed the

assumption of all the phase angles being the same. Hence, in this case, we can define the

Green matrix by means of modulus and phase X = ejθX . If we omit such hypothesis,

we are not able to extract the term ejθ anymore. Therefore, it is not possible to make

the previous reductions, compelling us to operate with the complex matrix X which is

difficult to handle.

From tests 7 and 8, we see that if the tree-width increases also the error undergoes an

increase. However, the estimated λ give a clear information about the behaviour of the

real ones, showing that, even if the error is not neglibible, it does not make the param-

eter unusable. Furthermore, considering the residential use of the microgrid, where it is

reasonable to assume that there are approximately 100-150 nodes, it is unlikely to have

a grid width which exceeds the 25 levels.

Eventually, focusing on test 9, it is immediately evident that the error increases with

depth and it can be interpreted as a sum of estimation errors. In particular, from equa-

tion (39) it is seen that the second term causes an error for each calculation but this must

be added to the estimation error of the parent contained in the first term.

We notice that, in order to decrease the errors due to the tree-depth, we should use the

information about compensators. As a matter of fact, a compensator, which does not

work in the saturation area (or shows a slight saturation), could set its λ to zero, thus

blocking the error propagation of the error accumulated by the upstream nodes.

6 Pricing and Storage strategy

6.1 Shadow prices interpretation

In scientific literature [11] [12], it is possible to find an interesting economic interpreta-

tion of Lagrange multipliers. Let us consider a simple convex problem with no equality

constraints (14).

Being f0(x) the cost function to minimize, let −f0(x) be the profit of a productive

process which operates according to the variable x; if each constraint fi(x) ≤ ui represents
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a limit on some resource ui, then the negative perturbed optimal cost function −p∗ shows

how much profit a process could make with some resource available to it. Furthermore,

if p∗ is differentiable near u = 0 then, as previously said, we find:

λ∗
i = −∂p∗(0, 0)

∂vi

In other words, λi tells us approximately how much more profit the process could

make for a small increase in availability of resource ui. For these reasons, economists

usually give the Lagrange multiplier the name of shadow price. It is nevertheless true

that reactive power can be used to maintain the voltage within the limits of working and

to avoid the risk of congestion. Thus, only if these important issues were resolved without

using reactive power directly, then the parameter λ could assume the economic meaning

depicted above. Actually, avoiding such problems with alternative methods is expensive

and difficult to effect and consequently reactive power turns out to be necessary. In this

case, the parameter λ we have obtained cannot be used because the Lagrangian does

not take into account neither the voltage limits nor the network capacity. These two

constraints have been neglected for the following reasons:

• voltage constraints: currently, the constraint violation involves a penalty charged

to the administrator of the network; this tax is not proportional to the caused

damaged and there is not a network rate of perfomance based on the closeness

to the nominal voltage value. This leads to the impossibility of obtaining a cost

function implementable in the Lagrangian.

• congestion constraints: in this case, building the cost function is made difficult by

the need of introducing a new parameter, a sort of index which can evaluate the

network risk of congestion. Moreover, the smart grid model previously used does

not consider the limitations on transmission lines.

6.2 Storage strategy

Postulated the necessary preconditions, we are ready to define a Storage strategy in order

to evaluate what is truly convenient to do in the case a compensator does not manage

to supply the whole demanded active and reactive power due to the inverter operating

limits.

The main objective is to determine a law based on the shadow price λ which let us decide

what is the best choice for a compensator working in the limitation area. In particular,

we want to obtain a concrete indication of whether or not is to opt for active power
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supplying. As a matter of fact, in some situations it may be preferable to store active

power in batteries providing more reactive power.

At first we assume that the compensator privileges active power sales at the expense of

the reactive one, checking if in case it could be more convenient to store a certain amount

of active power in order to produce more reactive power.

To study the problem, we are going to introduce and analyze a pair of functions which

will provide cost and gain of the compensator. However, we must before define the quan-

tities relative to the power supplying limitations.

We indicate with: P the amount of active power which should be provided by the com-

pensator; with Q the amount of reactive power required in order to minimize the overall

grid losses; and with A the apparent power; these expressions are linked by the Boucherot

theorem:

A
2
= P

2
+Q

2
(40)

Now, suppose that the inverter, by means of which the node can inject power into the

grid, has maximum apparent power capacity equal to M . As a consequence, for each

compensator we can individuate two different operating modes:

• M ≥ A : in this case, the compensator does not operate in the limitation area and

so we have no storage problem;

• M < A : in this case, the node works in the limitation area. As a consequence, it

must decide how to operate.

In this situation, it is assumed that the node sells all the possible active power obtaining

at time t0 the following expression:

M(t0)
2 = P (t0)

2 +Q(t0)
2 = P

2
+Q(t0)

2 (41)

Obviously, referring to this configuration, there is no storage and therefore active power

is completely sold to the electric grid. Keeping the same P and Q, let us think that

at the next instant it occurs an infinitesimal increment in the reactive power supply dQ

obtaining:

Q(t1) = Q(t0) + dQ

Q(t1)
2 = Q(t0)

2 + dQ2 + 2dQQ(t0) (42)
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Recalling that M rapresents the inverter limitation, we express the power supplied at

instant t1 as:

M(t1)
2 = P (t1)

2 +Q(t1)
2 = P (t1)

2 +Q(t0)
2 + dQ2 + 2dQQ(t0)

Defining at this point the amount of active power which is not injected into the grid

dS(t1) as the difference between the power generated at instant t1 and that one erogated

at t0, we have that such quantity will be stored using storage appliances.

dS(t1)
2 = P

2
+Q(t1)

2 −M(t0)
2 = P

2
+Q(t1)

2 − P
2 −Q(t0)

2 = Q(t1)
2 −Q(t0)

2

dS(t1)
2 = Q(t0)

2 + dQ2 + 2dQQ(t0)−Q(t0)
2 = dQ2 + 2dQQ(t0)

dS(t1) = dQ

√

(

1 + 2
Q(t0)

dQ

)

(43)

6.3 Profits analysis with Lagrange multiplier

Once defined a rule which indicates how much power we have to store for small variations,

we are now ready to define cost and gain laws. If active power storage in appropriate

devices did not cause any losses, it would always be convenient for a node to produce

the reactive power required and later sell active power. However, the storage process

involves losses due to the device used to store the energy, to the storage method and to

the amount of energy stored. Hence, it is reasonable to suppose that losses are linear and

proportional to the energy stored and considering the storage inefficiency η, we define a

cost function based on storage as:

dC = ηdS $P = ηdQ

√

(

1 + 2
Q(t0)

dQ

)

$P (44)

where $P indicates the unit price of active power. Exploiting this equation, we introduce

a new cost which is to be interpreted as a loss of profits due to the reactive power losses

caused by storage inefficiency.
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It is time to define a gain function which uses the shadow price λ directly. In particular,

we presume that a minimal variation of the reactive power injected leads to a saving in

terms of active power purchased from the PCC equal to:

dP = λdQ (45)

from which we derive the following gain equation:

dG = λdQ $P (46)

Obviously, the goal is to have profits higher than costs in case accepting them to be equal.

The objective storage inequality is then:

dG ≥ dC (47)

λdQ $P ≥ ηdS $P

λdQ ≥ ηdS = ηdQ

√

(

1 + 2
Q(t0)

dQ

)

λ ≥ η

√

(

1 + 2
Q(t0)

dQ

)

From which:

1 ≤ λ

η

√

(

1 + 2Q(t0)
dQ

)

being Q(t0) ∼= 0, we have that Q(t0)
dQ

∼= 0 and thus we obtain the following inequality:

1 ≤ λ

η
(48)

which represents the condition for which the compensator should opt for energy storage.

Analyzing the equations parameters, we notice that in the present state inefficiencies

average about 10-7% i.e. η = 0.1 − 0.07, while shadow price values are all around 0.01

(even under conditions of strong absorption it does not exceed 0.05).

These observations make it possible to realize that in the case we use the shadow price

previously found directly, energy storage is never convenient and it is more suitable to

inject active power instead of decreasing grid losses. On the other hand, this result is

not surprising given that the Lagrangian function does not take into account voltage and

network congestion limitations.
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6.4 Profits analysis with a given reactive power price

Let us change the gain equation as that relative to cost is very realistic. Suppose we

know the price that would be paid for each unit of reactive power produced equal to $Q,

we define the new gain function as:

dG = dQ $Q (49)

We notice that reactive power price is time variant and a function of λ but it also gives

information regarding the network state in terms of performance. We are now going to

investigate this last issue.

Imposing the inequality concerning storage convenience, we obtain:

dG ≥ dC (50)

dQ $Q ≥ ηdS $P = ηdQ

√

(

1 + 2
Q(t0)

dQ

)

$P

$Q ≥ η

√

(

1 + 2
Q(t0)

dQ

)

$P

From which:

1 ≤ $Q

η

√

(

1 + 2Q(t0)
dQ

)

$P

Recalling that Q(t0) ∼= 0, it follows

1 ≤ $Q
η $P

$Q ≥ η $P ∼= 0.1 $P (51)

From the last inequality analysis, we notice that a storage policy is convenient when

reactive power price is at least equal to the storage inefficiency percentage relating to

active power.

In particular, it is plausible that in some cases reactive power importance is very high

(even higher than active power one) and hence its price allows us to opt for storage. This

fact is based upon the foregoing considerations about reactive power relevance within the

limits imposed by voltage bounds and network congestion.
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7 Conclusions

The goal of this project was trying to develop a reactive power pricing method. Par-

ticularly, the initial idea was to make use of the Lagrange multipliers in their sense of

economic shadow prices.

λ parameters have been calculated using two different methods:

• directly applying the theory of duality (centralized system).

The results so obtained have an error of overestimation compared to graphical

lambda, nevertheless they reflect the trend

• using the gradient estimation (distributed system).

In this case, results are better than those we obtain with the first method, however

we notice that the deepest levels of the tree representing the microgrid are more

affected by the estimation error

We realize that the obtained λ do not give sufficient information to be interpretated as

shadow prices. As a matter of fact, the objective function in the Lagrangian only contains

the information related to the reactive power compensation instead of considering the one

associated with voltage limits and congestion constraints. These issues have not been

deepened due to the difficulty of implementing them in the Lagrangian in the form of a

cost function.

So we choose to analyse the possible economic management of a compensator first using

the information given by the λ parameter and then considering reactive power price

which is known. On the basis of cost and gain considerations, we have attained favorable

economic conditions that make the compensator able to decide if it is worth storing active

power or whether it is preferable to inject less reactive power than that required.

Future developments, regarding the possibility to use the λ multiplier as a shadow price,

may see the redefinition of the cost function in order to take into account all the effects

connected with reactive power. Alternatively, it might be possible to define different type

of Lagrangian according to the various objective functions and use the respective λ.

If these ways were not permissible, we ought to completely abandon the Lagrange theory

and the multipliers in their sense of economic parameters, choosing to redefine the whole

pricing problem.
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A Geometric interpretation of Lagrange multipliers

We assume that for all u and v we have

p∗(u, v) ≥ p∗(0, 0)− λ∗Tu− 1nu∗Tv (52)

To establish this inequality, suppose that x is any feasible point for the perturbed problem,

then

p∗(0, 0) = g(λ∗, ν∗) ≤ f0(x) +
m
∑

i=1

λ∗
i fi(x) + ν∗

i hi(x) (53)

≤ f0(x) + λ∗Tu+ ν∗T v

where the first inequality follows from the definition of g(λ, ν) and the second is due to

λ ≥ 0.

We conclude that

f0(x) ≥ p∗(0, 0)− λ∗Tu− ν∗T v

from which we obtain (52).

To show (18), suppose that u = tei is the perturbation and that v = 0 where ei is the

i-th unit vector.

Then we have

lim
t→0

p∗(tei, 0)− p∗

t
=

∂p∗(0, 0)

∂ui

The inequality (52) states that for t > 0

p∗(tei, 0)− p∗

t
≥ −λ∗

i

while for t < 0 we have the opposite inequality.

Taking the limit t → 0 with t > 0, yields

∂p∗(0, 0)

∂ui

≥ −λ∗
i

while taking the limit with t < 0, yields the opposite inequality; so we can conclude that

∂p∗(0, 0)

∂ui

= −λ∗
i

and the same method can be used to prove

∂p∗(0, 0)

∂vi
= −ν∗

i
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B Matlab functions

B.1 LossesOffline

This function is defined as:

[losses alg, sc alg,u alg, i alg] = LossesOffline(G,C,D)

The function calculates the optimal solution in one step exploiting the knowledge of the

whole grid. As regards the calculation, refer to the article “A distributed control strategy

for reactive power compensation in smart microgrids” by Saverio Bolognani and Sandro

Zampieri [1]

Function inputs:

• G describes the grid (see README or look at the ./examples/)

• C describes the compensators (see README or look at the ./examples/)

• D describes the values of the power absorbed at each node

Function outputs:

• losses alg minimal losses of the grid after the algorith execution

• sc alg power erogated by compensators in the final configuration

• u alg node voltage in the final configuration

• i alg node current in the final configuration

B.2 FinalLosses

This function is defined as:

[FinalLosses, scalg,ualg, ialg] = LossesDistributed(G,C,D,NOITER,RUNS)

The function calculates the grid losses using the distributed algorithm. This one ex-

ploits the local exchange of information among compensators described in the article

“A distributed control strategy for reactive power compensation in smart microgrids” by

Saverio Bolognani and Sandro Zampieri [1].

Function inputs:

• G describes the grid (see README or look at the ./examples/)

• C describes the compensators (see README or look at the ./examples/)
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• D describes the values of power absorbed by each node

• NOITER number of iterations of the distributed algorithm

• RUNS number of executions of the distributed algorithm

Function outputs:

• FinalLosses minimal losses of the grid after the algorithm execution

• sc alg power erogated by compensators in the final configuration

• u alg node voltage in the final configuration

• i alg current voltage in the final configuration

B.3 LossesDistributed

This function is defined as:

[] = LambdaGraphicsCreator(G,C,D,method,namefile)

The function allows to calculate the lambda multipliers graphically exploiting the sensi-

tivity analysis. This one is applied to the function of minimum relating to the duality

theory. It creates the sensitivity curves associated with each load through the identifica-

tion of a parabola. The curve is obtained by a finite number of losses values and using

different values of the reactive power absorbed by the load. In particular, you can decide

to calculate these losses values via ‘method’ argument using the distributed algorithm or

the offline one. It generates the graphs of these curves for each load indicating with a red

point the working point and with a black horizontal line the losses value corresponding

to the analyzed configuration. Then it calculates the lambda multipliers differentiating

the found parabola and computes the value assumed by the curve at the working point.

Eventually, it creates a graph where the lambda relative to PCC, compensators or loads

are identified by different colours and shapes. It is worth recalling that for the theory

of duality, both compensators and PCC work at their minimum. This means that their

lambda is equal to zero if they are not operating in saturation. The function saves the

calculated data relating to the lambda values and to the identified curves in a file the

name of which can be specified.

Function inputs:

• G describes the grid (see README or look at the ./examples/)

• C describes the compensators (see README or look at the ./examples/)
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• D describes the values of power absorbed by each node

• method indicates the method used for the losses calculation:

1. if not specified it uses the distributed algorithm implemented by the function

‘LossesDistributed’;

2. if specified (for any value) it uses the offline algorithm implemented by the

function ‘LossesOffline’

3. namefile if not specified it saves the results in the default file ‘GraphicLamb-

daData.mat’. Otherwise, it saves the data using the name of the indicated

file. namefile argument must have the following structure between quotes

’name.mat’ where name refers to the name of the desired file.

Since data are saved in a file, there are no output arguments.

B.4 EstimateLambda

This function is defined as:

lambda = EstimateLambda(G,C,u alg)

The function takes as input the node-voltage vector and returns an estimate of lambda

multipliers via local gradient estimation. If there is not the argument ‘namefile’, it

creates the graph of the estimated lambda whose colour changes according to the type of

node (loads, compensators or PCC). If instead there is the argument ‘namefile’, it opens

the file (namefile) returned by the function ‘LambdaGraphicsCreator’ and compares the

estimated lambda with the graphic real ones.

Function inputs:

• G describes the grid (see README or look at the ./examples/)

• C describes the compensators (see README or look at the ./examples/)

• u alg node-voltage vector

• namefile name of the file returned by the funtion ‘LambdaGraphicsCreator’

Function outputs:

• lambda vector of the lambda estimated at each node
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B.5 LambdaTester

This function is defined as:

[] = LambdaTester(action)

The function calculates (via distributed or offline method), estimates or compares the

lambda values of the grid. It has been created in order to allow rapid lambda-checks on

a generic grid. Notice that to compare the results first it is necessary to calculate the

graphical lambda using the appropriate function and then we need to update the file in

which the graphical lambda have been saved.

Function inputs:

• action string which, according to the values assumed, commands the following

actions:

1. ‘Est’: lambda estimation via distributed algorithm based on the voltages

computed by means of distributed minimum.

2. ‘Com’: compares the estimated lambda with those calculated graphically.

It must be preliminarily executed the graphical calculation of lambda values

’CalDist’ or ’CalOff’.

3. ‘CalDist’: calculates and saves the graphical lambda obtained via distributed

algorithm

4. ‘CalOff’: calculates and saves the graphical lambda obtained via offline algo-

rithm

Since data are saved in a file, there are no output arguments.
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