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Abstract:
This paper is concerned with the regulator design of a Networked control system (NCSs). A new model of the NCS channel
is provided under consideration of the main non-idealities that affects the data transmission, such as packet drop, power
constraint at the channel input and quantization noise. In terms of the given model, a regulator design method is derived
based on LQG approach. An example is given to show the effectiveness of this method. Moreover, a revision work on the
related literature has been carried out, in which the SNR-constrained problem has been translated into a LQG one, by the
choice of suitable weight matrices.

1 Introduction

Today, an increasing number of applications demands remote
control of plants over unreliable networks. The recent evo-
lution of sensor web technology enables the development of
wireless sensor networks that can be immediately used for
estimation and control. In these systems issues of communi-
cation delay, data loss, and time-synchronization play critical
roles. This work explores the theoretical foundations for esti-
mation and control system design problems while explicitly
accounting for realities of the underlying wireless communi-
cation network.
In this paper we consider the problem of stabilizing a possi-
bly unstable system across a communication channel (e.g. ,
Networked Controlled System), where the plant is modeled
as a discrete time LTI dynamical systems subject to additive
measurement and process noise.
The main issue is to give a model representation that cap-
tures the main non-idealities of the digital channel, such as
quantization noise, packet loss and power constraints. The
next step is to design an optimal control and estimation sche-
me in order to achieve desiderable features in terms of some
performance index.

In this scenario both communication and control fields be-
come tightly coupled. Classical control theories provide a
wealth of analytical results but they critically rely on the as-
sumption that the underlying communication technology is
ideal. It means that signals coming from sensors and actua-
tors over a communication network are “perfect”, more pre-
cisely they can’t be corrupted by delay or information loss.
Instead communication protocols assume the plant and the
source process to be stationary and stable and they don’t re-
quire any feedback control loop. It’s of paramount importance
to understand how these two approaches can be combined.

2 Control over a communication
network

Networked Control Systems (NCSs) are systems where the
control loop, consisting of a discrete-time plant, is closed over
a communication channel. A schematic representation of a
NCS is depicted in Figure 1.

Figura 1: Scheme of control system over a communication
channel

The plant output yk is measured and preprocessed by a
causal Coder/Estimator (COD) which sends data ak across
a communication channel. On the other side, a causal
Decoder/Controller (DEC) processes the received data bk
and computes the control input uk necessary to achieve some
desirable feature, first of all the closed-loop stability.

It’s a standard practice to decouple the Coder and Decoder
design into two parts: one related to the source(plant), and
the other related to the channel (see Figure 2).

Figura 2: Decoupling of the COD/DEC blocks

The goal of the Source Coder/Decoder design is to achieve
some objectives, e.g. stabilization and performance optimiza-
tion. On the other hand the Channel Coder/Decoder blocks
implement a suitable digital code of the input analog signal,
according to the chosen protocol. More precisely, the Channel
Coder computes the binary code ak which is sent across the
channel. Then the received code word bk will be reconverted
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into the analog signal bk by the Channel Decoder, in order to
guarantee the minimum transmission error, i.e. rk ≈ sk.

For a given communication protocol, the objective is the
Source Coder/Decoder design, using the typical control and
estimation techniques. This approach allows us to focus our
attention on the design of the optimal control strategy man-
taining the existing channel models. In fact the overall Co-
der/Decoder blocks design would require the change of the
most commonly used protocols, with a large impact from the
economic and implementative point of view.

2.1 Previous work
These problems have stimulated a strong research interest wi-
thin the control community and the literature on Networked
Control Systems with random delay measurement and control
or packet loss is wide and diverse. We focus our attention on
four main fields: NCS with lossy channels, NCS with SNR-
limited channels, NCS with rate-limited channels and NCS
with limited informations.

2.1.1 NCS with lossy channels

We consider the literature known as NCS with lossy chan-
nels or NCS subject to packet loss: the authors in [6] discuss
control and estimation problems where the observation and
control packets may be lost or delayed. The plant is modelled
as a discrete-time linear stochastic system with intermittent
observation and control packets (see Figure 3):






xk+1 = Axk +Bua
k + wk

ua
k = νkuc

k

yk = γkCxk + vk

where x ∈ Rn, y ∈ R, ua ∈ R is the control input from the
actuator, uc ∈ R is the control input from the controller,
w, v, x are Gaussian, uncorrelated and white. The unreliabi-
lity of the communication network is handled in a stochastic
framework by assigning probabilities to the successful tran-
smission of packets : γk and νk are i.i.d Bernoulli random
variables that models the correct information delivery bet-
ween sensor/controller and controller/actuator respectively.
We notice that neither packet delay nor quantization noise
have been taken into consideration.

Figura 3: Feedback control over a lossy network

In relation to this scheme the problem of estimation and
control over a unreliable network is handled. It’s shown
that for network protocols where successful transmissions of

packets is acknowledged at the receiver side (TCP-like proto-
cols) the classic separation principle holds, and consequently
the controller and estimator can be designed independently.
Moreover, the optimal LQG controller is a linear function of
the estimated state.

However, unlike standard LQG control, the gain of the
optimal observer does not converge to a steady-state value
and is a function of the packet arrival process. Further-
more, in analyzing the infinite-horizon problem, it’s shown
that exists a critical threshold for the arrival probabilities
γ̄ := P (γk = 1) and ν̄ := P (νk = 1), under which the LQG
optimal controller fails to stabilize the closed-loop system.
It means that the underlying communication channel isn’t
enough reliable to ensure stability. Those critical probabi-
lities are related to the solvability of a Modified Algebraic
Riccati Equation (MARE). For example for ν̄ the MARE is
S = Π(S,A,B,W,U, ν) where:

Π(S,A,B,W,U, ν) := A′SA+W−νA′SB(B′SB+U)−1B′SA

It is known that if B is rank one the critical probability, ν̄,
is related to maxi|λu

i (A)|2 and that in the opposite case if
B is square and invertible then ν̄ is related to

∏
i |λu

i (A)|2 .
Finding a close form for ν̄ in the general case is instead an
open research problem. Similar formulae are valid also for the
MARE related to γ̄ which is P = Π(P,A′, C ′, Q,R, γ).

2.1.2 NCS with SNR-limited channels

In this context usually an AWGN channel is considered with
the further constraint that the input power must be limited.
The following are the major works in this area:

• The paper [1] has considered feedback stabilization pro-
blem where power constraint on the discrete-time input
channel is imposed. It’s assumed that either the states
or the output of the plant are available at the control-
ler and estimator side, and the minimal SNR compatible
with stabilization using linear feedback is derived (see
Figure 4).

Figura 4: Feedback control over a communication link

The plant is modeled as a possibly unstable noise-
free discrete-time SISO dynamical system with state
equations: {

xk+1 = Axk +Buk

yk = Cxk

where x ∈ Rn, u ∈ R, y ∈ R, it’s also assumed that
the triple (A,B,C) is minimal. The sent message sk
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is delivered over an AWGN channel with input-output
relation:

rk = sk + nk

where rk is the received signal and nk is zero-mean whi-
te Gaussian noise with variance σ2

n, which represents the
quantization noise as an additive disturbance. The chan-
nel input sk is assumed to be a stationary stochastic pro-
cess with power ||s||Pow := E

[
||sk||2

]
and it is required

to satisfy the power constraint:

||s||Pow < Pd (1)

for some predetermined power level Pd. As such, we
notice that the maximum admissible SNR that fits the
power constraint is Pd/σ2

n. If T (z) is the closed-loop
transfer function from channel noise nk to channel in-
put sk, then the power in the channel input is given
by ||s||Pow = ||T (z)||2H2

σ2
n and the condition (1) can be

written as:

||T (z)||2H2
<

Pd

σ2
n

(2)

The main goal of the work is to find the minimum SNR
that allows the feedback loop stability. From the former
discussion it turns out that this problem can be trans-
late in computing the minimum value of ||T (z)||2H2

that
satisfies (2). The main results can be exposed as follows.

For state feedback stabilization a lower bound for
||T (z)||2H2

is found, and it depends on the unstable
eigenvalues

{
λu
i , i = 1, . . . ,m

}
of A . More precisely:

inf
Kr,Kz

||T (z)||2H2
=

(
m∏

i=1

λu
i

)
− 1 (3)

So the smallest value of SNR that ensures stability is
given by:

Pd

σ2
n

>

(
m∏

i=1

λu
i

)
− 1 := SNRmin (4)

For output feedback stabilization a similar bound is
found and it depends also on the non-minimum phase ze-
ros and the relative degree of the transfer function T (z),
through the coefficients η and δ as follows:

Pd

σ2
n

>

(
m∏

i=1

λu
i

)
− 1 + η + δ := SNRmin (5)

• In the work [2] the authors consider the problem of mi-
nimizing the variance of a plant output in response to a
stochastic disturbance (see Figure 5) .

Figura 5: Feedback control over a communication link

The plant is modeled as a possibly unstable discrete-time
SISO dynamical system with state equations:

{
xk+1 = Axk +Buk + Edk
yk = Cxk

where x ∈ Rn, u ∈ R, y ∈ R, d ∈ R. The process distur-
bance dk is a zero mean Gaussian i.i.d noise. It’s also
assumed that the triple (A,B,E,C) is minimal and the
transfer function has relative degree one and is minimum
phase; noiseless measurements of the plant are avaliable.
The sent message sk is delivered over an AWGN channel
with input-output relation:

rk = sk + nk

where nk is a zero mean Gaussian white noise sequence
with variance σn. A precompensation (the encoder fk,
see Figure 5 ) can be introduced before the channel (for
example, sk can be a filtered version of the ouput).
We notice that there’s no delay in the feedback path, and
the input channel is required to satisfy the istantaneous
power constraint:

E
[
||sk||2

]
≤ P (6)

The goal of this paper is to select the optimal control
strategy with respect to the power limit (6), for which
the channel input depends causally on the plant output,
and the control input depends causally on the sequence of
the channel ouput (e.g. , sk = fk(yk) and uk = gk(rk)).
In other words the authors aims to find the optimal co-
ding and decoding sequences fk(yk) and gk(rk) that mi-
nimize the mean square value of the system output at
the fixed time k = N + 1, subject to (6):

Jopt
N+1 := inf

fk,gk,k=0,...,N
E
[
||yN+1||2

]

Without the precompensation the solution to this pro-
blem, in case of noise-free measurements, requires to sol-
ve a “cheap control” linear quadratic Gaussian problem
(LQG). On the contrary in this context the separation
principle, present within the LQG optimal control theo-
ry, may no longer be valid.
The optimal control at the last-time step is derived, and
it’s found to be a linear function of the estimated-state at
the same time. Moreover, a lower bound on the achieva-
ble performance is derived. Only suboptimal strategies
are designed for the infinite-horizon problem.
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2.1.3 NCS with rate-limited channels

In the context of NCS with rate-limited channels the key pro-
blem is to characterize the minimal average data-rate (i.e. bit
per sample) that allows to achieve a given control objective
when the channel is assumed to transmit data without er-
rors or delays. Given that, rate-distortion theory seems to
be the natural framework to deal with the problem. However
standard results in this field rely upon coding arbitrarily long
sequences and do not take stability nor causality into account.
It thus becomes clear that some work must be done in order
to adapt classic information theory to control problems. A
landmark result in this direction was published in [5] where it
was shown that for a noisy plant model it is possible to find
causal coders, decoders and controllers such that the resul-
ting closed loop system is mean square stable iff the average
data-rate, say R, satisfies :

R >

np∑

i=1

log2|pi| (7)

where pi denoth the ith unstable plant pole. We have
previously seen that bounds similar to (7) arise as solutions
to different problems with different assumption on the
channel, this is a sign that the quantity on the right hand
side of (7) is a fundamental measure of the difficulty of
stabilizing a system.

Another relevant paper in this area is [7]. The main
contribution of this work is that it shows , for a specific class
of source-coding schemes, that average data-rate constraints
can be enforced by imposing signal to noise ratio (SNR)
constraints in a related analog additive noise channel. In
other words this paper establish a relationship between SNR
constraints, discussed in section 2.1.2, and average data-rates
constraints in noiseless digital channel. More in particular,
given a linear discrete-time SISO plant (see Figure 6) such
that:

P :=

[
P11 P12

P21 P22

] [
e(t)
y(t)

]
=

[
P11 P12

P21 P22

] [
d(t)
u(t)

]

Figura 6: NCS with rate-limited channel

where transparent feedback is assumed, the goal is to
characterize the minimal average data-rate that allows one
to achieve a prescribed degree of fidelity, first of all the
closed-loop mean square stability. The situation described
through this scheme arises naturally if, for example, P
corresponds to the interconnection on an LTI plant and
LTI controller that has been designed without taking into
account data rate limits in the feedback path. The channel

in this context is noiseless and transmits data without errors
or delays; only rate-distortion is assumed.

Focusing on a particular class of souce-coding schemes,
a lower bound for R is derived, which is at most 1.254 bits
per sample away from the absolute minimum rate established
by (7). This rate penality is compensated by the simplicity
of the class chosen. Furthermore this average data-rate limit
can be enforced by imposing signal-to-noise ratio (SNR)
constraints in a related analog additive noise communication
channel.

2.1.4 NCS with limited informations

The main goal of this class is to develop a theory of stabi-
lization of LTI systems using only a finite number of fixed
control values and of measurement levels. The quantization
of controls and measurements induces a quantization, or
partition, in the system state space.

In the paper [3], for example, the control strategy adopted
is called Control Lyapunov Function (CLF) for systems
with control inputs. The plant is here assumed unstable,
single input and stabilizable, and governed by the following
equations:

xk+1 = Axk +Buk (8)

From these hypothesis it follows that exists a quadratic Lya-
punov function V (x) for the closed-loop system (CLF) such
that:

V (x) = x#Px P > 0 P = P#

and given that, it is always possible to find a a linear
static state-feedback control that stabilize the system. Mo-
re precisely, for a given V (x), exist a set of control values
U =

{
ui ∈ R : i ∈ Z

}
and a function f : X → U such that

f(x) = −f(−x), and such that ∀x '= 0:

∆V (x) = V (Ax+Bf(x))− V (x) < 0

With respect to this notation f is called quantizer and it’s a
symmetric, bijective function that can take a countable num-
ber of levels. The measure of the coarseness of the quantizer is
expressed by its density. Let Q(V ) denote the set of all quan-
tizer for a given CLF V (x) for the system (8), for g ∈ Q(V )
and 0 < ε ≤ 1, let let #g[ε] denote the number of levels that
g takes in [ε, 1/ε]. Than we define the quantization density
ηg of g as follows:

ηg := lim
ε→0

sup
#g[ε]

−lnε

Moreover, a quantizer f is said to be coarsest for V (x) if it
has the smallest quantization density, i.e. :

f = arg inf
g∈Q(V )

ηg

It’s worth remarking that this definition of density allows
us to measure quantizers for which the number of quanti-
zation values grows logarithmically, with the length of the
interval that includes them (e.g. any uniform quantizer has
infinite density, viceversa a finite quantizer has density equal
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to zero).
In this paper it’s shown that the coarsest quantizer that
quadratically stabilizes the plant follows a logarithmic law.
Moreover, the best quadratic Lyapunov function that allows
the coarsest logarithmic quantizer it’s the same that arise
in the solution of the expensive control LQR problem.
A closed form for the smallest logarithmic base compa-
tible with the closed-loop stability is then derived and it
depends exclusively on the unstable eigenvalues of the system.

All these works suffer from some limitations: they cosi-
der the channel non-idealities one at time, even if the others
are not negligible in real application. The aim of this paper is
to bring packet loss, delay, SNR constrains and quantization
errors into the same picture in a simple and understandable
way, even at the price of loosing some optimality in the
design. Only little efforts (see [4])have been made in this
direction. Our goal is to get deeper into this subject.

2.2 Our Contribution

The paper is organized as follows. In section 3 we describe
the setup, in particular we choose to use an LQG approach
to the problem. In section 4 a revision of the work [1] is ex-
posed using the LQG approach. Two different schemes are
proposed: the former, Scheme 1, send the control law throu-
gh the channel while the latter, Scheme 2, send the measured
output. The channel is assumed to be AWGN. The aim of
this section is to demonstrate, with a simulative approach,
that both the schemes requires the same minimum value of
the SNR derived in [1]. A proof of this fact in the scalar ca-
se is given in the Appendix. In section 5 we propose a new
channel model that captures the essence of todays’ commu-
nication systems, i.e. quantization error, delays, packet drop
and power constraints, yet being amenable to analysis. Fur-
thermore we propose two different algorithms to compute the
variance of the quantization error, for both scalar and mul-
tidimensional channel, when the quantizer is assumed to be
adaptive. In section 6 we want to apply a simpler version of
this channel model to a scheme similar to Scheme 2 except
for the presence of quantization and measurement noise. We
derive the equation for the estimator and the controller in
order to minimize the output variance. Since the estimator
gain depends on the output variance it is not clear if in this
context the separation principle can be applied. If the cost
functional is the output variance the simulations show that
the controller gain is that of the standard LQG approach. In
this context a lower bound on the SNR for stabilizability is
derived. On the contrary, changing the cost functional, the
controller gain obtained by simulations is different from that
of the LQG approach: this is a clear sign that the separation
principle is no longer valid. Finally in section 7 we propo-
se several different schemes to stabilize the plant when the
channel model of section 5, without packet delay, is used. In
particular we want to test the algorithms described in section
5 and compare the output variance of the schemes for diffe-
rent values of SNR and different probabilities of packet loss.
Section 8 draws conclusions.

3 Problem Formulation
We consider the problem of stabilizing a possibly unstable
system across a communication channel. In our work we will
model the plant as a SISO discrete time linear time inva-
riant dynamical systems subject to additive measurement and
process noise. More specifically:

{
xt+1 = Axt +But + wt

yt = Cxt + vt

where x ∈ Rn, u ∈ R, y ∈ R, vt ∼ N (0, R), wt ∼ N (0, Q),
x0 ∼ N (0, P0), and wt ⊥ vt ⊥ x0. We also assume that the
pairs (A,B) and (A,Q) are controllable, the pairs (A,C) and
(A,W ) are observable, and R > 0.
A simple and appropriate model channel is developed in
section 5. It’s important that this model renders correctly
the relevant beformentioned non-idealities.

For such a system (with partial state/output measuremen-
ts) the linear quadratic Gaussian (LQG) methodology has
proved to be a useful technique for designing output feedback
controllers. We define the performance index as follows:

J =
1

T

T∑

t=0

E[xT
t Wxt + uT

t Uut]

And in the context of infinite horizon LQG control we
define:

J = lim
T→+∞

1

T
E[

T∑

t=0

xT
t Wxt+uT

t Uut] = lim
t→+∞

E[xT
t Wxt+uT

t Uut]

and the last equivalence holds if the processes are stationary
and ergodic. The choice for the matrices W,U depends on
the avaliable measurement information set, and it will be di-
scussed in the next section. In our context the plant control
input will always be available at the Kalman estimator site.

4 Revision on literature using LQG
approach

In this section a revision of the work [1] will be exposed
using the LQG approach, i.e instead of characterizing the
closed-loop system stability under the constraint (1) in terms
of transfer function properties, we apply the LQG approach
to solve the problem.

We consider the system described in the first part of Section
2.1.2 : let K(z) := Ks(z)Kr(z) , T (z) the transfer function
from n to s and G(z) the transfer function from u to y/x.
The following relation holds:

T (z) =
Kr(z)Ks(z)G(z)

1 +Kr(z)Ks(z)G(z)
=

K(z)G(z)

1 +K(z)G(z)

We are dealing with a SISO linear time-invariant for which
the two schemes in Figure 7 and 8 share the transfer function
T (z):
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Figura 7: Scheme 1

Figura 8: Scheme 2

4.1 Scheme 1: SNR-constrained feedback
stabilization

The stabilization problem under the constraint (1) for the
scheme presented in Figure 7 will be translate in a LQG pro-
blem applied at the same scheme. The equivalent system
model at the controller side has state variable description:

{
xk+1 = Axk +Bsk +Bnk

yk = Cxk

where sk is the control signal and Bnk is the noise process.
Since the separation principle holds, controller and estimation
design can be decoupled (see Figure 9). In the next section
a solution to the feedback stabilization problem is derived,
using as measurements set the output or the state of the plant
model.

Figura 9: Scheme 1 feedback stabilization

4.1.1 SNR-constrained output feedback stabiliza-
tion

For this scheme the deterministic component is given by
sk while Bnk represents the process noise of convariance

Q = σ2
nBB#, there’s no output noise. We also assume that

the pairs (A,B) and (A,Q) are controllable, the pairs (A,C)
and (A,W ) are observable. These conditions ensure the con-
vergence properties and consistency of the Kalman Filter in-
dependently from the initial conditions. The Kalman Filter
estimate state x̂k|k fits the following recursive equation:

x̂k|k = (I −KC)(Ax̂k−1|k−1 +Buk−1) +Kyk (9)

Where K = PC#(CPC#)−1 is the static Kalman filter gain,
and the error variance matrix P = E

[
(xk − x̂k|k)

2
]

satisfy
the Algebraic Riccati Equation (ARE):

P = A
[
P − PC#(CPC#)−1CP

]
A# + σ2

nBB#

The feedback-loop performance can be characterized in
terms of the index cost:

JT (x0,K(z)) =
1

T

T−1∑

k=0

Enk

[
x#
k Wxk + s#k Usk

]

where W ≥ 0 and U ≥ 0 are suitable matrices. If sk and xk

are strictly stationary processes, the ergodic theorem holds,
for T → +∞:

J (x0,K(z)) = lim
T→+∞

JT (x0,K(z)) =

= lim
k→+∞

Enk

[
x#
k Wxk + s#k Usk

]

taking W = CC# and U = ρ, with ρ ∈ [0,+∞) the
asintotic index cost can be written as:

J (x0,K(z)) = lim
k→+∞

Enk

[
||yk||2 + ρ||sk||2

]
(10)

= lim
k→+∞

ρEnk

[
1

ρ
||yk||2 + ||sk||2

]

The goal is to find, over all the control strategies that guaran-
tee the feedback loop stability, the one that get the minimum
value of the index cost (10):

arg min
K(z)

ρE
[
1

ρ
||yk||2 + ||sk||2

]
= arg min

K(z)
E
[
1

ρ
||yk||2 + ||sk||2

]

let λ = 1
ρ ∈ (0,+∞), and taking the limit λ → 0 in the

infinite-horizon, we get the expected power constraint:

lim
λ→0

min
K(z)

lim
k→+∞

E
[
λ||yk||2 + ||sk||2

]
= min

K(z)
lim

k→+∞
E
[
||sk||2

]
:= Pmin

And it can be demonstrated that this limit exists and it
can be reached by the same time-invariant controller L∗

that solves the former LQG problem, with W = CCT and
ρ → +∞. The optimal control law uk = L∗x̂k|k is derived,
solving the Algebraic Riccati Equation (ARE):

S = A#SA−A#SB(B#SB + ρ)−1B#SA+W (11)

and from this:

L∗ = −(B#SB + ρ)−1B#SA (12)
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Closed-loop transfer function from the feedback
output

In this section the closed-loop Transfer function T (z) for the
feedback output system is derived and it can be compared
to the one presented in [1]. From the equation (9) and the
optimal control law uk = L∗x̂k|k we get:

x̂k|k = (I −KC)(A+BL∗)x̂k−1|k−1 +Kyk

uk = L∗(I −KC)(A+BL∗)x̂k−1|k−1 + L∗Kyk

from this expression, let F = (I − KC)(A + BL∗), the
transfer function K(z) from yk to sk is derived:

K(z) = L∗F (zI − F )−1K + L∗K

And then T (z) is:

T (z) =
G(z)K(z)

1−G(z)K(z)

Comparisons

Let’s consider the theoretical bound Pmin derived in [1]
for the minimum feasible power at the channel input, with
respect to the output feedback problem:

Pmin

σ2
n

=

(
m∏

i=1

φi

)
− 1 + η + δ (13)

where
{
φi, i = 1, . . . ,m

}
are the unstable eigenvalues of the

system. Let r be the relative degree of the open-loop transfer
function G(z) and

{
αi, i = 1, . . . , q

}
is the set of the distinct

non minimum-phase zeroes of G(z). The coefficients that
appears in (13) are obtained as follows:

η =
q∑

l=1

q∑

i=1

γiγl
αiᾱl − 1

δ =

{
0, se r = 1
∑r

i=1 |βk|2, se r > 1

γl = (1− |αl|2)
(

m∏

i=1

1− αlφ̄i

αl − φi
−

r−1∑

k=0

βkα
−k
l

)
q∏

k=1k !=l

1− αlᾱk

αl − αk

Bφ(z) =
m∏

i=1

z − φi

1− zφ̄i
βk =

1

k!

dk

dzk

[
m∏

i=1

z − φi

1− zφ̄i

]

z=0

In the case of in two-dimensional space system with only one
zero (α) the former formulae become:

Pmin

σ2
n

=

(
m∏

i=1

φi

)
− 1 + η

con

η =
|γ|2

|α|2 − 1
e γ = (1− |α|2)(B−1

φ (α)−Bφ(0))

if the zero is unstable (|α| ! 1). On the contrary if |α| < 1
then η = 0, we notice that the same bound is achieved in the
case of state feedback stabilization (see equation (15)).

4.1.2 SNR-constrained state feedback stabilization

If we assume that state measures are avaliable to design the
feedback loop, Kalman Filter is no longer needed and the
problem is reduced in computing the optimal control law uk =
L∗xk, according to (11), (12) in the past sections.

Closed-loop transfer function from the feedback state

In this section the closed-loop Transfer function T (z) for the
feedback state system is derived and it can be compared to
the one presented in [1]. Let us consider the equivalent system
from uk to sk, the state system equation are:

{
xk+1 = Axk +Buk

sk = L∗xk

The transfer function from uk to sk is H(z) = G(z)K(z) =
L∗(zI−A)−1B and from uk = sk+nk we obtain the transfer
function T (z) from nk to sk:

T (z) =
H(z)

1−H(z)
(14)

Comparisons

Let’s consider the theoretical bound Pmin derived in [1]
for the minimum feasible power at the channel input, with
respect to the state feedback problem:

Pmin

σ2
n

=

(
m∏

i=1

φi

)
− 1 (15)

where
{
φi, i = 1, . . . ,m

}
are the system unstable eigenvalues.

4.1.3 Matlab Simulation

These results have been supported by system simulation using
Matlab. Indeed, adopting LQG methodology we find the sa-
me results presented in [1]). In particular we find the following
equivalence:

• The expected asintotic cost Enk

[
λ||yk||2 + ||sk||2

]
, over

N = 50 simulations with random initial conditions, when
λ → 0.

• The theoretical bound Pmin of the minimal feasible
power at the channel input, computed in [1].

• The norm ||T (z)||2H2
of the transfer function T (z) from

n to s, computed as indicated in the previous Sections
4.1.1 and 4.1.2, multiplied by σ2

n.

Examples

In the following we report the results found for a
2-dimensional system characterized by the matrices:

A =

[
λ1 0
1 λ2

]
CT = B =

[
1
1

]

where W = CTC, U = ρ and random initial condition,
x0 ∈ N (0, 4I2). In the following grid we compute Pmin with
three different methods:

7



Figura 10: Scheme 2 feedback stabilization

• Theoretical bound: computed from the article [1];

• Transfer function: the norm ||T (z)||2H2
of the Trans-

fer Function from n to r computed with ρ = 100000
multiplied by σ2

n;

• Matlab Simulation : expected cost Enk

[
λ||yk||2 + ||sk||2

]

over N = 50 realizations with random initial condition
and ρ = 1/λ = 100000.

Theoretical Transfer Function Simulation
state 0.071225 0.071225 0.071218

output 0.089289 0.089298 0.089552

Tabella 1: λ1, λ2 = {1.5, 1.9}, z = 1.2, σn = 0.1

Theoretical Transfer Function Simulation
state 0.0429 0.0429 0.042859

output 0.069739 0.069739 0.069867

Tabella 2: λ1, λ2 = {0.9, 2.3}, z = 1.1, σn = 0.1

4.2 Scheme 2: SNR-constrained output
feedback stabilization

We now apply the same methods for the Scheme 2 (see Figure
8) to compute the optimal control strategy. With respect
to this configuration only the output feedback stabilization
can be considered as a point-to-point connection channel is
employed so we can’t send a multi-dimensional signal (i.e. ,
the vector state). The equivalent system at the controller side
is: {

xk+1 = Axk +Buk

yeqk = Cxk + nk
(16)

where uk is the input signal and nk is the output noise, with
covariance R = σ2

n > 0, and there’s no process noise.
Since the separation principle holds, controller and

estimation design can be decoupled (see Figure 10).
We also assume that the pair (A,C) is observable, howe-

ver (A,Q
1
2 ) = (A, 0) isn’t stabilizable, so we can’t ensure the

uniqueness of the asintotic solution of the error covariance
P = E

[
(xk − x̂k|k)

2
]
. Indeed the associated Algebraic Ricca-

ti Equation is homogeneous, and the convergence properties
depends on the particular choice of the initial conditions:

P = A
[
P − PC#(CPC# + σ2

n)
−1CP

]
A#

A first approach is to study the solution convergence for
Q → 0 . We now introduce the index cost:

JT (x0,K(z)) =
1

T

T−1∑

k=0

Enk

[
x#
k Wxk + u#

k Uuk

]

If uk and xk are strictly stationary processes, the ergodic
theorem holds, for T → +∞:

lim
T→+∞

JT (x0,K(z)) = lim
k→+∞

Enk

[
x#
k Wxk + u#

k Uuk

]

Taken W = CC# and U = ρ, with ρ ∈ [0,+∞),
from the output relation (16) we can derive the following
representation of the index cost:

JT (x0,K(z)) =
1

T

T−1∑

k=0

Enk

[
||yk||2 + ρ||uk||2

]

where yk is the plant output (not the regulator output yeqk ).
For such a scheme, the input channel subject to the power

constraint (1) is sk = yk.

The goal is to find, over all the control strategies that
guarantee the feedback loop stability, the one that get the
minimum value of the index cost. More precisely:

arg min
K(z)

E
[
||yk||2 + ρ||uk||2

]

And taking the limit ρ → 0 in the infinite-horizon problem,
we get the expected power limit:

lim
ρ→0

min
K(z)

lim
k→+∞

E
[
||yk||2 + ρ||uk||2

]
=

= min
K(z)

lim
k→+∞

E
[
||yk||2

]
:= Pmin

And it can be demonstrated that this limit exists and it can
be reached by the same time-invariant controller L∗ that sol-
ves the former LQG problem, with W = CCT and ρ → 0.
The optimal control law uk = L∗x̂k|k is derived, solving the
Algebraic Riccati Equation (ARE):

S = A#SA−A#SB(B#SB + ρ)−1B#SA+W

and we get:

L∗ = −(B#SB + ρ)−1B#SA

Closed-loop transfer function from the feedback
output

In this section the closed-loop Transfer function T (z) for the
feedback output system is derived and it can be compared
to the one presented in [1]. From the equation (9) and the
optimal control law uk = L∗x̂k|k we get:

x̂k|k = (I −KC)(A+BL∗)x̂k−1|k−1 +Kyk

uk = L∗(I −KC)(A+BL∗)x̂k−1|k−1 + L∗Kyk

8



Let: F = (I−KC)(A+BL∗) thus we get the transfer function
K(z) from yeqk to uk:

K(z) = L∗F (zI − F )−1K + L∗K

And the Transfer Function T (z) is:

T (z) =
K(z)G(z)

1−K(z)G(z)

4.2.1 Matlab Simulation

These results have been supported by system simulation using
Matlab. Indeed, adopting LQG methodology we find the sa-
me results presented in [1]). In particular we find the following
equivalence:

• The theoretical bound Pmin of the minimal feasible
power at the channel input, computed in [1].

• Transfer function: the norm ||T (z)||2H2
of the Transfer

Function from n to r computed as exposed in Section
4.2, multiplied by σ2

n.

• The expected cost Enk

[
||yk||2 + ρ||uk||2

]
, when ρ → 0,

over N = 50 realizations with arbitrary initial conditions
.

Examples

In the following we report the results found for a
2-dimensional system characterized by the matrices:

A =

[
λ1 0
1 λ2

]
CT = B =

[
1
1

]

where W = CTC, U = ρ and random initial condition,
x0 ∈ N (0, 4I2). In the following grid we compute Pmin with
three different methods:

• Theoretical bound: computed from the article [1];

• Transfer function: the norm ||T (z)||2H2
of the Trans-

fer Function from n to r computed with ρ = 1
100000

multiplied by σ2
n;

• Matlab Simulation : the expected cost
Enk

[
||yk||2 + ρ||uk||2

]
over N = 50 realizations with

arbitrary initial conditions and ρ = 1
100000 .

Theoretical Transfer Function Simulation
output 0.089289 0.089324 0.089318

Tabella 3: λ1, λ2 = {1.5, 1.9}, z = 1.2, σn = 0.1

Theoretical Transfer Function Simulation
output 0.069739 0.069861 0.070098

Tabella 4: λ1, λ2 = {0.9, 2.3}, z = 1.1, σn = 0.1

4.3 Transfer Function
In the previous sections we compared the H2-norm of the
transfer function, obtained for the two different schemes, and
we found that they were equal. Here we want to compare
the functions themselves instead of their H2-norm. Even if
the transfer function is K(z)G(z) in both cases, K(z) could
be different because the schemes at the Kalman filter site are
different and so the AREs involved in the calculation of the
gain are different. Surprisingly the simulations confirm that,
on the contrary, the two transfer function aren’t only equal
in H2-norm but they are exactly the same function. This is
due to the fact that also the ARE for the controller gain is
different in the two schemes and this two diversity compensate
one for each other. In the following we give some examples:

• λ1, λ2 = {1.5, 1.9}, z = 1.2, σn = 0.1

Scheme 1 : Transfer Function

T (z) =
−1.951z3 + 3.479z2 − 1.366z + 7.584−17

z4 − 3.983z3 + 4.831z2 − 1.661z

Scheme 2 : Transfer Function

T (z) =
−1.96z3 + 3.466z2 − 1.337z + 2.227−16

z4 − 3.966z3 + 4.774z2 − 1.613z + 0.0001629

• λ1, λ2 = {0.9, 2.3}, z = 1.1, σn = 0.1

Scheme 1 : Transfer Function

T (z) =
−2.163z3 + 4.326z2 − 2.141z − 8.259−17

z4 − 4.406z3 + 5.93z2 − 2.497z

Scheme 2 : Transfer Function

T (z) =
−2.202z3 + 4.405z2 − 2.18z − 2.421−16

z4 − 4.411z3 + 5.945z2 − 2.507z + 0.0001529

If a SISO scalar system is considered, than the Transfer Func-
tion equivalence can be analytically proved (see Appendix). A
possible approach to demonstrate the same result in the gene-
ral case could be carried out through the method of Lagrange
multipliers. However this subject is not further developed in
this paper.

5 Channel Model
In the various works cited in section 2.1 several channel
models have been proposed, however all of them focus only
on one non-ideality at time. The aim of this section is to
find a channel model that captures the essence of todays’
communication systems in all of his relevant aspect yet
being amenable to analysis. It is a standard practice, in the
communication field, to characterize a channel through its
capacity C, in this context it is worth to recall the Shannon’s
channel capacity theorem:

Theorem: Let P̄ be the average signal power at the
input of the channel and suppose the noise is white thermal
noise of power N in the band W . By sufficiently complicated
encoding systems it is possible to transmit binary digits at a
rate

C = Wlog2

(
1 +

P̄

N

)
[bit/s]
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with as small a frequency of errors as desired. It is not
possible by any encoding method to send at higher rate and
have an arbitrarily low frequency of errors.

Throughout this theorem it is immediate to show that,
in the context of modeling an AWGN channel, the capacity
constraint can be translated into a signal-to-noise ratio
(SNR) limit. In fact suppose that we have the following
constraint on the transmitted signal:

lim
T→+∞

1

T

T∑

t=0

E[||st||2] = Ps ≤ P̄ = N(2
C
W − 1) (17)

so that
SNR =

Ps

N
≤ (2

C
W − 1) = SNR∗

this means that given a channel with capacity C, and so of
SNR∗ = (2

C
W − 1), it is possible to stabilize the systems on-

ly if the required SNR is lower than SNR∗, otherwise it is
not possible to transmit the signal through the channel. No-
netheless, this is a necessary but not sufficient condition for
controlling the plant, since the reliable transmission with rate
C, by the Shannon theorem, is obtained at the cost of infini-
tely long decoding delays, which are not suitable for control
purposes. However, if we bound the maximum decoding de-
lay to τmax, we need to admit a certain erasure probability
ε and a certain distortion of the signal due to quantization
errors.

Figura 11: Channel model

Given that it is hereby proposed a model of the channel, see
figure 11, where the loss of accuracy due to the quantization
error is modeled as an additive gaussian noise nt ∼ N (0, σ2

n).
Furthermore the decoding delay τ ∈ N is taking into account
and the probability to not being able to correctly decode the
message is represented by the binary variable γt ∈ {0, 1}. The
successful trasmission probability is P[γt = 1] = γ̄ = 1− ε.
The parameters that characterize this model are:

SNR∗, σ2
n = E[||nt||2], γ̄ = P[γt = 1], τ = cod/dec delay

They can be designed via appropriate choice of the Channel
Cod/Dec, however they are all coupled since augmenting
the successful probability γ̄ it might require increasing the
delay τ or the equivalent noise variance σ2

n. Therefore some
trade-offs are likely to appear in the context of feedback
control systems, since all the terms negatively impact the
performance of the closed loop system.

Assuming that the channel error n(t) depends only on
the presence of the quantizer, which is supposed to be
uniform, and given the probability density function of the
input signal s(t), it is possible to derive a relation between
SNR∗ and σ2

n. In particular we say that the channel is
adaptive if at each instant time it satisfy the equality

SNR =
Ps(t)

σ2
n(t)

=
Ps

σ2
n

= SNR∗

where we suppose the signal to be stationary. This condition
means that the dynamic range (−vsat, vsat) of the uniform
quantizer is always adapted to the input signal, i.e. the
dynamic range is chosen in order to reach the minimum
feasible value for σ2

n subject to the constraint SNR < SNR∗,
figure 12.

(a) the quantizer is not adap-
ted: there is high probability
that the input signal will be in
the saturation region (red zone)

(b) the quantizer is not adap-
ted: the signal do not use all the
available levels

(c) this quantizer is adapted

Figura 12: Example of different input signal with the same
quantizer

For a uniform quantizer with a fixed number of bits b, and
consequently L = 2b levels, the SNR in given by:

SNR = 3k2fL
2

where kf is the shaping factor of the channel:

kf =

√
Ps

vsat

Lets suppose that s(t) is a gaussian signal then it must be
vsat ! k

√
Ps, where usually k = 3, in order to guarantee that

the probability of saturation is negligible. Given that:

SNR = 3
Ps

v2sat
L2 " 3

Ps

k2Ps
L2 =

3

k2
L2 = SNR∗

We will say that the channel is adapted if vsat = k
√
Ps and so

SNR = SNR∗, which is the best signal to noise ratio feasible
with the given channel. It follows that:

Ps

σ2
n

= SNR∗ ⇒ σ2
n =

Ps

SNR∗

If the variance Ps is constant and independent from the input
noise n(t) the optimal choice will be σ2

n = Ps
SNR∗ . Unfortu-

nately in our schemes this never happens since Ps = f(σ2
n)

is a function of the input noise. For this reason deriving the
optimal value of σ2

n is a much more complex and non linear
problem since we have to solve the equation:

σ2
n =

Ps

SNR∗ =
f(σ2

n)

SNR∗

10



In order to compute σ2
n two different tecniques are here

proposed:

1. Fixed point method
In the scalar case it is possible to find the fixed point of
the map σ2

n = Ps
SNR∗ = f(σ2

n)
SNR∗ through graphical analysis.

The value of σ2
n is the intersection point between the two

graph y1 = SNR∗σ2
n and y2 = f(σ2

n). The first one is a
straight line that assign to each value of σ2

n the power Ps

of the input signal needed to guarantee SNR = SNR∗.
The latter must be obtained from simulations: for each
value of σ2

n the related system must be implemented and
the power Ps is then obtained as sampling variance of
the input signal.

2. Iterative method
Another possible way is to initialize σ2

n(1) = 0 and then
repeat the following steps until we arrive at convergence:

(a) implement the system with σ2
n(i) and find the power

Ps(i) as sampling variance of the input signal;

(b) set the quantization error for the next step as σ2
n(i+

1) = Ps(i)/SNR∗;

If the input signal is multidimensional, for example a vector
of length 2, the same procedure can be used allocating b1 bits
to the first component and b2 bits to the second one, with
the constraint b1 + b2 = b. The problem is so reduced to an
equivalent one where there are two scalar channel with b1 and
b2 bits each. For the sake of simplicity let b1 = b2 = b/2 then
the maximum signal to noise ratio for each channel is :

SNR∗
c =

3

k2
L2
c =

3

k2
∗ 22b/2 =

3

k2
∗ 2b = SNR∗

2b

from which can be derived:

σ2
(n,i) =

P(s,i)

SNR∗
c

where σ2
(n,i) is the variance of the i-th component of the quan-

tization noise and P(s,i) is the variance of the i-th component
of the input signal. In vector notation:

Qn = V ar [n(t)] =

[ P(s,1)

SNR∗
c

0

0
P(s,2)

SNR∗
c

]

in this case only the iterative method can be used to estimate
the value of Qn.

6 A first channel model application

We now want to apply the channel model derived in the
previous section to the scheme of figure 13.

Figura 13: Scheme 2 with measurement and process noise

This is the same scheme of figure 8 in which process and
measurement noise, v(t) and w(t), are added. The main dif-
ference relies in the channel model: with respect to Bra-
slavsky context, in which the quantization noise was fixed,
here instead we want to use an adaptive quantizer so that
SNR = SNR∗. In other words the scheme is the same used
in section 4.2 but the model of the channel is that described
before, without considering the packet loss or the delay. This
non idealities will be considered in a second moment. The
equation of the system are:

• controller
u(t) = Lx̂(t|t)

• system
x(t+ 1) = Ax(t) +Bu(t) + v(t)

y(t) = Cx(t) + w(t)

where V ar(v(t)) = Q e V ar(w(t)) = R. Let the variance
of the output y(t) be Py.

• Equivalent system at the Kalman estimator site

x(t+ 1) = Ax(t) +Bu(t) + v(t)

y′(t) = Cx(t) + w(t) + n(t)

where in adaptive condition V ar(n(t)) = N = αPy with
α = 1

SNR∗ < 1.

• Kalman predictor

x̂(t+ 1|t) = Ax̂(t|t− 1) +Bu(t) +G [y′(t)− Cx̂(t|t− 1)]

so:

e(t+ 1|t) = x(t+ 1)− x̂(t+ 1|t) = Ax(t) +Bu(t)+

+v(t)−Ax̂(t|t− 1)−Bu(t)−G [y′(t)− Cx̂(t|t− 1)] =

= Ae(t|t− 1) + v(t)−G [Ce(t|t− 1) + w(t) + n(t)] =

= (A−GC)e(t|t− 1) + v(t)−G(w(t) + n(t))

• Kalman estimator
The equation of the Kalman estimator are needed in
order to compute the control:

x̂(t|t) = x̂(t|t− 1) +K [y′(t)− Cx̂(t|t− 1)]

11



Given that:

u(t) = Lx̂(t|t) = Lx̂(t|t− 1) + LK [y′(t)− Cx̂(t|t− 1)] =

= L [I −KC] x̂(t|t− 1) + LKy′(t)

Substituting the input given by the controller in the
Kalman predictor equation:

x̂(t+ 1|t) = Ax̂(t|t− 1) +Bu(t) +G [y′(t)− Cx̂(t|t− 1)] =

= Ax̂(t|t− 1) +BL [I −KC] x̂(t|t− 1) +BLKy′(t)+

+G [y′(t)− Cx̂(t|t− 1)]

= [A+BL] x̂(t|t− 1) + [BLK +G] [y′(t)− Cx̂(t|t− 1)] =

= [A+BL] x̂(t|t−1)+[BL+A]K [Ce(t|t− 1) + w(t) + n(t)]

The real output of the system is:

y(t) = Cx(t) + w(t) = C [e(t|t− 1) + x̂(t|t− 1)] + w(t)

it follows that the equation of the feedback loop system are:
[

x̂(t+ 1)
e(t+ 1)

]
=

[
(A+BL) (A+BL)KC

0 A(I −KC)

] [
x̂(t)
e(t)

]
+

+

[
0
I

]
v(t) +

[
(A+BL)K

−AK

] [
w(t) + n(t)

]

y(t) =
[
C C

] [ x̂(t)
e(t)

]
+ w(t)

where we use G = AK, x̂(t) = x̂(t|t−1) and e(t) = e(t|t−1).
Let P be the matrix variance of the state and:

Ā =

[
(A+BL) (A+BL)KC

0 A(I −KC)

]

since
[

x̂(t)
e(t)

]
, v(t) e [w(t) + n(t)] are uncorrelated, it follows:

P = ĀP Ā′ +

[
0
I

]
Q
[
0 I

]
+

+

[
(A+BL)K

−AK

] [
R+N

] [
K′(A+BL)′ −(AK)′

]

N = αPy Py =
[
C C

]
P

[
C
C

]
+R

In the scalar case with b = c = 1 the equations become:
[

x̂(t+ 1)
e(t+ 1)

]
=

[
(a+ l) (a+ l)k

0 a(1− k)

] [
x̂(t)
e(t)

]
+

+

[
0
1

]
v(t) +

[
(a+ l)k
−ak

] [
w(t) + n(t)

]

y(t) =
[
1 1

] [ x̂(t)
e(t)

]
+ w(t)

With variance:

P = ĀP Ā′+q

[
0
1

] [
0 1

]
+

[
(a+ l)k
−ak

]
(r+αPy)

[
(a+ l)k −ak

]

Py =
[

1 1
]
P

[
1
1

]
+ r

Substituting the second equation in the first one we get:

P = ĀP Ā′ + q

[
0 0
0 1

]
+ r

[
(a+ l)2k2 −ak2(a+ l)
−ak2(a+ l) (ak)2

]
+

+

[
(a+ l)k
−ak

]
{α

[
1 1

]
P

[
1
1

]
+ αr}

[
(a+ l)k −ak

]
=

= ĀP Ā′+ q

[
0 0
0 1

]
+ r(1+α)

[
(a+ l)2k2 −ak2(a+ l)
−ak2(a+ l) (ak)2

]
+

+α

[
(a+ l)k
−ak

] [
1 1

]
P

[
1
1

] [
(a+ l)k −ak

]

= ĀP Ā′ + αB̄PB̄′ + Q̄ (18)

Where:
B̄ =

[
(a+ l)k (a+ l)k
−ak −ak

]

Q̄ = q

[
0 0
0 1

]
+ r(1 + α)

[
(a+ l)2k2 −ak2(a+ l)
−ak2(a+ l) (ak)2

]

this is solvable using the vectorized form:

vecP =
[
Ā⊗ Ā+ αB̄ ⊗ B̄

]
vecP + vecQ̄

vecP =
[
I − (Ā⊗ Ā+ αB̄ ⊗ B̄)

]−1
vecQ̄ (19)

and J = V ar(y(t)) = Py =
∑

i [vecP ]i + r.

Notice that this equation is solvable if and only if the
difference equation:

vecP (k + 1) =
[
Ā⊗ Ā+ αB̄ ⊗ B̄

]
vecP (k) + vecQ̄

converges and this happens iff the matrix
[
Ā⊗ Ā+ αB̄ ⊗ B̄

]

is stable. If α = 0, i.e without quantization error, this con-
dition is equivalent to the stability of Ā. In this case Ā is a
triangular matrix and so it is immediate to find out the two
constraints:

|a+ l| < 1 ⇒ −a− 1 < l < −a+ 1

|g − a| < 1 ⇒ a− 1 < g < a+ 1

however these are necessary but not sufficient conditions
when α '= 0.

6.1 Minimization of the cost J = E [y2]

Let
P =

[
p11 p12
p12 p11

]

then the cost functional is J = p11 + 2p12 + p22 + r. Notice
that p12 must alway been null since x̂(t|t−1) and e(t|t−1) are
uncorreleted, while p11 and p22 must always be positive sin-
ce P is positive-semidefinite. Given that the cost functional
becomes J = p11 + p22 + r, which is a monotonically increa-
sing function of p11 and p22. From equation 18 we derive, see
Appendix:

p11 = (a+l)2
[
(p11 + 2kp12 + k2p22) + αk2(p11 + 2p12 + p22) + r(1 + α)k2

]

p12 = (a+l)
[
a(1 − k)(p12 + kp22) − αak2(p11 + 2p12 + p22) − r(1 + α)ak2

]

p22 = a2(1 − k)2p22 + q + [(1 + α)r + α(p11 + 2p12 + p22)] (ak)
2

In order to find the couple (l∗, k∗) that minimize J notice
that p22 is independent on l and monotonically increasing on
p11. Moreover for l = −a we have p11 = p12 = 0. Given that,
since p11 is always positive, both p11 and p22 are minimum
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for l∗ = −a, which thus is the optimal value. The value of k∗
can be obtained imposing:

k∗ = argmin
k

p22 =
p22

(1 + α)(p22 + r)

Substituting this value in p22 we get:

p22 = a2p22 + q − 1

1 + α

a2p222
p22 + r

This is a MARE with γ̄ = 1
1+α . Given that it should be easy

to include in this model also the packet loss, the reader is
invited to compare this result with that obtained in section
7.2.1.

Notice that since the system is scalar the critical probability
for the solvability of the MARE is known:

γc = 1− 1

a2

Given that the problem has solution, i.e. p22 converges, iff:

γ̄ =
1

1 + α
> γc = 1− 1

a2

which implies:

α <
1

a2 − 1
⇒ SNR∗ > a2 − 1 (20)

This constraint is the same obtained in section 4, however
this is a more general results since it is derived for a plant
with measurement and process noise. In the LQG context
the main results of [1] is thus obtained as a corollary. In the
following section we derive the same result with a different
technique which doesn’t require the use of a MARE.

Analysis with the LQG controller gain l∗ = −a

The simulations confirm that the minimum value of J = E[y2]
is always obtained when l = −a. This value is the controller
gain that can be obtained with the standard LQG approach
when ρ = 0, see Appendix. With this constraint the previous
equations becomes p11 = 0, p12 = 0 and:

p22 = a2(1− k)2p22 + q + [(1 + α)r + αp22)] (ak)
2

and so:

p22 =
[
a2(1− k)2 + α(ak)2

]
p22 + q + (1 + α)r(ak)2

Existence of the solution

The algebraic equation is solvable iff the difference equation

p22(t+ 1) =
[
a2(1− k)2 + α(ak)2

]
p22(t) + q + (1 + α)r(ak)2

converges and this happens iff there is at least a value of k such
that |a2(1−k)2+α(ak)2| = a2(1−k)2+α(ak)2 = fa(k) < 1.
Clearly values of k such that this constraint is satisfy exist
iff:

fa(k
∗) < 1 where k∗ = argmin

k
fa(k)

In order to find k∗ we impose the first derivative equal to
zero

dfa(k)

dk
= 2a2 [k − 1 + αk] = 0

and so k∗ = 1/(1 + α), since the second derivative is always
positive this must be a minimum point. The corresponding
value of fa(k∗) is:

fa(k
∗) = a2

α

1 + α

Given that, the constrained problem has a solution (in
particular we can choose k = k∗) iff

a2
α

1 + α
< 1 ⇒ α <

1

a2 − 1

In oder words the minimum value of SNR∗ needed to gua-
rantee the stabilization of the plant is SNR∗ > a2 − 1. This
is the same bound derived in (20).

Minimization of the cost functional

If the problem is solvable, i.e. α < 1
(a2−1) , there is an interval

of values such that the feedback loop system is stable. We now
want to find the one that minimizes the cost functional J =
E
[
y2
]
= p22 + r. There are three possible way of proceding:

1. Exhaustive search
Given a grid of values k, for each point the cost func-
tion is calculated solving equation (19) where l = −a.
The desired value of k is that one corresponding to the
minimum value of J ;

2. First iterative method
In order to minimize J = p22 + r we have to minimize
p22. Consider the recursive equation:
p22(t+1) =

[
a2(1− k(t))2 + α(ak(t))2

]
p22(t)+q+(1+α)r(ak(t))2

Let p22(1) = 0 and iterate until convergence:

(a) k(t) = argmink p22(t+ 1) = p22(t)
(1+α)(p22(t)+r)

(b) p22(t+1) =
[
a2(1− k(t))2 + α(ak(t))2

]
p22(t)+ q+

(1 + α)r(ak(t))2

Then k(∞) is the desired value, see appendix for the
proof.

3. Second iterative method
Let σ2

n = 0 and repeat until convergence:

(a) solve the ARE to find out the gain of the Kalman
filter with input noise σ2

n(k);
(b) compute the output variance Py(k). This can be

done in two different ways. One approach is to im-
plement the system and compute the sampling va-
riance of y(t), otherwise it can be calculated with
a procedure similar to that previously described. If
the variance of the input noise is given and it is
independent from the input signal we have:

P = ĀP Ā′+q

[
0
1

] [
0 1

]
+(r+σ2

n(k))

[
0 0
0 (ak)2

]

in vectorized form:

vecP =
[
Ā⊗ Ā

]
vecP + vecQ̄(k)

(c) let σ2
n(k + 1) = αPy(k)

13



The desired gain is that of the Kalman filter when the
noise variance is fixed at σ2

n(∞) . Notice that this is the
iterative scheme proposed in section 5.

The simulations confirm that these three methods are
equivalent, i.e. they all give the same value of g.

6.2 Analysis with other cost functionals
All the previous work refer to the cost functional J = E

[
y2
]
,

in this case the simulations show that the optimal value for
the controller gain is that of the standard LQG approach
and the value of the Kalman filter gain is that of a system
where the quantization error is calculated with the iterative
procedure described in section 5.

These results don’t seem to be correct if we use a functional
E
[
y2 + ρu2

]
where the cost depends not only on the output

but also on the control. The cost functional in this case
becomes, see Appendix:

J = p11(1 + ρl2(αk2 + 1)) + 2p12(1 + ρl2k(αk + 1))+

+ p22(1 + ρl2k2(α+ 1)) +R(1 + (1 + α)ρl2k2)

Notice that the coefficient of p22 in the cost functional
depends on l so that in general the choice l = −a is not
the optimal one. In confirmation the simulations show that
the optimal value for the controller gain is different from
that of the standard LQG. This is an evidence that in this
context the separation principle is not valid. Notice that in
this case it is not guaranteed that the choice of a scheme
where the controller and the estimator are independent is
optimal, whatever the values of their gains are. A future
direction of research could be to investigate more this case
to demonstrate analytically that the separation principle is
violated and to study the properties of the cost functional.
In this setting even the unicity of the minimum is not
guaranteed so that also the proposed iterative algorithms
may fail.

To summarize we have shown that the simple channel
model developed in section 5, even without packet loss or
delay, can lead to very interesting and difficult situations
where it is not clear which is the optimal configuration and
even if this is unique.

Using the predictor instead of the estimator

Instead of using the control u(t) = Lx̂(t|t) it is possible to
implement the control u(t) = Lx̂(t|t−1), see appendix C. It is
worth to mention that with this control law the same results
are obtained, i.e l∗ = −a with J = E

[
y2
]

and l∗ '= −a
otherwise, but the stability condition is more conservative
since it must be:

α <
1

(a2 − 1)a2

This is due to the fact that using the predictor, instead of the
estimator, a delay in added in the loop.

7 Adaptive quantization and packet
loss

In the following we propose several schemes to stabilize the
plant when the cost functional is the output variance. In this
section we will use the channel model described in section 5
without packet delays. The reader should refer to [4] for a
possible approach, in the LQG context, that takes into ac-
count the delays.
First of all we want to verify the convergence of the algo-
rithms, for the calculation of σ2

n, proposed in section 5. In
particular we will show the equivalence between the iterati-
ve method and the fixed point method for the scalar case.
Given that, we will compare the cost functional for the sche-
mes under adaptive conditions, i.e. the variance of the input
noise will be assumed equal to that one calculated with the
algorithms described above.

7.1 Proposed Schemes
We take into account three different schemes, figure 14:

(a) Scheme 3

(b) Scheme 4

(c) Scheme 5

Figura 14: Proposed schemes.

• Schemes 3 and 4 are the equivalents of schemes 1 and
2 of section 4 when process and measurement noise are
added and when the channel model is that one described
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in section 5, without packet delay. Notice that in Scheme
4 there is no packet loss, this is because if the input of the
communication channel is the control law, it is not clear
what happens if this is lost. In particular the system
could become open-loop and so unstable.;

• Scheme 5 is totally different from the previous configura-
tions since the channel input is the estimate state and so
is multidimensional. For the sake of simplicity we will as-
sume that the same number of bits will be used for each
component and so the noise variance matrix Qn can be
computed with the iterative method described in section
5, a graphical solution of this problem is not possible.
Finally notice that the input signal is the estimate state
and not the estimate error due to the presence of packet
loss.

7.2 Theoretical analysis of the schemes with
fixed quantization error

We have shown in the previous section that if the quantizer
is adaptive it is not clear weather the separation principle is
valid or not. In this context, since the schemes are much more
complicated than that one depicted in section 6, we will assu-
me that the principle is valid and so we will design separately
the estimator and the controller. If this assumption will pro-
ve to be false then the schemes hereby described will be only
sub-optimal. For the derivation of the equations let’s suppose
that the noise variance N is fixed, then the separation princi-
ple is valid and the optimal approach for each scheme is the
separate design of the kalman filter and the controller.

7.2.1 Scheme 3

System equations

xk+1 = Axk +Buk + wk

sk = yk = Cxk + vk

rk = y′k = γk(yk + nk) = γkCxk + γk(vk + nk)

Where wk, vk, nk are zero mean gaussian independent noise
of variance Q,R,N , while γk is a Bernoulli process with
Pr(γk = 1) = γ̄.

Kalman Filter
The system from the Kalman filter site is:

xk+1 = Axk +Buk + wk

y′k = γky
′′
k = γk(Cxk + v′′k )

where v′′k = vk +nk is a white noise of variance Req = R+N .
We choose a sub-optimal Kalman filter with costant gain K:

x̂k+1|k = Ax̂k|k +Buk

x̂k+1|k+1 = x̂k+1|k +K(y′k+1 − Ckx̂k+1|k)

Substituting the expression for Ck and y′k:

x̂k+1|k+1 = x̂k+1|k + γk+1K(y′′k+1 − Cx̂k+1|k)

so
ek+1|k = xk+1 − x̂k+1|k =

= Axk+Buk+wk−A(x̂k|k−1+γkK(y′′k −Cx̂k|k−1))−Buk =

= Aek|k−1 + wk −AγkK(Cxk + v′′k − Cx̂k|k−1)) =

= Aek|k−1 + wk −AγkK(Cek|k−1 + v′′k )) =

= A(I − γkKC)ek|k−1 + wk − γkAKv′′k

Notice that the prediction error is independent from the
input, this implies that the separation principle is valid.

The variance Pk+1|k = E[ek+1|ke
′
k+1|k|y′′0:k, γ0:k] is:

Pk+1|k = A(I − γkKC)Pk|k−1(I − γkKC)′A′ +Q+ γ2
kAKReqK′A′

Taking the expectation over all the realizations of γk, i.e.
P̄k+1|k = E[Pk+1|k], we have:

P̄k+1|k = Eγ0:k [Pk+1|k] = Eγk [Eγ0:k−1 [Pk+1|k|γk]] =

= Eγk [Eγ0:k−1 [A(I−γkKC)Pk|k−1(I−γkKC)′A′+Q+γ2
kAKReqK′A′|γk]] =

= Eγk [A(I − γkKC)P̄k|k−1(I − γkKC)′A′ +Q+ γ2
kAKReqK′A′] =

= Eγk [A(I − γkKC)P̄k|k−1(I − γkKC)′A′] +Q+ γ̄AKReqK′A′ =

= γ̄A(I−KC)P̄k|k−1(I−KC)′A′+(1−γ̄)AP̄k|k−1A
′+Q+γ̄AKReqK′A′

In order to minimize P̄ with respect to K it is convenient
to define the following operators:
Lλ(K,P ) = λA(I−KC)P (I−KC)′A′+(1−λ)APA′+Q+λAKRK′A′

Φλ(P ) = APA′ +Q− λAPC′(CPC′ +R)−1CPA′

In the following we will use the definition of stability for an
estimator:

Definition: Let x̃k|k = f(ỹk, γk) be a generic estimator,
where f is a measurable function, and ẽk|k = xk − x̃k|k and
P̃k|k its error and error covariance, respectively. We say that
the estimator is mean square stable iff limt→∞E

[
P̃k|k

]
" M

for some M > 0 and for all k ! 1.

Proposition Let (A,C) be observable, (A,Q1/2) con-
trollable and Req > 0 then:
(a) if A is unstable and γ̄ < γc then there is no kalman filter
with costant gain that is also stable;
(b) if instead γ̄ > γc the optimal costant gain Kalman filter
exist and the corrispondent gain is K̄ = P̄C ′(CP̄C ′+Req)−1

where P̄ is the solution of the following MARE P̄ = Φγ̄(P̄ ).

Proof In the following proof we will use theorem 2 at pg
10 of [4].
(a) First we prove by contradiction that, if A is unstable
and γ̄ < γc, there is no stable estimator with constant gain.
In fact, suppose that such a filter exists and has constant
gain K̃. Then also a sequence P̄k|k bounded for all k exists.
From ek+1|k = xk+1 − x̂k+1|k = Aek|k + wk we have that
P̄k+1|k = AP̄k|kA

′ + Q is bounded for all k. Then the
sequence P̄k+1|k = Lγ̄(K̃, P̄k|k) is a bounded sequence and
so for 2(g) S∗ = Lγ̄(K̃, S∗) has a solution. For 2(h)also
P ∗ = Φγ̄(P ∗) has a solution, but this is an absurd because
for 2(i) P ∗ = Φγ̄(P ∗) cannot have a solution if γ̄ < γc.
(b) For 2(i) P ∗ = Φγ̄(P ∗) has a solution, this implies
that P ∗ = Lγ̄(KP∗ , P ∗) has a solution too because
Φγ̄(P ∗) = Lγ̄(KP∗ , P ∗) . For 2(g) the Kalman filter with
constant gain KP∗ has error variance P ∗ for every initial
condition. For any other stable kalman filter with constant
gain T for 2(g) must be S∗ = Lγ̄(T, S∗) where S∗ is the error
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variance. Finally for 2(h) P ∗ " S∗ and so the filter with gain
KP∗ is optimal.

Given that the desired Kalman filter is:

x̂k+1|k+1 = x̂k+1|k + γk+1KP∗(y′
k+1 − Cx̂k+1|k) =

= Ax̂k|k +Buk + γk+1KP∗(y′
k+1 − CAx̂k|k − CBuk) =

= (I − γk+1KP∗C)Ax̂k|k + γk+1KP∗y′
k+1 + (I − γk+1KP∗C)Buk

where we use γky′′k = γky′k.

LQ controller
Since the separation principle is valid we can use the classical
LQG approach:

uk = Lx̂k|k

where the gain L is obtained by L = −(B′SB + U)−1B′SA,
with S solution of the algebraic riccati equation (ARE):

S = A′SA+W −A′SB(B′SB + U)−1B′SA

7.2.2 Scheme 4

This is a standard LQG problem with the only difference
that the control ua

k at the actuator site is the corrupted
version of the output of the controller uc

k: ua
k = (uc

k + nk).

System equations

xk+1 = Axk +Bua
k + wk

yk = Cxk + vk

Kalman Filter and LQ controller
The system from the regulator filter site is:

xk+1 = Axk +Buc
k +Bnk + wk

yk = Cxk + vk

This is a standard LQG problem where the process noise is
w′

k = Bnk + wk so that Q′ = BNB′ +Q.

7.2.3 Scheme 5

System equations

xk+1 = Axk +Buk + wk

yk = Cxk + vk

sk = x̂1
k|k rk = γk(x̂

1
k|k + nk) uk = Lx̂2

k|k

First Kalman filter
This is the standard Kalman filter with constant gain KP1 =
P1C ′(CP1C ′ +R)−1 and P1 solution of the ARE. So that:

x̂1
k+1|k+1 = (I −KP1C)Ax̂1

k|k +KP1yk+1 + (I −KP1C)Buk

Notice that the estimate error variance is

P 1
k|k = P1 − P1C

′(CP1C
′ +R)−1CP1

Second Kalman filter

We want to calculate the minimum variance estimate, x̂2
k|k,

of the state xk with the observation rk = γk(sk + nk) of the
signal received after the transmission. The scheme from the
second Kalman filter site is:

xk+1 = Axk +Buk + wk

rk = γk(x̂
1
k|k + nk) = γk(xk − e1k|k + nk)

We are in the same situation of Scheme 3 with the substitution
C = I and v′′k = nk − e1k|k ∈ N (0, N + P 1

k|k), where we use
the independence between nk and e1k|k . Using the previous
formulae we get that the optimal gain is KP2 = P2(P2 +
N + P 1

k|k)
−1 where P2 is the solution of the MARE P =

APA′ + Q − γ̄AP (P + N + P 1
k|k)

−1PA′. Given that, the
equation for the second filter is:

x̂2
k+1|k+1 = (I−γk+1KP2)Ax̂2

k|k+γk+1KP2rk+1+(I−γk+1KP2)Buk

Notice that if γk+1 = 0 we have x̂2
k+1|k+1 = Ax̂2

k|k +Buk, i.e
the system is open loop; on the other hand if γk+1 = 1 then:

x̂2
k+1|k+1 = (I −KP2)Ax̂2

k|k +KP2rk+1 + (I −KP2)Buk

Finally notice that the MARE just defined and that one of
Scheme 3 do not have the same γc since this is a function of
the unstable eigenvalues of A, which are the same, but also
of the C rank which is different.

LQ Controller
This is the same filter of Scheme 3:

uk = Lx̂k|k

where the gain L is obtained by L = −(B′SB + U)−1B′SA,
with S solution of the algebraic riccati equation (ARE):

S = A′SA+W −A′SB(B′SB + U)−1B′SA

7.3 Matlab analysis with adaptive quantizer
Given the schemes previously described we now want to in-
vestigate what happens if the quantizer is adaptive. In order
to do that we need to find the equivalent noise variance in
adaptive conditions with the algorithms described in section
5. The cost functional relative to this noise variance can be
computed using the following algorithm for each scheme:

1. compute the SNR∗ corresponding to the available
number of bits:

L = 2bit, SNR∗ = 3 ∗ L2 in the scalar case

Lc = 2bit/2, SNR∗ = 3 ∗ L2
c in the multi-dim case

2. compute the error variance in adaptive condition, this
can be done with the iterative method which is suitable
for all the schemes. Notice that it is best to mediate this
value over a sufficiently high number of realizations;

3. compute the cost functional, relative to the quantiza-
tion error just derived, over a sufficiently high number of
different simulations with random initial conditions.
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7.3.1 Matlab analysis without packet loss

Firstly we want to show that in the scalar case, i.e. schemes
3 and 4, the iterative method and the fixed point method are
equivalent. Figures 15 and 16 show the results obtained for
various system with the following structure:

A =

[
λ1 1
0 λ2

]
CT = B =

[
1
1

]

W = CTC U = ρ = 1/1000 Rs = 0.1 Qs = 0.1I2
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(a) Λ = {1.5, 2} and 2 bits
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(b) Λ = {1.5, 2} and 4 bits
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(c) Λ = {1.5, 1.5} and 3 bits

Figura 15: Check on the convergence for scheme 3
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(a) Λ = {1.5, 2} and 2 bits
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(b) Λ = {1.5, 2} and 4 bits
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(c) Λ = {1.5, 1.5} and 3 bits

Figura 16: Check on the convergence for scheme 4

Secondly we want to compare the cost functional of the
three schemes, under the hypothesis that there is no packet
loss, i.e. γ̄ = 1, when the number of available bits changes.
The aim of this comparison is to find which is the best ap-
proach, i.e. which signal must be sent in the channel, in order
to obtain the best performance. Figures 17 and 18 show some
results.
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Figura 17: Unstable system with Λ = {1.5, 1.2}
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Figura 18: Unstable system with Λ = {0.5, 1.2}

7.3.2 Matlab analysis with packet loss

Finally we are interested in simulating what happens if also
packet drop is considered. We already noticed that under
this circumstances scheme 4 is not operable. The following
figure seems to suggest that there is no an optimal scheme for
each value of γ̄ but the optimal choice depends on the packet
loss, on the number of bits available and on the system. In
particular we think that a measure of the instability of the
systems like that of 7 could be relevant also in this context.

More in particular we implemented two different sy-
stem one fully unstable Λ1 = {1.5, 1.2} and the other one
with only one unstable eigenvalue Λ2 = {0.5, 1.2}. For each
system we tested our model with two different channel of 6
and 10 bits respectively. Figure 19 show that if we use a 10
bits channel with system 1 there is a critical value such that
if γ̄ is greater than this value the best is scheme 3, otherwise
scheme 5 becomes better. This fact is not true if we use
instead a 6 bits channel, figure 21: in this case scheme 3
seems to be always a better choice. This might be because
the equivalent noise in adaptive condition is always greater
if we use a channel with a lower number of bits. The same
situation arises if we use system 2, which is less “unstable :
in this case, both with 6 and 10 bits, scheme 3 has a better
behaviour. Finally notice that since the two MARE used in
Scheme 3 and 5 are different, the critical probability for γ̄ is
different, i.e for some values of γ̄ the cost functional is finite
with scheme 5 but not with scheme 3. See for example the
range γ̄ ∈ (0.55, 0.7) in figure 19, for these values of γ̄ only
Scheme 5 can be used.
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Figura 19: Λ1 = {1.5, 1.2} and 10 bits
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Figura 20: Λ2 = {0.5, 1.2} and 10 bits
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Figura 21: Λ1 = {1.5, 1.2} and 6 bits
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Figura 22: Λ2 = {0.5, 1.2} and 6 bits

8 Conclusions

In this paper we have discussed the problem of stabilizing
a possibly unstable system across a communication channel
(e.g. , Networked Controlled System), where the plant is
modeled as a discrete time LTI dynamical system subject
to additive measurement and process noise. In literature
several possible approaches to deal with this problem have
been taken into account; in this paper we have focussed on
the LQG context. This technique has tourned out to be very
useful since it allows to find the optimal scheme deriving, at
the same time, the results of a previous work, [1], as corollary.

The main result of this paper is the channel model derived
in section 5. At the best of our knowledge, this is the
first model that includes power constraint, quantization
noise and packet loss in the same framework. We have also
proposed the use of a uniform adaptive quantizer and derived
several algorithms to find the quantization noise variance
in adaptive condition. It is important to remark that the
proposed model is suitable also for the multidimensional case.

As an application we have studied a simpler scheme, were
only power constraint and quantization noise were taken
into account. In particular we have discussed both the case
of cost functional J = E

[
y2
]
, i.e. to minimize the input

signal variance, and the general case J = E
[
y2 + ρu2

]
. In

the first case we proved that the optimal controller gain is
that of the standard LQG approach and we proposed several
methods to compute the optimal Kalman gain. Moreover,
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with our channel model, the bounds for stabilizability are
the same of [1] have been derived. In the latter case, i.e.
J = E

[
y2 + ρu2

]
, we showed through simulations that

the separation principle doesn’t hold anymore, since the
optimal controller gain is different from that of the LQG
approach. Notice that, if this is true, the proposed scheme
could be only sub-optimal. It would be interesting for
the future to demonstrate this experimental evidence, for
example using the standard dynamic programming approach.

Finally, we have proposed three different schemes to sta-
bilize the plant when also packet loss is present. Simulations
suggest that there is no an optimal scheme but the optimal
choice depends on the packet loss γ̄, on the number of bits
available (SNR∗) and on the system. In particular we think
that a measure of the instability of the systems like that of 7
could be relevant also in this context.

A key open problem not addressed in this work is how to
incorporate the delay in our channel model, this problem has
been addressed in [4]. For the future it would be interesting
to extend those results to our channel model.
This work is simply a first step in this interesting arena, sin-
ce many results are supported only by simulations, however
we think that it clearly highlights the effectiveness of the
LQG approach and can be useful as starting point for future
developments.
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Appendix
A Proof of the equivalence between

Scheme 1 and 2 in the scalar case

A.1 Scheme 1: Transfer Function computa-
tion Using the Index Cost

In relation to the Scheme 1 we want to compute the transfer
function from nk to uk using the index cost: J =

∑
x′
kWxk+

ρu2
k =

∑
x′
kc

′cxk+ρu2
k and we take the limit ρ → ∞. In such

a way u2
k is minimized (this problem is known in literature as

“cheap” optimal control). The state system at the regulator
side is:

xk+1 = Axk +Buk +Bnk

yk = Cxk

so the output and the process noises variances are R = 0 e
Q = σ2BB′, respectively.

Kalman Filter Gain

The solution of the following Algebraic Riccati Equation has
to be found:

P = APA′ +Q−APC ′(CPC ′ +R)−1CPA′

For SISO systems becomes:

p = a2p+ σ2b2 − a2p2c2

c2p
⇒ p = σ2b2

and the Kalman gain is:

K = PC ′(CPC ′ +R)−1 =
pc

c2p
=

1

c

LQ controller gain

The solution of the following Algebraic Riccati Equation has
to be found:

S = A′SA+W −A′SB′(B′SB + ρ)−1B′SA

For SISO systems becomes:

s = a2s+ c2 − a2s2b2

sb2 + ρ

From the simulations it tuns out that s increases as ρ, so we
can’t say that the last term approaches to zero as ρ → ∞. So
we get:

(1− a2)s− c2 = − a2s2b2

sb2 + ρ

s2b2 − sb2c2 + ρ[(1− a2)s− c2] = 0

ρ =
sb2c2 − s2b2

(1− a2)s− c2

Let L be the LQ filter:

L = −(B′SB+ρ)−1B′SA = − bsa

(b2s+ ρ)
= − bsa

b2s+ sb2c2−s2b2

(1−a2)s−c2

=

= − bsa[(1− a2)s− c2]

b2(1− a2)s2 − b2sc2 + sb2c2 − s2b2
=

= − (1− a2)bas2 − c2bsa

b2(1− a2)s2 − b2s2 − b2sc2 + sb2c2

And we get:

lims→∞L = − (1− a2)ba

b2(1− a2)− b2
=

(1− a2)ba

a2b2
=

(1− a2)

ab

Regulator Transfer Function

For the regulator the following equations holds:

x̂k|k = Fx̂k−1|k−1 +Kyk

uk = LFx̂k−1|k−1 + LKyk

let F = (I −KC)(A+BL), the Transfer Function is:

uk = [LF (zI − F )−1K + LK]yk

Substituting the former values we get:

F = (1− 1

c
c)(a+ b

(1− a2)

ab
) = 0

and then:

uk =
(1− a2)

ab

1

c
yk

Noise-Signal Trasfer Function

Finally we get the Transfer Function from the noise nk to the
signal uk:

uk =
(1− a2)

ab

1

c
yk =

(1− a2)

ab

1

c
c(z − a)−1b(nk + uk)

uk =
1−a2

a
1

z−a

1− 1−a2

a(z−a)

nk =
1− a2

az − 1
nk

A.2 Scheme 2: Transfer Function computa-
tion Using the Index Cost

In relation to the Scheme 2 we want to compute the transfer
function from nk to yk using the index cost: J =

∑
x′
kWxk+

ρu2
k =

∑
x′
kc

′cxk + ρu2
k and we take the limit ρ → 0. In such

a way y2k is minimized (this problem is known in literature as
“expansive” optimal control).

The state system at the regulator side is:

xk+1 = Axk +Buk

yk = Cxk + nk

and the variances of the process and ouput noises are Q = 0
e R = σ2, respectively.
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Kalman Filter Gain

The solution of the following Algebraic Riccati Equation has
to be found:

P = APA′ +Q−APC ′(CPC ′ +R)−1CPA′

For SISO systems becomes:

p = a2p− a2p2c2

c2p+ σ2

If |a| < 1 the only positive solution is p = 0, on the contrary
we get: 1− a2 = − a2pc2

c2p+σ2 ⇒ p = 1
c2 (a

2 − 1)σ2. And the gain
becomes

K =
pc

c2p+ σ2
=

1
c (a

2 − 1)σ2

(a2 − 1)σ2 + σ2
=

1

c

a2 − 1

a2

LQ controller gain

As we did for the Scheme 1:

s = a2s+ c2 − a2s2b2

sb2 + ρ

Taking the limit ρ → 0 we get s = c2. The gain is:

L = − bsa

sb2 + ρ
→ −bc2a

c2b2
= −a

b

Regulator Transfer Function

For the regulator the following equations holds:

x̂k|k = Fx̂k−1|k−1 +Ky′k

uk = LFx̂k−1|k−1 + LKy′k

with F = (I −KC)(A+BL) and then the Transfer Function
is:

uk = [LF (zI − F )−1K + LK]y′k

Substituting the former values we get::

F = (1− 1

c

(a2 − 1)

a2
c)(a− b

a

b
) = 0

and then:

uk = −a

b

1

c

(a2 − 1)

a2
y′k = − (a2 − 1)

abc
y′k

Noise-Signal Trasfer Function

Finally we get the Transfer Function from the noise nk to the
signal yk:

yk = c(z − a)−1buk = −c(z − a)−1b
(a2 − 1)

abc
[yk + nk]

yk = −
(a2−1)
a(z−a)

1 + (a2−1)
a(z−a)

nk = −a2 − 1

az − 1
nk =

1− a2

az − 1
nk

B Section 6

B.1 Equivalent system for the variance
matrix P

Let consider the equation:

P = ĀP Ā# + αB̄PB̄# + Q̄

ĀP Ā# =

[
(a+ l) (a+ l)k

0 a(1− k)

] [
p11 p12
p21 p22

] [
(a+ l) 0
(a+ l)k a(1− k)

]

=

[
(a+ l)2(p11 + 2kp12 + k2p22) a(1− k)(a+ l)(p12 + kp22)
a(1− k)(a+ l)(p12 + kp22) a2(1− k)2p22

]

B̄P B̄# =

[
(a+ l)k (a+ l)k
−ak −ak

] [
p11 p12
p21 p22

] [
(a+ l)k −ak
(a+ l)k −ak

]

=

[
(a+ l)2k2(p11 + 2p12 + p22) −ak2(a+ l)(p11 + 2p12 + p22)
−ak2(a+ l)(p11 + 2p12 + p22) a2k2(p11 + 2p12 + p22)

]

Q̄ = q

[
0 0
0 1

]
+ r(1 + α)

[
(a+ l)2k2 −ak2(a+ l)
−ak2(a+ l) (ak)2

]

And we get:

p11 = (a+ l)2(p11 + 2kp12 + k2p22)+

+ α(a+ l)2k2(p11 + 2kp12 + k2p22) + rk2(a+ l)2(1 + α)

p22 = a2(1− k)2p22 + αa2k2(p11 + 2p12 + p22)+

+ q + ra2k2(1 + α)

p12 = a(1− k)(a+ l)(p12 + kp22)− αak2(a+ l)(p11 + 2p12 + p22)−
− r(1 + α)ak2(a+ l)

B.2 Cost functional: general case
Jt = E[y(t)2 + ρu(t)2] = V ar(y(t)) + ρV ar(u(t))

We define the state vector
[

x̂(t|t− 1)
e(t|t− 1)

]

with e(t|t− 1) := x(t)− x̂(t|t− 1).

The LQ controller output u(t) follows the equation:

u(t) = lx̂(t|t− 1) = l(I − kc)x̂(t|t− 1) + lky′(t)

= l(1− kc)x̂(t|t− 1) + lk(cx(t) + w(t) + n(t))

= lx̂(t|t− 1) + lkce(t|t− 1) + lk(w(t) + n(t))

= l
[
1 kc

] [ x̂(t|t− 1)
e(t|t− 1)

]
+ lk(w(t) + n(t))

The plant output y(t) follows the equation:
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y(t) = cx(t) + w(t)

= c(x̂(t|t− 1) + e(t|t− 1)) + w(t)

= c
[
1 1

] [ x̂(t|t− 1)
e(t|t− 1)

]
+ w(t)

Let R be the Covariance of w(t) and N the Covariance of
the channel quantization noise n(t) (under adaptive condi-
tions we have V ar(n(t)) := N = αV ar(y)) and let P be the
covariance of the vector state. Then,

V ar(u(t)) = l2
[
1 kc

]
P

[
1
kc

]
+ l2k2(R+ αV ar(y))

V ar(y(t)) = c2
[
1 1

]
P

[
1
1

]
+R

And the index cost becomes:

Jt = V ar(y(t)) + ρl2
[
1 kc

]
P

[
1
kc

]
+ ρl2k2(R+ αV ar(y))

= (1 + αρl2k2)V ar(y(t)) + ρl2
[
1 kc

]
P

[
1
kc

]
+ ρl2k2R

We impose b = c = 1 and we get:

Jt = (1 + αρl2k2)
[
1 1

]
P

[
1
1

]
+ ρl2

[
1 k

]
P

[
1
k

]
+

+R(1 + (1 + α)ρl2k2) (21)

Let P :=

[
p11 p12
p21 p22

]
, then we get:

Jt = (1 + αρl2k2)(p11 + 2p12 + p22)+

+ ρl2
[
1 k

] [ p11 p12
p21 p22

] [
1
k

]
+R(1 + (1 + α)ρl2k2)

= (1 + αρl2k2)(p11 + 2p12 + p22) + ρl2(p11 + 2kp12 + k2p22)+

+R(1 + (1 + α)ρl2k2)

= p11(1 + ρl2(αk2 + 1)) + 2p12(1 + ρl2k(αk + 1))+

+ p22(1 + ρl2k2(α+ 1)) +R(1 + (1 + α)ρl2k2)

B.3 Proof of the 1st iterative method
We want to show that k(∞), derived as in section 6, is the
value that minimize p22.

Proof The argument is similar to that used in the Kalman
filter context.

• Let p22 = p. The goal is to find:

k∗ = argmin
k

p, s.t. p = L(k, p)

where

L(k, p) = a2(1− k)2p+ q + [(1 + α)r + αp] (ak)2

Consider the following operator:

φ(p) = min
k

L(k, p)

We have found in section 6 that:

k∗(p) = argmin
k

L(k, p) = p

(1 + α)(p+ r)

Given that:

φ(p) = a2p+ q − 1

1 + α

a2p2

p+ r

• we want to show that φ(p) has a fixed point p∗ = φ(p∗).
In oder to do that consider kc =

1
(1+α) , we have already

shown that for this value of k the problem p2 = L(kc, p2)
has a solution. Moreover φ(p) " L(kc, p) by definition.
It easy to prove that:

φ(p) ! Lmin(p) =
α

1 + α
a2p+ q

And clearly, since Lmin(p) is linear with angular coeffi-
cient smaller than 1, exists p1 such that p1 = Lmin(p1).
Given that φ(p) is bounded between two functions wi-
th fixed point, this implies that exist p∗ such that p∗ =
φ(p∗). It easy to prove that φ(p) in monotonically increa-
sing from which follows the unicity of p∗ and the bound
p1 < p∗ < p2. See figure 23.
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Figura 23: Relations between Lmin(p), L(k, p) and φ(p)

• k∗(p∗) is the desired value since for any other value of k:

p̃ = L(k, p̃) > φ(p̃)

which implies p̃ > p∗. Notice that L(k∗(p∗), p) is tangent
to φ(p) in p∗.

• the algorithm proposed converges to p∗ and so that to
k∗, see figure 24.
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Figura 24: Iterative method

C A first application using the
predictor instead of the estimator

We now want to apply the channel model derived in the pre-
vious section to the scheme of figure 13. This is the same
scheme of figure 8 in which process and measurement noise,
v(t) and w(t), are added. The main difference relies in the
channel model: with respect to Braslavsky context, in which
the quantization noise was fixed, here instead we want to use
an adaptive quantizer so that SNR = SNR∗. In other words
the scheme is the same used in section 4.2 but the model of
the channel is that described before, without considering the
packet loss or the delay. This non idealities will be considered
in a second moment. The equation of the system are:

• controller
u(t) = Lx̂(t|t− 1)

• system
x(t+ 1) = Ax(t) +Bu(t) + v(t)

y(t) = Cx(t) + w(t)

where V ar(v(t)) = Q e V ar(w(t)) = R. Let the variance
of the output y(t) be Py.

• Equivalent system at the Kalman filter site

x(t+ 1) = Ax(t) +Bu(t) + v(t)

y′(t) = Cx(t) + w(t) + n(t)

where in adaptive condition V ar(n(t)) = N = αPy con
α = 1

SNR∗ < 1.

• Kalman predictor

x̂(t+ 1|t) = Ax̂(t|t− 1) +Bu(t) +G [y′(t)− Cx̂(t|t− 1)]

so:

e(t+ 1|t) = x(t+ 1)− x̂(t+ 1|t) = Ax(t) +Bu(t)+

+v(t)−Ax̂(t|t− 1)−Bu(t)−G [y′(t)− Cx̂(t|t− 1)] =

= Ae(t|t− 1) + v(t)−G [Ce(t|t− 1) + w(t) + n(t)] =

= (A−GC)e(t|t− 1) + v(t)−G(w(t) + n(t))

Substituing the input given by the controller in the system
equation:

x(t+ 1) = Ax(t) +BLx̂(t|t− 1) + v(t) =

= Ax(t) +BL [x(t)− e(t|t− 1)] + v(t) =

= (A+BL)x(t)−BLe(t|t− 1) + v(t)

it follows that the equation of the feedback loop system are:
[

x(t+ 1)
e(t+ 1)

]
=

[
A+BL −BL

0 A−GC

] [
x(t)
e(t)

]
+

+

[
I
I

]
v(t) +

[
0

−G

] [
w(t) + n(t)

]

y(t) =
[
C 0

] [ x(t)
e(t)

]
+ w(t)

let e(t) = e(t|t − 1). Let P be the matrix variance of the
state and:

Ā =

[
A+BL −BL

0 A−GC

]

since
[

x(t)
e(t)

]
, v(t) e [w(t) + n(t)] are uncorrelated, it follows:

P = ĀP Ā′+

[
I
I

]
Q
[
I I

]
+

[
0

−G

] [
R+N

] [
0 −G′ ]

N = αPy Py =
[
C 0

]
P

[
C
0

]
+R

In the scalar case with b = c = 1 the equations become:

[
x(t+ 1)
e(t+ 1)

]
=

[
a+ l −l
0 a− g

] [
x(t)
e(t)

]
+

[
1
1

]
v(t)+

+

[
0
−g

] [
w(t) + n(t)

]

y(t) =
[
1 0

] [ x(t)
e(t)

]
+ w(t)

With variance:

P = ĀP Ā′ + q

[
1
1

] [
1 1

]
+ (r + αPy)

[
0
−g

] [
0 −g

]
=

= ĀP Ā′ + q

[
1 1
1 1

]
+ r

[
0 0
0 g2

]
+

[
0
−g

]
αPy

[
0 −g

]

Py =
[
1 0

]
P

[
1
0

]
+ r

Substituting the second equation in the first one we get:

P = ĀP Ā′ + q

[
1 1
1 1

]
+ r

[
0 0
0 g2

]
+

+

[
0
−g

]
{α

[
1 0

]
P

[
1
0

]
+ αr}

[
0 −g

]
=

= ĀP Ā′ + q

[
1 1
1 1

]
+ r

[
0 0
0 g2

]
+

+α

[
0
−g

] [
1 0

]
P

[
1
0

] [
0 −g

]
+ αr

[
0 0
0 g2

]
=

= ĀP Ā′ + q

[
1 1
1 1

]
+ (1 + α)r

[
0 0
0 g2

]
+

+α

[
0 0
−g 0

]
P

[
0 −g
0 0

]
=
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= ĀP Ā′ + αB̄PB̄′ + Q̄

Where:
B̄ =

[
0 0
−g 0

]

Q̄ = q

[
1 1
1 1

]
+ (1 + α)r

[
0 0
0 g2

]

this is solvable using the vectorized form:

vecP =
[
Ā⊗ Ā+ αB̄ ⊗ B̄

]
vecP + vecQ̄

vecP =
[
I − (Ā⊗ Ā+ αB̄ ⊗ B̄)

]−1
vecQ̄ (22)

and J = V ar(y(t)) = Py = [vecP ]1 + r.

Notice that this equation is solvable if and only if the
difference equation:

vecP (k + 1) =
[
Ā⊗ Ā+ αB̄ ⊗ B̄

]
vecP (k) + vecQ̄

converges and this happens iff the matrix
[
Ā⊗ Ā+ αB̄ ⊗ B̄

]

is stable. If α = 0, i.e without quantization error, this con-
dition is equivalent to the stability of Ā. In this case Ā is a
triangular matrix and so it is immediate to find out the two
constraints:

|a+ l| < 1 ⇒ −a− 1 < l < −a+ 1

|g − a| < 1 ⇒ a− 1 < g < a+ 1

however these are necessary but not sufficient conditions
when α '= 0.

The equation P = ĀP Ā′ + αB̄PB̄′ + Q̄ can be written
as:

[
p11 p12

p12 p22

]
=

[
a + l −l
0 a − g

] [
p11 p12

p12 p22

] [
a + l 0
−l a − g

]
+

+α

[
0 0
−g 0

] [
p11 p12

p12 p22

] [
0 −g
0 0

]
+ Q̄

[
p11 p12

p12 p22

]
=

[
(a + l)p11 − lp12 (a + l)p12 − lp22

(a − g)p12 (a − g)p22

] [
a + l 0
−l a − g

]

+α

[
0 0

−gp11 −gp12

] [
0 −g
0 0

]
+ Q̄ =

=

[
(a + l)2p11 − 2l(a + l)p12 + l2p22 (a + l)(a − g)p12 − (a − g)lp22

(a + l)(a − g)p12 − (a − g)lp22 (a − g)2p22

]

+α

[
0 0
0 g2p11

]
+

[
q q
q q + (1 + α)rg2

]

this is equivalent to the following system:



p11
p12
p22



 =




(a+ l)2 −2l(a+ l) l2

0 (a+ l)(a− g) −(a− g)l
αg2 0 (a− g)2








p11
p12
p22



+

+




q
q

q + (1 + α)rg2





For each value of α, this algebraic equation has a solution
iff at least a couple (l, g) exists for which the matrix is sta-
ble. It would be interesting, for a future work, to find some
conditions on α in order to guarantee the stability of this
matrix.

Analysis with the LQG controller gain l = −a

From the simulations it seems that the minimum value of
J = E[y2] = p11 + r is always obtained when l = −a. This
value is the controller gain that can be obtained with the
standard LQG approach, see Appendix. With this constraint
the previous algebraic equation becomes:



p11
p12
p22



 =




0 0 a2

0 0 a(a− g)
αg2 0 (a− g)2








p11
p12
p22



+




q
q

q + (1 + α)rg2





And so:
p11 = a2p22 + q

p12 = a(a− g)p22 + q

p22 = αg2p11 + (a− g)2p22 + q + (1 + α)rg2

Substituting the first equation in the third one we get :

p22 = αg2a2p22 + αg2q + (a− g)2p22 + q + (1 + α)rg2

and so:

p22 =
[
αg2a2 + (a− g)2

]
p22 + αg2q + q + (1 + α)rg2

Existence of the solution

The algebraic equation is solvable iff the difference equation:

p22(k+1) =
[
αg2a2 + (a− g)2

]
p22(k)+αg2q+q+(1+α)rg2

converges and this happens iff there is at least a value of g
such that |αg2a2 + (a − g)2| = αg2a2 + (a − g)2 < 1. Notice
that the constraint can be written as:

αg2a2 < 1− (a− g)2

Since the first term is positive for each value of g also the term
on the right should be positive. From 1− (a− g)2 > 0 we get
a− 1 < g < a+ 1. This is the same necessary condition that
we get in the general case. Even with l = −a this is a neces-
sary condition for the stability but it is sufficient only if α = 0.

In order to find a necessary and sufficient condition we
can write the constraint as:

α <
1− (a− g)2

g2a2
= fa(g)

and study the behaviour of fa(g). We just find out that it
must be g ∈ (a− 1, a+ 1), i.e. this is the only interval where
fa(g) is positive. Imposing the first derivative equal to zero

dfa(g)

dg
=

2(a− g)g2a2 − 2ga2
[
1− (a− g)2

]

g4a4
= 0

we get two stationary points: g1 = 0 and g2 = a2−1
a . If the

system is unstable, i.e. |a| > 1, only the second point fits the
interval (a − 1, a + 1) and so it must be a maximum point.
The corresponding value of fa(g) is:

fa(g2) =
1

(a2 − 1)a2

Given that, the constrained problem has a solution (in par-
ticular we can choose g = g2) iff α " fa(g2) = 1

(a2−1)a2 , in
fact:
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• if α < fa(g2) there is an interval of values centered in g2
that allows the feasibility of the constraint;

• if α > fa(g2) the problem has no solution since even with
the value of g that maximize fa(g) we can’t satisfy the
constraint.

To summarize the problem has a solution iff :

α <
1

(a2 − 1)a2
⇒ SNR∗ > (a2 − 1)a2

This is a constraint on the minimum value of SNR∗ needed
to guarantee the stabilization of the plant. Notice that this
constraint is more conservative than that obtained in section
4, that is a2 − 1.

Minimization of the cost functional

If the problem is solvable, i.e. α < 1
(a2−1)a2 , there is an in-

terval of values such that the feedback loop system is stable.
We now want to find the one that minimizes the cost func-
tional J = E

[
y2
]
= p11 + r. There are three possible way of

proceding:

1. Exhaustive search
Given a grid of values g, for each point the cost function is
calculated solving equation 22 where l = −a. The desired
value of g is that one corresponding to the minimum
value of J ;

2. First iterative method
In order to minimize J = p11+r, since p11 = a2p22+q, we
have to minimize p22. Consider the recursive equation:

p22(k + 1) =
[
αg(k)2a2 + (a− g(k))2

]
p22(k)+

+αg(k)2q + q + (1 + α)rg(k)2

where g(k) = argming p22(k + 1). Let p22(1) = 0 and
iterate until convergence:

(a) g(k) = argming p22(k + 1)

(b) p22(k + 1) =
[
αg(k)2a2 + (a− g(k))2

]
p22(k) +

αg(k)2q + q + (1 + α)rg(k)2

Then g(∞) is the desired value.

3. Second iterative method
Let σ2

n = 0 and repeat until convergence:

(a) solve the ARE to find out the gain of the Kalman
filter with input noise σ2

n(k):

P̄ = ARE(a, 1, r+σ2
n(k), q), g = aP̄ (P̄+r+σ2

n(k))
−1

(b) compute the output variance Py(k). This can be
done in two different ways. One approach is to im-
plement the system and compute the sampling va-
riance of y(t), otherwise it can be calculated with
a procedure similar to that previously described. If
the variance of the input noise is given and it is
independent from the input signal we have:

P = ĀP Ā′ + q

[
1
1

] [
1 1

]
+

+(r + σ2
n(k))

[
0
−g

] [
0 −g

]
= ĀP Ā′ + Q̄(k)

in vectorized form:

vecP =
[
Ā⊗ Ā

]
vecP + vecQ̄(k)

(c) let σ2
n(k + 1) = αPy(k)

The desired gain is that of the Kalman filter when the
noise variance is fixed σ2

n(∞) . Notice that this is the
iterative scheme proposed in section 5.

The simulations confirm that these three methods are
equivalent, i.e. they all give the same value of g.

Analysis with other cost functionals
All the previous work refer to the cost functional J = E

[
y2
]
,

in this case the simulations show that the optimal value for
the controller gain is that of the standard LQG approach
and the value of the Kalman filter gain is that of a system
where the quantization error is calculated with the iterative
procedure described in section 5.

These results don’t seem to be correct if we use a functional
E
[
y2 + ρu2

]
where the cost depends not only on the output

but also on the control. In this scenario the simulations show
that the optimal value for the controller gain is different
from that of the standard LQG. This is an evidence that in
this context the separation principle is not valid. Notice that
in this case it is not guaranteed that the choice of a scheme
where the controller and the predictor are independent is
optimal, whatever the values of their gains are. A future
direction of research could be to investigate more this case
to demonstrate analytically that the separation principle is
violated and to study the properties of the cost functional
. In this setting even the unicity of the minimum is not
guaranteed so that also the proposed iterative algorithms
may fail.

To summarize we have shown that the simple channel
model developed in section 5, even without packet loss or
delay, can lead to very interesting and difficult situations
where it is not clear which is the optimal configuration and
even if this is unique.
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