Stabilization of Linear Systems over a non-ideal Channel

Francesca Parise e Laura Dal Col

17/02/2012

Francesca Parise e Laura Dal Col ()

Communication over NCSs

17/02/2012 1 / 57

Control over a communication network

• We want to stabilize a possibly unstable system across a communication channel (NCS).

Figure: Schemes of control system over a communication channel

- Design of the optimal control and estimation scheme to achieve stability and optimal performance.
- control theory \rightarrow "perfect" signals communication theory \rightarrow stationary and stable sources
- Decoupling of COD/DEC in Source and Channel Blocks.

Francesca Parise e Laura Dal Col ()

Communication over NCSs

Review of state of art

- NCS with lossy channels [1]
- NCS with SNR-limited channels [2] and [3]
- NCS with rate-limited channels [4]
- NCS with limited informations [5]

Article [1]: Foundations of control and estimation over lossy networks

- **channel model**: packet drop modeled by i.i.d Bernoulli r.v. γ_k and ν_k . No packet delay or quantization noise.
- objective: closed-loop stability.
- technique: LQG approach.

Article [2]: Feedback stabilization over signal-to-noise ratio constrained channels

- channel model: the quantization noise is an additive zero-mean white Gaussian noise with variance σ²_n. No packet drop or delay.
- objective: closed-loop stability s.t.

$$||s||_{Pow} < \mathcal{P}_d$$

• technique: spectral analysis of TF.

Let $T(z) := \frac{s_k}{n_k}$, then $||s||_{Pow} = ||T(z)||^2_{\mathcal{H}_2} \sigma_n^2$ and the constraint (1) become: $||T(z)||^2_{\mathcal{H}_2} < \frac{\mathcal{P}_d}{\sigma^2}$ (2)

The minimum SNR that ensures stability is the smallest value of $||T(z)||^2_{\mathcal{H}_2}$ that satisfies (2). **results**

• state feedback:

$$\frac{\mathcal{P}_d}{\sigma_n^2} > \left(\prod_{i=1}^m \lambda_i^u\right) - 1 := SNR_{min}$$

where $\left\{\lambda_i^u, i=1,\ldots,m\right\}$ are the unstable eigenvalues of the system.

output feedback:

$$\frac{\mathcal{P}_d}{\sigma_n^2} > \left(\prod_{i=1}^m \lambda_i^u\right) - 1 + \eta + \delta := SNR_{min}$$

where the coefficients η and δ depends on the non-minimum phase zeros, and the relative degree of T(z).

Francesca Parise e Laura Dal Col ()

Article [3]: Minimum Variance Control Over a Gaussian Communication Channel

Figure: Feedback control over a SNR-constrained communication link

 channel model: the quantization noise is an additive zero-mean white Gaussian noise with variance σ²_n. No packet drop or delay. objective: optimal coding and decoding sequences f_k(y^k) and g_k(r^k) design that minimize the index the fixed time k = N + 1:

$$J_{N+1}^{opt} := \inf_{f_k, g_k, k=0, \dots, N} \mathbb{E}\left[||y_{N+1}||^2 \right]$$
(3)

subject to:

$$\mathbb{E}\left[||\boldsymbol{s}_k||^2\right] \leq P$$

- technique: LQG "cheap" control.
- **results**: no separation principle. The optimal control at the last-time step is linear function of the estimated-state. A lower bound on (3) is derived. Only suboptimal strategies for the infinite-horizon.

Article [4]: A Framework for Control System Design Subject to Average Data-Rate Constraints

- channel model: Rate-distorted channel. No noise, error or delay .
- **objective**:minimal average data-rate that allows closed-loop mean square stability.
- **results**: In the article [6] for a noisy model the average data-rate \mathcal{R} that ensure stability is:

$$\mathcal{R} > \sum_{i=1}^{n_p} log_2 |p_i|$$

Focussing on a particular class of source- coding schemes a lower bound for \mathcal{R} is derived, which is at most 1.254 bits per sample away from the absolute minimum rate (4).

(4)

Article [5]: Stabilization of linear systems with limited information

- objective:stabilization of LTI systems using only a finite number of measurements and control levels
- results: Let f : X → U be a suitable quantizer for a given LTI system, the measure of the coarseness of the quantizer is expressed by its density:

$$\eta_f := \lim_{\varepsilon \to 0} \sup \frac{\# f[\varepsilon]}{-\ln \varepsilon}$$

where $\#f[\varepsilon]$ is number of levels that f takes in $[\varepsilon, 1/\varepsilon] \quad 0 < \varepsilon \le 1$ A quantizer f is said to be coarsest for the system if it has the smallest quantization density. In this paper it's shown that the coarsest quantizer that quadratically stabilizes the plant follows a logarithmic law.

Our contribution

- Revision of the work [2] using LQG approach
 - SNR-constrained state feedback stabilization
 - SNR-constrained output feedback stabilization
- Channel Model
- Adaptive quantizer
 - two methods to compute the variance of the quantization error
- A first application for the adaptive quantizer
- Other implemented schemes

Problem formulation

• plant model SISO LTI-system with state equations:

$$\begin{cases} x_{t+1} = Ax_t + Bu_t + w_t \\ y_t = Cx_t + v_t \end{cases}$$

where $v_t \sim \mathcal{N}(0, R)$, $w_t \sim \mathcal{N}(0, Q)$, $x_0 \sim \mathcal{N}(0, P_0)$, $w_t \perp v_t \perp x_0$. (A, B) and (A, Q) controllable, (A, C) and (A, W) observable, R > 0.

• channel model: AWGN, packet drop, delay and quantization noise.

• **tecnique**: LQG optimal control with performance index ¹:

$$J = \lim_{t \to +\infty} \mathbb{E}[x_t^T W x_t + u_t^T U u_t]$$

¹the plant control input is available at the Kalman estimator site

Revision on the literature work [2]

Starting from the work [2] we applied the LQG approach in order to characterize the closed-loop system stability under the constrain (1). This technique provides the same results as the transfer function analysis.

$$T(z) = \frac{K_r(z)K_s(z)G(z)}{1+K_r(z)K_s(z)G(z)} = \frac{K(z)G(z)}{1+K(z)G(z)}$$

Francesca Parise e Laura Dal Col ()

Figure: Schema 1

Communication over NCS

-≣->

Scheme 1: SNR-constrained output feedback stabilization

 $\min \lim_{k \to +\infty} \mathbb{E}\left[||\boldsymbol{s}_k||^2 \right] := \mathcal{P}_{min}$

Francesca Parise e Laura Dal Col ()

17/02/2012 15 / 57

• Kalman Filter:

$$\hat{\mathbf{x}}_{k|k} = (\mathbf{I} - \mathbf{KC})(\mathbf{A}\hat{\mathbf{x}}_{k-1|k-1} + \mathbf{B}\mathbf{u}_{k-1}) + \mathbf{K}\mathbf{y}_k$$

Kalman Filter static Gain:
 $\mathcal{K} = PC^{\top}(CPC^{\top})^{-1}$

$$P = A \left[P - PC^{\top} (CPC^{\top})^{-1} CP \right] A^{\top} + \sigma_n^2 BB^{\top}$$

LQ controller:

$$\mathbf{u}_{\mathbf{k}} = \mathbf{L}^* \mathbf{\hat{x}}_{\mathbf{k}|\mathbf{k}|}$$

LQ controller static Gain:

$$L^* = -(B^{\top}SB + \rho)^{-1}B^{\top}SA$$
$$S = A^{\top}SA - A^{\top}SB(B^{\top}SB + \rho)^{-1}B^{\top}SA + W$$

In the case of **state feedback stabilization** Kalman Filter is no longer needed (i.e. it can be replaced with an identity block). The LQ controller equations can be computed as in the previous point.

Francesca Parise e Laura Dal Col ()

Communication over NCSs

Examples and Comparisons

We report the results found for a 2-d system characterized by the matrices:

$$A = \begin{bmatrix} \lambda_1 & 0\\ 1 & \lambda_2 \end{bmatrix} \qquad C^{\mathsf{T}} = B = \begin{bmatrix} 1\\ 1 \end{bmatrix}$$

 $W = C^T C$, $U = \rho$ and random initial condition, $x_0 \in \mathcal{N}(0, 4I_2)$

- Theoretical bound: computed from the article [2];
- The norm $||T(z)||^2_{\mathcal{H}_2}$ computed with $\rho = 10^5$ multiplied by σ_n^2 ;
- Matlab Simulation : expected cost $\mathbb{E}_{n_k}\left[\frac{1}{\rho}||y_k||^2 + ||s_k||^2\right]$ over N = 50 realizations, with $\rho = 10^5$.

\mathcal{P}_{min}	Theoretical	Transfer Function	Simulation
state	0.071225	0.071225	0.071218
output	0.089289	0.089298	0.089552

Table:
$$\lambda_1, \lambda_2 = \{1.5, 1.9\}, z = 1.2, \sigma_n = 0.1$$

Scheme 2: SNR-constrained output feedback stabilization

index cost:

$$J = \lim_{k \to +\infty} \mathbb{E}_{n_k} \left[x_k^\top W x_k + u_k^\top U u_k \right]$$

we take $W = CC^\top$, $U = \rho \in [0, +\infty)$
 \downarrow
 $J = \lim_{k \to +\infty} \mathbb{E}_{n_k} \left[||y_k||^2 + \rho ||u_k||^2 \right]$
 \downarrow
arg min J = arg min $\lim_{k \to +\infty} \mathbb{E}_{n_k} \left[||y_k||^2 + \rho ||u_k||^2 \right]$
 $\downarrow \rho \to 0$

$$\min \lim_{k \to +\infty} \mathbb{E}_{n_k} \left[||s_k||^2 \right] := \mathcal{P}_{min}$$
 For this scheme $s_k = y_k!!$

• Kalman Filter:

$$\hat{\mathbf{x}}_{k|k} = (\mathbf{I} - \mathbf{KC})(\mathbf{A}\hat{\mathbf{x}}_{k-1|k-1} + \mathbf{B}\mathbf{u}_{k-1}) + \mathbf{K}\mathbf{y}_{k}$$
Kalman Filter static Gain:

$$K = PC^{\top}(CPC^{\top} + \sigma_{n}^{2})^{-1}$$

$$P = A \left[P - PC^{\top} (CPC^{\top} + \sigma_n^2)^{-1} CP \right] A^{\top 1}$$

LQ controller:

 $u_k = L^* \boldsymbol{\hat{x}}_{k|k}$

LQ controller static Gain:

$$L^* = -(B^{\top}SB + \rho)^{-1}B^{\top}SA$$
$$S = A^{\top}SA - A^{\top}SB(B^{\top}SB + \rho)^{-1}B^{\top}SA + W$$

Only the output feedback stabilization can be considered since the vector state can't be send across a scalar channel!

¹The solution may not be unique, since (A, Q) is not stabilizable $\langle \cdot \rangle$

Examples and Comparisons

We report the results found for a 2-d system characterized by the matrices:

$$A = \begin{bmatrix} \lambda_1 & 0 \\ 1 & \lambda_2 \end{bmatrix} \qquad C^{\mathsf{T}} = B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

 $W = C^T C$, $U = \rho$ and random initial condition, $x_0 \in \mathcal{N}(0, 4I_2)$

- Theoretical bound: computed from the article [2];
- The norm $||T(z)||^2_{\mathcal{H}_2}$ computed with $\rho = 10^{-5}$ multiplied by σ_n^2 ;
- Matlab Simulation : expected cost $\mathbb{E}_{n_k} \left[||y_k||^2 + \rho ||u_k||^2 \right]$ over N = 50 realizations, with $\rho = 10^{-5}$.

\mathcal{P}_{min}	Theoretical	Transfer Function	Simulation
output	0.089289	0.089324	0.089318

Table:
$$\lambda_1, \lambda_2 = \{1.5, 1.9\}, z = 1.2, \sigma_n = 0.1$$

Channel Model

Shannon's theorem

Let \overline{P} be the average signal power at the input of the channel and suppose the noise is white thermal noise of power N in the band W. By sufficiently complicated encoding systems it is possible to transmit binary digits at a rate

$$C = Wlog_2\left(1+rac{ar{P}}{N}
ight)\left[bit/s
ight]$$

with as small a frequency of errors as desired. It is not possible by any encoding method to send at higher rate and have an arbitrarily low frequency of errors.

Power Constraints:

SNR Constraints:

$$\lim_{T \to +\infty} \frac{1}{T} \sum_{t=0}^{T} \mathbb{E}[||s_t||^2] = P_s \leq \bar{P} = N(2^{\frac{C}{W}} - 1) \qquad SNR = \frac{P_s}{N} \leq (2^{\frac{C}{W}} - 1) = SNR^*$$

Problem: infinite long decoding delays

- erasure probability ε;
- quantization errors σ²_n;

Parameters:

- power constraint: SNR*
- quantization noise: $n_k \sim \mathcal{N}(0, \sigma_n^2)$;
- packet loss: $\bar{\gamma} = \mathbb{P}[\gamma_t = 1];$
- delay τ ;

Hypotesis:

- uniform quantizer;
- s(t) gaussian;

Adaptive Quantizer

$$SNR = rac{P_s(t)}{\sigma_n^2(t)} = rac{P_s}{\sigma_n^2} = SNR^*$$

Equivalent noise in adaptive condition

• Uniform quantizer with a fixed number of bits b:

$$SNR = 3k_f^2 L^2$$
 $k_f = \frac{\sqrt{P_s}}{v_{sat}}$

• s(t) gaussian $\Rightarrow v_{sat} \ge k\sqrt{P_s}$, where usually k = 3

$$SNR = 3\frac{P_s}{v_{sat}^2}L^2 \leqslant 3\frac{P_s}{k^2P_s}L^2 = \frac{3}{k^2}L^2 = SNR^*$$

• We will say that the channel is adapted if $v_{sat} = k\sqrt{P_s}$ and so $SNR = SNR^*$:

$$\frac{P_s}{\sigma_n^2} = SNR^* \Rightarrow \sigma_n^2 = \frac{P_s}{SNR^*}$$

$$\sigma_n^2 = \frac{P_s}{SNR^*} = \frac{f(\sigma_n^2)}{SNR^*}$$

Algorithms: Fixed Point method

$$\sigma_n^2 = \frac{P_s}{SNR^*} = \frac{f(\sigma_n^2)}{SNR^*}$$

Through graphical analysis:

$$y_1 = SNR^*\sigma_n^2$$
 $y_2 = f(\sigma_n^2)$

Francesca Parise e Laura Dal Col ()

17/02/2012 25 / 57

Algorithms: Iterative method

Initialize $\sigma_n^2(1) = 0$ and repeat:

() implement the system with $\sigma_n^2(i)$ and find the power $P_s(i)$;

2 $\sigma_n^2(i+1) = P_s(i)/SNR^*;$

Multidimensional Case

If the input signal is multidimensional:

- allocate *b_i* bits for component
- if $b_1 = b_2 = b/2$ then:

$$SNR_c^* = \frac{3}{k^2}L_c^2 = \frac{3}{k^2} * 2^{2b/2} = \frac{3}{k^2} * 2^b = \frac{SNR^*}{2^b}$$

from which can be derived:

$$\sigma_{(n,i)}^2 = \frac{P_{(s,i)}}{SNR_c^*} \qquad Q_n = Var\left[n(t)\right] = \left[\frac{\frac{P_{(s,1)}}{SNR_c^*}}{0} \frac{Q_n}{\frac{P_{(s,2)}}{SNR_c^*}}\right]$$

• iterative method only.

A first model application

System equations x(t+1) = Ax(t) + Bu(t) + v(t) Var(v(t)) = Qy(t) = Cx(t) + w(t) Var(w(t)) = R

Equivalent system x(t+1) = Ax(t) + Bu(t) + v(t)y'(t) = Cx(t) + w(t) + n(t)

adaptive condition: $Var(n(t)) = N = \alpha P_y$ with $\alpha = \frac{1}{SNR^*} < 1.$

Controller

 $u(t) = L\hat{x}(t|t)$

Kalman predictor

$$\hat{x}(t+1|t) = A\hat{x}(t|t-1) + Bu(t) + G[y'(t) - C\hat{x}(t|t-1)]$$

$$e(t+1|t) = (A - GC)e(t|t-1) + v(t) - G(w(t) + n(t))$$

Kalman estimator

 $\hat{x}(t|t) = \hat{x}(t|t-1) + K[y'(t) - C\hat{x}(t|t-1)]$

Francesca Parise e Laura Dal Col ()

System equation:

$$\begin{bmatrix} \hat{x}(t+1) \\ e(t+1) \end{bmatrix} = \begin{bmatrix} (A+BL) & (A+BL)KC \\ 0 & A(I-KC) \end{bmatrix} \begin{bmatrix} \hat{x}(t) \\ e(t) \end{bmatrix} + \begin{bmatrix} 0 \\ I \end{bmatrix} v(t) + \\ + \begin{bmatrix} (A+BL)K \\ -AK \end{bmatrix} \begin{bmatrix} w(t) + n(t) \end{bmatrix}$$

System output:
$$y(t) = \begin{bmatrix} C & C \end{bmatrix} \begin{bmatrix} \hat{x}(t) \\ e(t) \end{bmatrix} + w(t)$$

State variance:

$$P = \bar{A}P\bar{A}' + \begin{bmatrix} 0 \\ I \end{bmatrix} Q \begin{bmatrix} 0 & I \end{bmatrix} + \begin{bmatrix} (A+BL)K \\ -AK \end{bmatrix} \begin{bmatrix} R+N \end{bmatrix} \begin{bmatrix} K'(A+BL)' & -(AK)' \end{bmatrix}$$

Output variance: $P_y = \begin{bmatrix} C & C \end{bmatrix} P \begin{bmatrix} C \\ C \end{bmatrix} + R \qquad N = \alpha P_y$

< ロ > < 同 > < 回 > < 回 >

Scalar case: b = c = 1

$$P = \bar{A}P\bar{A}' + q\begin{bmatrix} 0\\1 \end{bmatrix} \begin{bmatrix} 0 & 1 \end{bmatrix} + \begin{bmatrix} (a+l)k\\-ak \end{bmatrix} (r + \alpha P_y) \begin{bmatrix} (a+l)k & -ak \end{bmatrix}$$
$$P_y = \begin{bmatrix} 1 & 1 \end{bmatrix} P \begin{bmatrix} 1\\1 \end{bmatrix} + r$$

$$P = \bar{A}P\bar{A}' + \alpha\bar{B}P\bar{B}' + \bar{Q}$$

Where:

$$\bar{A} = \begin{bmatrix} (a+l) & (a+l)k \\ 0 & a(1-k) \end{bmatrix} \quad \bar{B} = \begin{bmatrix} (a+l)k & (a+l)k \\ -ak & -ak \end{bmatrix}$$
$$\bar{Q} = q \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} + r(1+\alpha) \begin{bmatrix} (a+l)^2k^2 & -ak^2(a+l) \\ -ak^2(a+l) & (ak)^2 \end{bmatrix}$$

This is solvable using the vectorized form:

$$\textit{vecP} = \left[\textit{I} - (\bar{\textit{A}} \otimes \bar{\textit{A}} + \alpha \bar{\textit{B}} \otimes \bar{\textit{B}})\right]^{-1} \textit{vec} \bar{\textit{Q}}$$

Francesca Parise e Laura Dal Col ()

Minimization of the cost $J = E \left[y^2 \right]$

•
$$J = p_{11} + 2p_{12} + p_{22} + r = p_{11} + p_{22} + r$$

•
$$p_{11} = (a+l)^2 \left[(p_{11} + 2kp_{12} + k^2p_{22}) + \alpha k^2 (p_{11} + 2p_{12} + p_{22}) + r(1+\alpha)k^2 \right]$$

 $p_{12} = (a+l) \left[a(1-k)(p_{12} + kp_{22}) - \alpha ak^2 (p_{11} + 2p_{12} + p_{22}) - r(1+\alpha)ak^2 \right]$
 $p_{22} = a^2 (1-k)^2 p_{22} + q + \left[(1+\alpha)r + \alpha (p_{11} + 2p_{12} + p_{22}) \right] (ak)^2$

Optimal values:

$$l^* = -a \qquad k^* = \arg\min_k p_{22} = \frac{p_{22}}{(1+\alpha)(p_{22}+r)}$$

Substituting this value in p_{22} we get:

MARE

$$p_{22} = a^2 p_{22} + q - \frac{1}{1+\alpha} \frac{a^2 p_{22}^2}{p_{22} + r}$$

$$\bar{\gamma} = \frac{1}{1+\alpha} > \gamma_c = 1 - \frac{1}{a^2}$$
$$\alpha < \frac{1}{a^2 - 1} \quad \Rightarrow \quad SNR^* > a^2 - 1$$

Francesca Parise e Laura Dal Col ()

Communication over NCSs

 ▶
 ■
 >
 >

 >

 >

 >

 <th

▲□▶ ▲圖▶ ▲温▶ ▲温≯

Computation of k^*

1) Exhaustive search

$$vecP = \left[I - (\bar{A} \otimes \bar{A} + \alpha \bar{B} \otimes \bar{B})\right]^{-1} vec\bar{Q}$$
$$J = Var(y(t)) = P_y = \sum_i [vecP]_i + r$$

Francesca Parise e Laura Dal Col ()

17/02/2012 33 / 57

イロト イヨト イヨト イヨト

2) First iterative method

$$p_{22}(t+1) = \left[a^2(1-k(t))^2 + \alpha(ak(t))^2\right]p_{22}(t) + q + (1+\alpha)r(ak(t))^2$$

Let $p_{22}(1) = 0$ and iterate until convergence:

$$k(t) = \arg\min_k p_{22}(t+1) = \frac{p_{22}(t)}{(1+\alpha)(p_{22}(t)+r)}$$

2 $p_{22}(t+1) = \left[a^2(1-k(t))^2 + \alpha(ak(t))^2\right] p_{22}(t) + q + (1+\alpha)r(ak(t))^2$

Sketch of Proof

•
$$k^* = \arg \min_k p$$
, s.t. $p = \mathcal{L}(k, p) = a^2(1-k)^2 p + q + [(1+\alpha)r + \alpha p](ak)^2$

•
$$\phi(p) = \min_k \mathcal{L}(k, p) =$$

 $a^2 p + q - \frac{1}{1+\alpha} \frac{a^2 p^2}{p+r}$

•
$$\phi(p)$$
 has a fixed point $p^* = \phi(p^*)$:

• $k^*(p^*)$ is the desired value since for any other value of k:

$$\tilde{p} = \mathcal{L}(k, \tilde{p}) > \phi(\tilde{p})$$

which implies $\tilde{p} > p^*$

• the algorithm proposed converges to p^* and so that to k^*

$$p_{22}(t+1) = \phi(p_{22}(t))$$

3) Second iterative method

Let $\sigma_n^2 = 0$ and repeat until convergence:

- **1** solve the ARE with $\sigma_n^2(k)$;
- 2 compute $P_y(k)$:

$$P = \bar{A}P\bar{A}' + q\begin{bmatrix} 0\\1\end{bmatrix} \begin{bmatrix} 0 & 1\end{bmatrix} + (r + \sigma_n^2(k)) \begin{bmatrix} 0 & 0\\0 & (ak)^2\end{bmatrix}$$

in vectorized form:

$$\textit{vecP} = \left[ar{A} \otimes ar{A}
ight] \textit{vecP} + \textit{vec} ar{Q}(k)$$

(a) let $\sigma_n^2(k+1) = \alpha P_y(k)$

Francesca Parise e Laura Dal Col ()

・ロト ・回ト ・ヨト・

Analysis with other cost functionals

•
$$J = E\left[y^2 + \rho u^2\right]$$

•
$$J = p_{11}(1 + \rho l^2(\alpha k^2 + 1)) + 2p_{12}(1 + \rho l^2 k(\alpha k + 1)) + p_{22}(1 + \rho l^2 k^2(\alpha + 1)) + R(1 + (1 + \alpha)\rho l^2 k^2)$$

• no separation principle;

Francesca Parise e Laura Dal Col ()

Communication over NCSs

Packet loss: proposed schemes

Francesca Parise e Laura Dal Col ()

Communication over NCS

17/02/2012 38 / 57

3.0

A (10) F (10)

Scheme 3

System equations $x_{k+1} = Ax_k + Bu_k + w_k$ $s_k = y_k = Cx_k + v_k$

LQ controller

Since the separation principle is valid we can use the classical LQG approach $u_k = L\hat{x}_{k|k}$:

$$L = -(B'SB + U)^{-1}B'SA \qquad (ARE): S = A'SA + W - A'SB(B'SB + U)^{-1}B'SA$$

Scheme 3

Kalman Filter

Equivalent System

$$x_{k+1} = Ax_k + Bu_k + w_k$$

$$y'_k = \gamma_k y''_k = \gamma_k (Cx_k + v''_k)$$

where $v_k^{\prime\prime} = v_k + n_k$ and $R^{eq} = R + N$

•
$$e_{k+1|k} = x_{k+1} - \hat{x}_{k+1|k} = A(I - \gamma_k KC) e_{k|k-1} + w_k - \gamma_k A K v''_k$$

 $P_{k+1|k} = A(I - \gamma_k KC) P_{k|k-1} (I - \gamma_k KC)' A' + Q + \gamma_k^2 A K R^{eq} K' A'$

• $\bar{P}_{k+1|k} = \bar{\gamma}A(I - KC)\bar{P}_{k|k-1}(I - KC)'A' + (1 - \bar{\gamma})A\bar{P}_{k|k-1}A' + Q + \bar{\gamma}AKR^{eq}K'A'$

$$\bar{P}_{k+1|k} = \bar{\gamma} \mathcal{A} (I - \mathcal{K} \mathcal{C}) \bar{P}_{k|k-1} (I - \mathcal{K} \mathcal{C})' \mathcal{A}' + (1 - \bar{\gamma}) \mathcal{A} \bar{P}_{k|k-1} \mathcal{A}' + \mathcal{Q} + \bar{\gamma} \mathcal{A} \mathcal{K} \mathcal{R}^{eq} \mathcal{K}' \mathcal{A}'$$

Define the operators:

$$\mathcal{L}_{\bar{\gamma}}(K,P) = \bar{\gamma}A(I - KC)P(I - KC)'A' + (1 - \bar{\gamma})APA' + Q + \bar{\gamma}AKR^{eq}K'A'$$
$$\Phi_{\bar{\gamma}}(P) = APA' + Q - \bar{\gamma}APC'(CPC' + R^{eq})^{-1}CPA'$$

Proposition

Let (A, C) be observable, $(A, Q^{1/2})$ controllable and $R^{eq} > 0$ then: (a) if A is unstable and $\bar{\gamma} < \gamma_c$ then there is no kalman filter with costant gain that is also stable;

(b) if instead $\bar{\gamma} > \gamma_c$ the optimal costant gain Kalman filter exist and the corrispondent gain is $\bar{K} = \bar{P}C'(C\bar{P}C' + R^{eq})^{-1}$ where \bar{P} is the solution of the MARE $\bar{P} = \Phi_{\bar{\gamma}}(\bar{P})$.

Scheme 5

LQ controller

Since the separation principle is valid we can use the classical LQG approach $u_k = L\hat{x}_{k|k}$:

$$L = -(B'SB + U)^{-1}B'SA \qquad (ARE): S = A'SA + W - A'SB(B'SB + U)^{-1}B'SA$$

Scheme 5

First Kalman Filter

• constant gain $K_{P_1} = P_1 C' (CP_1 C' + R)^{-1}$

• estimate error variance:

$$P_{k|k}^{1} = P_{1} - P_{1}C'(CP_{1}C' + R)^{-1}CP_{1}$$

Second Kalman filter

•
$$x_{k+1} = Ax_k + Bu_k + w_k$$

 $r_k = \gamma_k (\hat{x}_{k|k}^1 + n_k) = \gamma_k (x_k - e_{k|k}^1 + n_k)$

• Scheme 3 with: C = I and $v_k'' = n_k - e_{k|k}^1 \in \mathcal{N}(0, N + P_{k|k}^1)$

$$K_{P_2} = P_2 (P_2 + N + P_{k|k}^1)^{-1}$$

(MARE)
$$P = APA' + Q - \overline{\gamma}AP(P + N + P_{k|k}^1)^{-1}PA'$$

Compute the cost functional $J = E[y^2]$

compute the SNR* corresponding to the available number of bits:

$$L = 2^{bit},$$
 $SNR^* = rac{3}{k^2}L^2$ in the scalar case
 $L_c = 2^{bit/2},$ $SNR^* = rac{3}{k^2}L_c^2$ in the multi-dim case

2 compute the error variance in adaptive condition;

③ compute the cost functional, relative to the quantization error just derived.

Systems structure:

$$A = \begin{bmatrix} \lambda_1 & 1 \\ 0 & \lambda_2 \end{bmatrix} \qquad C^T = B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
$$W = C^T C \qquad U = \rho = 1/1000 \qquad Rs = 0.1 \qquad Qs = 0.1l_2$$

Simulations with packet loss

Simulations with packet loss

Conclusions

- LQG approach:
 - results of [3] as corollary;
- Channel model:
 - new model;
 - adaptive quantizer;
 - multidimensional case;
- A first application with cost functional:

•
$$J = E[y^2]$$

• $J = E[y^2 + \rho u^2]$

• Channel with packet loss;

References

Schenato, L. and Sinopoli, B. and Franceschetti, M. and Poolla, K. and Sastry, S.S. Foundations of control and estimation over lossy networks *Proceedings of the IEEE* 95(1), 163–187.

Julio H. Braslavsky and Richard H. Middleton and James S. Freudenberg Minimum Variance Control Over a Gaussian Communication Channel *Automatic Control, IEEE Transactions on* 56(8), 1751–1765.

Braslavsky, J.H. and Middleton, R.H. and Freudenberg, J.S. Feedback stabilization over signal-to-noise ratio constrained channels *Automatic Control, IEEE Transactions on* 52(8), 1391–1403.

Eduardo I. Silva and Milan S. Derpich and Jan Oestergaard A Framework for Control System Design Subject to Average Data-Rate Constraints *Automatic Control, IEEE Transactions on1*–14.

Elia, N. and Mitter, S.K.

Stabilization of linear systems with limited information Automatic Control, IEEE Transactions on 46(9), 1384–1400.

G.N. Nair and R.J. Evans

Stabilizability of stochastic linear systems with feedback data rates

Journal on Control and Optimization 43(2), 413–436.

Francesca Parise e Laura Dal Col ()

Communication over NCS

The End

Francesca Parise e Laura Dal Col ()

Communication over NCS

 ▶
 ■
 >
 ○
 ○

 17/02/2012
 49 / 57

・ロ・・ 部・ ・ ヨ・ ・ ヨ・

Equivalence between TFs in the scalar case: sketch of the proof (1)

Scheme 1

Kalman filter Gain

$$P = APA' + Q - APC'(CPC' + R)^{-1}CPA' = a^{2}p + \sigma^{2}b^{2} - \frac{a^{2}p^{2}c^{2}}{c^{2}p} \Rightarrow p = \sigma^{2}b^{2}$$
$$K = PC'(CPC' + R)^{-1} = \frac{pc}{c^{2}p} = \frac{1}{c}$$

LQ controller Gain

$$S = A'SA + W - A'SB'(B'SB + \rho)^{-1}B'SA = a^{2}s + c^{2} - \frac{a^{2}s^{2}b^{2}}{sb^{2} + \rho}$$

 $\rho = \frac{sb^2c^2 - s^2b^2}{(1 - a^2)s - c^2}$ $L = -(B'SB + \rho)^{-1}B'SA = -\frac{(1 - a^2)bas^2 - c^2bsa}{b^2(1 - a^2)s^2 - b^2s^2 - b^2sc^2 + sb^2c^2} \longrightarrow \frac{(1 - a^2)}{ab} \quad s \longrightarrow +\infty$

Equivalence between TFs in the scalar case: sketch of the proof (2)

• Regulator TF:

$$R(z):=\frac{u_k}{y_k}=\frac{(1-a^2)}{ab}\frac{1}{c}$$

Signal-Noise TF:

$$T(z) = \frac{u_k}{n_k} = \frac{\frac{1-a^2}{a}\frac{1}{z-a}}{1-\frac{1-a^2}{a(z-a)}}n_k = \frac{1-a^2}{az-1}$$

Scheme 2

Kalman filter Gain

$$P = APA' + Q - APC'(CPC' + R)^{-1}CPA' = a^2p - \frac{a^2p^2c^2}{c^2p + \sigma^2} \Rightarrow \begin{cases} p = 0 & \text{if}|a| < 1\\ p = \frac{1}{c^2}(a^2 - 1) & \text{if} |a| \ge 1 \end{cases}$$

$$K = \frac{pc}{c^2p + \sigma^2} = \frac{1}{c} \frac{a^2 - 1}{a^2}$$

Equivalence between TFs in the scalar case: sketch of the proof (3)

LQ controller Gain

$$s = a^{2}s + c^{2} - \frac{a^{2}s^{2}b^{2}}{sb^{2} + \rho} \longrightarrow c^{2} \text{ for } \rho \to 0$$
$$L = -\frac{bsa}{sb^{2} + \rho} \to -\frac{bc^{2}a}{c^{2}b^{2}} = -\frac{a}{b}$$

• Regulator TF:

$$R(z) := \frac{u_k}{y'_k} = -\frac{(a^2-1)}{abc}$$

Signal-Noise TF:

$$T(z):=\frac{y_k}{n_k}=\frac{1-a^2}{az-1}$$

Even if the two Schemes are **different** they share the same TF T(z) from n_k to $s_k!!$

Scheme 4

A CONTRACTOR

Francesca Parise e Laura Dal Col ()

 ▶
 ▲
 ⇒
 ⇒
 ⇒
 ○
 ○

 17/02/2012
 53 / 57

<ロ> (日) (日) (日) (日) (日)

Simulations without packet loss: Convergence

Scheme 3

Simulations without packet loss: Convergence

Scheme 4

Francesca Parise e Laura Dal Col ()

Communication over NCS:

17/02/2012 55 / 57

Simulations without packet loss: Cost vs Bits

Figure: Unstable system with $\Lambda = \{1.5, 1.2\}$

Francesca Parise e Laura Dal Col ()

Communication over NCS

Simulations without packet loss: Cost vs Bits

Figure: Unstable system with $\Lambda = \{0.5, 1.2\}$

Francesca Parise e Laura Dal Col ()

Communication over NCS

17/02/2012 57 / 57