
A General Method for Approximating NonlinearTransformations of Probability DistributionsSimon Julier and Je�rey K. UhlmannRobotics Research GroupDepartment of Engineering ScienceUniversity of OxfordOxford, OX1 3PJ United Kingdom1st November, 1996AbstractIn this paper we describe a new approach for generalised nonlinear �ltering. We show thatthe technique is more accurate, more stable, and far easier to implement than an extendedKalman �lter. Several examples are provided, including the application of the new �lter toproblems involving discontinuous functions.1 IntroductionPossibly the most important problem arising in tracking and control applications is the repres-entation and maintenance of uncertainty. The state of a system, whether measured or estimated,is rarely known perfectly because (a) measuring instruments and processes have limited preci-sion, and/or (b) estimates of evolving systems are based on process models that fail to includeall governing parameters. The uncertainty associated with a state estimate can be represen-ted most generally by a probability distribution incorporating all knowledge about the state.Because the amount of knowledge about the state is inherently �nite, a complete parameterisa-tion of the state probability distribution will also be �nite. Unfortunately, measurements of anevolving system generally implies that the number of parameters necessary to specify the stateprobability distribution will increase without bound[8].In order to permit tractable algorithms for tracking and control applications, an approximatestate estimate must be generated. The most common approach is to maintain a �xed number ofmoments of the state distribution so as to limit the computational demands of the algorithm tothe constraints of available resources. The most successful approach for �xed-moment estimationis the Kalman �lter[7]. For linear systems the Kalman �lter provides the optimal solution formaintaining a consistent estimate of the �rst two moments of the state distribution: the meanand variance. The Kalman �lter (and its many variants) is the most widely used tracking andcontrol algorithm both because of its mathematical rigour, and because most measurement andprocess models are inadequate to provide reliable information about higher order moments[9, 10].The Kalman �lter exploits the fact that (a) given only the mean and variance (or covariancein multiple dimensions) of a distribution, the most conservative assumption that can be madeabout the distribution is that it is a Gaussian having the given mean and variance, and (b) the1



fact that the application of a linear operator to a Gaussian distribution always yields anotherGaussian distribution. Given the assumptions of (a) and (b) it is straightforward to show thatthe Kalman �lter will yield the best possible estimate of the mean and variance of the state.The requirement that the mean and variance of the state is measurable represents little practicaldi�culty, but the requirement that all observation and process models be linear is rarely satis�edin nontrivial applications.In order to apply the mechanics of the Kalman �lter to nonlinear problems, the extended Kalman�lter (EKF) was developed[3]. The EKF is not so much an extension of the Kalman �lter,but a crude approach for approximating nonlinear systems with linear ones. More speci�cally,the EKF simply calls for the replacement of every nonlinear transformation with a linearisedapproximation. In this article we examine an alternative generalisation of the Kalman �lter thataccommodates nonlinear transformations through the use of a new representation of the meanand variance information about the current state [15]. We will argue that the new approach issuperior to the EKF in every important respect.In the next section we establish the mechanics and notation associated with the Kalman �lter,and we show the steps where the EKF deviates from the ordinary Kalman �lter. In the sub-sequent sections we describe the new approach and its applications to �ltering. The discussionreferences a number of simple examples and a detailed application will be given.2 The Linear Filtering ParadigmWe seek the unbiased, minimum-mean squared error estimator of the state vector of the systemof interest, x(k). The system evolves according to the discrete-time nonlinear state transitionequation x(k + 1) = f [x(k);u(k + 1);v(k + 1); k + 1] (1)where f [�; �; �; �] is the process model, x(k) is the state of the system at timestep k, u(k + 1) isthe input vector and v(k + 1) is a q-dimensional noise process.The only information available about this system are its sequence of control inputs and a set ofobservations, which are acquired at discrete times. These observations are related to the statevector by the equationz(k + 1) = h[x(k + 1);u(k + 1); k + 1] +w(k + 1); (2)where z(k + 1) is the observation vector, h[�; �; �] is the observation model which transforms theplant state space into observation space and w(k) is additive measurement noise.We assume that the additive noise vectors, v(k) and w(k), are Gaussian and form uncorrelatedwhite sequences: E [v(k)] = E [w(k)] = 0, for all k, andE hv(i)vT (j)i = �ijQ(i); (3)E hw(i)wT (j)i = �ijR(i); (4)E hv(i)wT (j)i = 0; 8i; j: (5)The true system state vector is not known and must be estimated as it evolves through time.The representation of this uncertainty arises in that the estimate is a probability distributionconditioned on all prior observations and control inputs. However, determining the minimum2



mean squared error is equivalent to �nding the conditional mean. We use the notation x̂(i j j)to be the state estimate at time i conditioned on all observations up to time j,x̂(i j j) = E hx(i)jZji (6)where Zj = [z(1); z(2); : : : ; z(j)]T . The conditional covariance of this estimate isP(i j j) = E hfx(i) � x̂(i j j)gfx(i) � x̂(i j j)gT jZji : (7)In general it is extremely di�cult to determine the values of these quantities and a linearestimator is often employed. This type of estimator incorporates observation information linearlybut does not require that the process and observation models are linear themselves. As shownin [2], the minimum mean squared estimator has a \predictor-corrector" structure [2, 9]. First,the current state estimate and covariance are transformed through the state transition andobservation equations. These quantities are also known as the one step ahead predictions sincethey represent an estimate of the state of the system at time k + 1 given all observations upto time k. The system is observed at time k + 1 and the observation information is used to\update" these predictions to produce the estimates x̂(k + 1 j k + 1) and P(k + 1 j k + 1). Theupdate equations are x̂(k + 1 j k + 1) = x̂(k + 1 j k) +W(k + 1)�(k + 1) (8)and P(k + 1 j k + 1) = P(k + 1 j k)�W(k + 1)P��(k + 1 j k)WT (k + 1): (9)The vector �(k + 1) is the innovation, which is equal to the di�erence between the actual obser-vation at k, z(k + 1), and the prior mean observation, ẑ(k + 1 j k):�(k + 1) = z(k + 1)� ẑ(k + 1 j k): (10)The covariance of this quantity is P��(k + 1 j k). W(k + 1) is the Kalman gain and its value isgiven by W(k + 1) = Pxz(k + 1 j k)P�1�� (k + 1 j k): (11)Within this framework of the estimator problem the accuracy of the prior means and covariancesare the determining factors in estimator performance. The extended Kalman �lter and new �lterboth use the same structure but employ di�erent assumptions in determining the predictedmeans and covariances.3 The extended Kalman �lterThe EKF assumes thatx̂(k + 1 j k)EKF = f [E hx(k)jZki ;E [v(k + 1)] ;u(k + 1); k + 1]� E hf [x(k);u(k + 1);qq�1; k + 1]jZki : (12)This is equivalent to the assumption that the estimated mean at the previous time step, x̂(k j k),is approximately equal to the true state of the system at that time. Therefore, assuming thatthe size of the errors are small, the state dynamic model is expanded as a Taylor series about theestimate x̂(k j k). By neglecting second and higher order terms, the state prediction propagates3



through the nonlinear equations whilst the state errors propagate through a separate linearsystem. The predicted state and covariances arex̂(k + 1 j k)EKF = f [x̂(k j k);u(k + 1); k + 1]; (13)P(k + 1 j k)EKF = JfP(k j k)J Tf +Q(k + 1); (14)where Jf is the Jacobian matrix of the state transition equation f [�; �; �] evaluated around x̂(k j k)and Q(k + 1) is the covariance of the dynamic driving noise injected during the transition fromk to k + 1.By a similar process, the Taylor series for the observation equation is expanded about x̂(k + 1 j k)and is truncated at the �rst order. The predicted observation and observation covariances areẑ(k + 1 j k)EKF = h[x̂(k + 1 j k);u(k + 1); k + 1]; (15)P��(k + 1 j k)EKF = JhP(k + 1 j k)J Th +R(k + 1): (16)The cross-covariance is Pxz(k + 1 j k)EKF = P(k + 1 j k)J Th : (17)The form of the EKF is chosen to resemble that of the linear Kalman �lter which is optimal forlinear systems. However, the extended Kalman �lter is generally suboptimal for nonlinear sys-tems. The estimates of x̂(k + 1 j k)EKF , P(k + 1 j k)EKF , ẑ(k + 1 j k)EKF , Pzz(k + 1 j k)EKFand Pxz(k + 1 j k)EKF are all made on the assumption that the errors in truncating the Taylorseries to the �rst order are small.The impact of this assumption can be illustrated by considering the motion of a vehicle movingalong a circular arc. In the process model we shall describe, the state space is the position andorientation of the vehicle, x(k) = [x(k); y(k);  (k)]T . The velocity of the vehicle is V (k) and theradius of curvature is R(k). The discrete-time process model for this system isx(k + 1) = x(k) +R(k)�sin� (k) + V (k)�TR(k) �� sin (k)� (18)y(k + 1) = y(k) +R(k)�cos� (k) + V (k)�TR(k) �� cos (k)� (19) (k + 1) =  (k) + V (k)�TR(k) ; (20)where these equations yield the exact solution for circular motion on an arc of constant radius.It is assumed that the vehicle's speed V (k) is disturbed by a zero-mean uncorrelated process.The result, as shown in Figure 1 which represents the condition at time k, is that the covarianceellipse in position uncertainty is orientated in the direction of travel.Now consider the motion of the vehicle after it has turned through 90o. Figure 2 shows the trueposition of the vehicle and its covariance ellipse at time k + 1, one step ahead from the time atk. As can be seen, the covariance ellipse has been expanded and rotated: the initial uncertaintyin position is augmented by additional uncertainties of vehicle motion across the arc and thechange in rotation of the vehicle.The EKF predicts the covariance forwards using Equation 14. The Jacobian matrix for the statetransition equations is Jf = 264 1 0 �TV (k) cos (k)0 1 ��TV (k) sin (k)1 0 0 375 (21)4



which is a constant velocity model tangential to the circle. The e�ect of this on covarianceprediction is shown in Figure 3. While the mean position estimate is predicted forward usingthe circular motion model, the covariance is linearly projected in the initial direction of travel.This leads to a failure of the �lter to maintain the critical information that the largest componentof the uncertainty in the vehicle's position is in the direction in which it is travelling. In otherwords, the predicted covariance re
ects the uncertainty about the vehicle in its previous staterather than its current state. This error must be compensated for by injecting additional dynamicnoise via Q(k) which expands the predicted covariance ellipse so that the true covariance ellipsealways lies within it. This is illustrated in Figure 4 which shows the true ellipse and one suchadjusted EKF-predicted ellipse.

Fig. 1: Mean and covariance of avehicle at time t = m Fig. 2: True mean and covarianceprediction to time t = m+�t

Fig. 3: EKF prediction of mean withlinear covariance propagation Fig. 4: EKF prediction \adjusted" tocompensate for linearisation errorIn summary, the failing of the EKF is its inability to make predictions of the system state,the observations and the associated covariance matrices when the system and/or observationmodels are non-linear. At the heart of this is the need to determine the mean and covarianceof a posterior distribution which is acted upon by a non-linear transformation when the priorhas a known mean and covariance and is assumed to be Gaussian. The EKF uses linearisations5



- the non-linear transformation is approximated using a linear transformation which leads toappreciable errors for realistic observation models, process models, and their associated errorcovariances. We seek an alternative, tractable, general method for calculating these statisticswithout the need to use these linearising assumptions.4 A General Method for Predicting Mean and CovarianceTo state the general problem, we have an n-dimensional vector random variable x with mean �xand covariance Pxx and would like to predict the mean �y and covariance Pyy of a m-dimensionalvector random variable y where y is related to x by the non-linear transformationy = g [x] : (22)In �ltering there are two such transformations - x could be x̂(k j k) and y is x̂(k + 1 j k) (forpredicting the state) and x is x̂(k j k) and y is ẑ(k + 1 j k) for predicting the observation.We begin with the following intuition: With a �xed number of parameters it should be easierto approximate a Gaussian distribution than it is to approximate an arbitrary nonlinear func-tion/transformation. Following this intuition we wish to �nd a parameterisation which capturesthe mean and covariance information while at the same time permitting the direct propagationof the information through an arbitrary set of nonlinear equations. This can be accomplishedby generating a discrete distribution having the same �rst and second (and possibly higher)moments, where each point in the discrete approximation can be directly transformed. Themean and covariance of the transformed ensemble can then be computed as the estimate of thenonlinear transformation of the original distribution.Given an n-dimensional Gaussian distribution having covariance P, we can generate a set ofO(n) points having the same sample covariance from the columns (or rows) of the matrices�pnP (the positive and negative roots). This set of points is zero mean, but if the originaldistribution has mean �x, then simply adding �x to each of the points yields a symmetric set of2n points having the desired mean and covariance. Because the set is symmetric its odd centralmoments are zero, so its �rst three moments are the same as the original Gaussian distribution.This is the minimal number of points capable of encoding this information. A random samplingof points from the distribution, on the other hand, will generally introduce spurious modes in thetransformed distribution even if the set of sample points has the correct mean and covariance. Ina �ltering application these modes will take the form of high frequency noise that may completelyobscure the signal.We summarise the basic method as follows:1. Compute the set � of 2n points from the rows or columns of the matrices�pnP. This set is zero mean with covariance P. Compute a set of pointswith the same covariance, but with mean �x, by translating each of the pointsas X = � + �x.2. Transform each point as Yi = g [Xi] :3. Compute �y and Pyy by computing the mean and covariance of the 2n pointsin the set fYig. 6
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Fig.5: Sigma points capturing the mean and covariance of the distribution are transformedindependently. The mean and covariance of the transformed sigma points de�ne the predicted state.This formulation can be generalised by exploiting our freedom to choose which of the in�nitenumber of possible square roots we use1 (including non-square matrix roots) and by our freedomto include any multiple of the mean, �x, in the set �i. Our freedom to choose an arbitrary matrixsquare root comes from the fact that any square root can be found from any other root byapplying an orthonormal transformation [14]. If our original matrix is A then a matrix squareroot pA1 has the property that, pA1pAT1 = A:Hoewever, if we de�ne a second matrix square root pA2 = pA1U where U is an orthonormaltransformation, then pA2pAT2 = �pA1U��pA1U�T= pA1UUTpAT1= pA1pAT1 :We are not restricted to using orthogonal or symmetric matrix square roots which are numericallysensitive and computationally expensive to �nd. Rather, e�cient and stable methods such asthe Cholesky decomposition can be used, a vital consideration for real-time application.Using multiple copies of the mean obviously will not a�ect the mean of the set, and will onlya�ect the scaling factor for the calculation of the other points. The implications of this arediscussed below and described in more detail in Appendix A.To illustrate the di�erence between the new method and linearisation, consider again the examplepresented in the last section. The motion of the vehicle is a non-linear transform carried out overtime. Figures 6 and 7 show how the new method projects the position of the rotating vehiclefrom the earlier example:1If the matrix square root A is of the form ATA, then the sigma points are formed from the columns of A.However, for a root of the form AAT the rows of A are used.7



Fig.6: Vehicle travelling on a circularpath with uncertainty in speed Fig.7: New �lter correctly predictse�ects of rotation on the covarianceRather than project the mean and covariance through separate equations, the covariance ellipseis approximated by a discrete set of points as shown in Figure 6. As shown in Figure 7, eachone of these points is separately projected along a circular path, and the �nal covariance ellipseis rotated and scaled.We summarise the general method:1. The set of translated sigma points is computed from the n� n matrix Pxx as�  � 2n rows or columns from �q(n+ �)PxxX 0 = �xX i = �i + �x;which assures that Pxx = 12(n+ �) 2nXi=1[Xi � �x][Xi � �x]T :2. The transformed set of sigma points are evaluated for each of the 0� 2n points byYi = g [Xi] (23)3. The predicted mean is computed as�y = 1n+ � (�Y0 + 12 2nXi=1Xi) : (24)4. And the predicted covariance is computed asPyy = 1n+ � (�[Y0 � �y][Y0 � �y]T + 12 2nXi=1[Yi � �y][Yi � �y]T) (25)Comparing this algorithm with the linearisation algorithm we see a number of signi�cant ad-vantages: 8



� It is not necessary to calculate the Jacobian or make any other approximations of g [�].� The prediction stage only consists of standard linear algebra operations (matrix squareroots, outer products, matrix and vector summation)� The number of computations (including an e�cient matrix square root algorithm) scaleswith dimensions at the same rate as linearisation.� Constraints can be readily incorporated by applying the constraint to each of the projectedset Yi.In Appendix A we analyse of the performance of the new transformation algorithm againstlinearisation in detail. It is shown that the most natural framework to use to compare thetwo algorithms is a Taylor Series expansion of g [�] evaluated about �x. Linearisation introduceserrors in the mean calculation at second order and in the covariance at the fourth order. Thenew method, however, yields errors in the mean and covariance which are both of fourth order.Further, on an absolute term-by-term basis, the errors at all higher orders can be made smallerthan those introduced by linearisation. In many applications we expect the e�ects of the lowerorder terms to be signi�cant, and so the reduction in errors can lead to signi�cant improvementsin estimation accuracy. This is demonstrated in a number of examples given below. When thefunction is discontinuous linearised estimates are almost incapable of capturing this information.If the discontinuity does not lie at the point of linearisation then the estimate does not containthe information. If the linearisation point lies on the discontinuity then the Jacobian matrixmay not exist and hence the covariance cannot be predicted. The new �lter uses a distributionof points and captures the e�ects of the discontinuity if it in
uences a signi�cant proportion ofthe distribution.The analysis also reveals the role which is played by �: it a�ects the scaling of the fourth andhigher moments of the distribution. Thus � is a convenient parameter for exploiting knowledge(if available) about the higher moments of the given distribution 2. It is shown that choosing� = 2 for a scalar system leads to errors in the mean and covariance which are sixth order. Formulti-dimensional systems choosing � = 3�n minimises the mean squared error up to the fourthorder. There is no restriction on the sign of � but, if � is negative, then we cannot interpretthe distribution of the sigma points as a probability distribution. Further, when � is negativethere is the possibility, as with all approximation algorithms, that the predicted covariance willbe non-positive semi-de�nite. In this case, we can use a modi�ed form of the algorithm forcalculating the covariance: Pyy = 12(n+ �) 2nXi=1[Yi � �y][Yi � �y]T : (26)Both the original and modi�ed algorithms have the property that, as n + � tends to zero, themean tends to the value obtained by a truncated second order prediction algorithm. Further,the modi�ed algorithm has the useful property that, in this limit, the covariance tends towardsthat calculated by linearisation3.2This leads us to the conclusion that the method is applicable for any prior, symmetric, unimodal distributionand not just Gaussian.3This can be contrasted with an alternative approach of the initial intuition which was explored in [13]. Underthat scheme no copies of the previously estimated mean are included in the sample set and the sigma pointsare scaled using a parameter �. In the limit as � tends to in�nity this algorithm predicts the same mean andcovariance as the EKF. However when � = 1, this method estimates the same mean and covariance as that of thenew �lter but with � = 0: 9



Any choice of � yields MMSE results for linear g [�].To show the signi�cant improvements which can be made using the new method instead oflinearisation, we consider the two following simple examples.4.1 Example 1: a simple continuous transformSuppose there is a one-dimensional random y which is related to the random variable x by thenonlinear transformation y = g[x] = x2: (27)Given that x is a normally distributed variable with mean �x and covariance �2x, what is themean and covariance of y, �y and �2y?First consider the \true" situation (denoted by the subscript T ). The true random variable xTis written as xT = �x+ �x; (28)which is the sum of the mean �x and �x, a zero mean, normal random variable with covariance�2x. The series expansion for one realisation of �x isg[�x+ �x] = �x2 + 2�x�x+ (�x)2: (29)Taking expectations, �yT = �x2 + �2x: (30)The mean squared error in this realisation is(y � �y)2T = (�x2 + 2�x�x+ (�x)2 � �x2 � �2x)2 (31)= (2�x�x+ �x2 � �2x)2= (�x)4 + 4�x(�x)3 + (4�x2 � 2�2x)(�x)2 � 4�2x�x�x+ �4x:Taking expectations of this gives the true covariance,(�2y)T = E h(�x)4i+ 4�x2�2x � �4x (32)where the �rst term is the kurtosis of the series. From moment generating functions it can beshown to have the value 3�4x [11]. Therefore, the true covariance is(�2y)T = 2�4x + 4�x2�2x: (33)The linearisation algorithm predicts its mean from Equation 14�yLIN = G[�x] = �x2 (34)and covariance from Equation 14 (�2y)LIN = 4�x2�2x: (35)Comparing these equations with those for the true system, it can be seen that the linearisationassumptions eliminate a number of signi�cant terms in the mean and covariance. This leads toa biased mean and an under prediction in the value of the covariance.10



Now consider the new algorithm. Using the steps given earlier, the position of the sigma pointsare determined �rst. Since the system is one dimensional there are only three points of interest:the two sigma points and the mean. Denoting the ith point by Xi, these points lie atfX0;X1;X2g = f�x; �x� �; �x+ �g ; (36)where � = p(n+ �)�2x and n = 1. Projecting these points through g[�] according to Equation 23yields a new set of points Xi0 that lie atfX00;X10;X20g = n�x2; �x2 � 2�x� + �2; �x2 + 2�x� + �2o : (37)Applying Equation 24, the mean is calculated as�y = 12(1 + �) �2��x2 + 2�x2 + 2(1 + �)�2x� (38)= �x2 + �2x:As can be seen, the predicted mean is equal to the true mean and is independent of �. Thisresult arises because of the properties of the new �lter's projection equations. As explainedearlier, the mean and covariance are correctly predicted up to and including the second orderterms. Both errors and the scaling e�ects of � begin to act on the fourth order. Since themean is only a function of the �rst two orders, none of these properties of higher order momentsa�ect the results. The true covariance, however, is a function of the kurtosis of the distributionand we expect the estimated value to contain a term related to �. Since the state space is onedimensional, we use the original form of the covariance prediction equation (Equation 25):�2y = 12(1 + �)  2nXi=1 fXi0 � �yg2 + 2��4x! (39)= ��4x + 4�x2�2x:To �nd a solution the value of � must be speci�ed. The kurtosis of the true distribution is 3�4xand that of the sigma points is �2x. Since the kurtosis of the sigma points is scaled by an amount(1 + �), the kurtosis of both distributions only agree when � = 2. By substituting in the aboveequation, this result is con�rmed.4.2 Example 2: a simple discontinuous system

Fig.9: Part of the distribution re
ectsfrom the wall while the remainder passesunimpeded.

We now consider an example of a discontinuous pro-cess model in which we wish to estimate the meanposition of a projectile, [x(k); y(k)]T . The projectilesare initially released at time 1 from a random position[x(1); y(1)]T and travel at a constant and known speedvx in the x direction. The path of the projectiles isobscured by a wall. If a projectile hits the wall thereis an elastic, instantaneous impact, and the projectileis re
ected back on itself at the same velocity as ittravels forwards. This situation is illustrated in the �g-ure which also shows the covariance ellipse of the initialdistribution. We wish to estimate the mean positionand covariance of the position at time 2, [x(2); y(2)]T ,where �T 4= t2 � t1. 11



The process model for this system isx(2) = ( x(1) +�Tvx y(1) � 0;�Tvx � x(1) y(1) < 0 (40)y(2) = y(1): (41)
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Fig.10: Normalised mean square error ofthe EKF (dashed line) and the new �lter(solid line).

At time 1 the estimated is [x(1); y(1)]T . The error inthis estimate is Gaussian, zero mean and has covarianceP(1 j 1). The true conditional mean and covariancewas determined using Monte Carlo simulation for dif-ferent choices of the initial mean of y. The �gure showsthat the new �lter estimates the mean very closely, suf-fering only small spikes as the translated sigma pointssuccessively pass the wall. Further analysis shows thatthe covariance for the �lter is only slightly larger thanthe true covariance, but conservative enough to accountfor the deviation of its estimated mean from the truemean. The linearised method, however, bases its entireestimate of the conditional mean on the projection ofthe prior mean, so its estimates bear no resemblanceto the true mean except when most of the distributioneither hits or misses the wall.As can be seen, in each case the new method gives signi�cant improvements over linearisation.In the �rst example, the method is exact. In the second, the errors are much smaller.5 The New FilterIn the previous section we presented a method for determining the mean and covariance of adistribution which is superior to linearisation in many important respects. In this section wereturn to our original motivation and use this methodology to derive a �ltering algorithm. Fromthe discussion in Section 2, the following steps must be carried out:� predict the new state of the system x̂(k + 1 j k) and covariance P(k + 1 j k). This predic-tion must include the e�ects of the process noise vector v(k + 1),� predict the expected observation ẑ(k + 1 j k) and the innovation covariance P��(k + 1 j k),and� predict the cross-correlation matrix Pxz(k + 1 j k):As will be shown, carrying out the latter two steps is trivial once we have established the �rststep. In the general formulation, v(k+1) can enter in a very 
exible fashion. Components of itcan, for example, re
ect additive noises on x̂(k j k), u(k) or even on the time index k. Further,the noise can be injected in a non-linear fashion as, for example, multiplicative terms. In the faceof such generality, it is not su�cient to treat the noise as separate, additional terms. Further,if we follow the route of the EKF and simply add a process noise covariance term then we donot account for the e�ect of the process noise on the mean. However, with the new method the12



e�ects of process noise can be incorporated in a very simple fashion. We de�ne an augmented(n+ q) dimensional state vector x̂a(k j k) wherex̂a(k j k) 4=  x(k)v(k) ! (42)This augmented vector has mean E [x̂a(k j k)] =  x̂(k j k)0q�1 ! (43)and covariance Pa(kjk) = " P(k j k) Pxw(k j k)Pwx(k j k) Q(k) # ; (44)where, in general, Pxw(k j k) is the correlation between the injected noise and the error in thecurrent state estimate.The non-linear transformation Equations 23 to 25 are now used on the 2(n + q) sigma pointsfrom x̂a(k j k). Repeating the equations here for clarity,1. The set of translated sigma points is computed from the (n+ q)� (n+ q) matrix Pa(kjk)as �a(kjk)  � 2(n+ q) rows or columns from �q(n+ q + �)Pa(kjk)X0(k j k) = x̂a(k j k);Xi(k j k) = �ai (kjk) + x̂a(k j k);which assures thatPa(kjk) = 12(n+ q + �) 2(n+q)Xi=1 [Xi(k j k)� x̂(k j k)][Xi(k j k)� x̂(k j k)]T :2. The transformed set of sigma points are evaluated for each of the 0� 2(n+ q) points byXi(k + 1 j k) = f [Xi(k j k);u(k + 1); k] (45)3. The predicted mean is computed asx̂(k + 1 j k) = 1n+ q + � 8<:�X0(k + 1 j k) + 12 2(n+q)Xi=1 Xi(k + 1 j k)9=; : (46)4. And the predicted covariance is computed asP(k + 1jk) = 1n+ q + � (�[X0(k + 1 j k)� x̂(k + 1 j k)][X0(k + 1 j k)� x̂(k + 1 j k)]T+12 2(n+q)Xi=1 [Xi(k + 1 j k)� x̂(k + 1 j k)][Xi(k + 1 j k)� x̂(k + 1 j k)]T)(47)
13



Using these equations ensures that the prediction with uncertainty in the state and process noiseyields estimation errors in fourth order and above.To complete the description of the new �lter, the equivalent statistics for the innovation sequenceand the cross correlation must be determined. Instantiating each point through the observationmodel to yield Zi(k + 1 j k) = h[Xi(k + 1 j k);u(k + 1); k + 1], the mean observation is foundfrom ẑ(k + 1 j k) = 1n+ q + � 8<:�Z0(k + 1 j k) + 12 2(n+q)Xi=1 Zi(k + 1 j k)9=; : (48)and the covariance is determined fromPzz(k + 1 j k) = 1n+ q + � n�[Z0(k + 1 j k)� ẑ(k + 1 j k)][Z0(k + 1 j k)� ẑ(k + 1 j k)]T+12 2(n+q)Xi=1 [Zi(k + 1 j k)� ẑ(k + 1 j k)][Zi(k + 1 j k)� ẑ(k + 1 j k)]To :(49)The innovation covariance is equal to the sum of Pzz(k + 1 j k) and the observation noise cov-ariance matrix, P��(k + 1 j k) = Pzz(k + 1 j k) +R(k + 1): (50)Finally, noting that the additive disturbances w(k) and v(k) are uncorrelated, the cross correl-ation matrix isPxz(k + 1 j k) = 1n+ q + � (� [X0(k + 1 j k)� x̂(k + 1 j k)] [Z0(k + 1 j k)� ẑ(k + 1 j k)]T+ 12 2(n+q)Xi=1 [Xi(k + 1 j k)� x̂(k + 1 j k)] [Zi(k + 1 j k)� ẑ(k + 1 j k)]T 9=; :(51)When � is negative then P(k + 1 j k) may not be positive semide�nite. In that case a modi�edform of the covariance equation can be used. Further, in the limit as n + q + � tends to zerothe mean tends to that calculated by the truncated second order �lter. The modi�ed covarianceequation leads to the same covariance as that calculated by the EKF.To summarize, we have presented a new �ltering algorithm based on a new method for de-termining the mean and covariance of a probability distribution. The resulting �lter has manyadvantages over the EKF. In particular, linearisation is not required, process noise can be readilyand consistently incorporated, and the estimates are accurate up to fourth order.6 ApplicationIn this section we compare the performance of the new �lter against that of the EKF for aproblem which was initially presented in [1]. We choose this example because it has signi�cantnonlinearities in the process and observation models and has been analysed extensively in theliterature. 14
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We wish to estimate the position, velocity and constant ballisticcoe�cient of a body as it re-enters the atmosphere at a very highaltitude at a very high velocity. Acceleration due to gravity isnegligible compared to the altitude and velocity dependent dragterms. The body is constrained so that it falls vertically andat discrete points in time the range of the body is measuredusing a radar in the presence of white, uncorrelated noise. Thegeometry of the situation is shown in Figure 8: the radar is at analtitude of H (100,000ft) and the horizontal range between thebody and the radar, M , is (100,000ft). This system has threestates which are de�ned as follows:� x1(t) altitude (in feet)� x2(t) velocity (positive downwards, in feet per second)� x3(t) (constant) ballistic coe�cient (in per feet)The continuous time dynamics of this system are_x1(t) = �x2(t) + w1(t) (52)_x2(t) = �e�
x1(t)x2(t)2x3(t) + w2(t) (53)_x3(t) = w3(t) (54)where w1(t); w2(t) and w3(t) are zero mean, uncorrelated noises with covariances given by Q(t)and 
 is a constant (5� 10�5) which relates the air density with altitude. The range at time t,z(t), is z(t) = r�M2 + [x1(t)�H]2�+ r(t) (55)where r(t) is the uncorrelated observation noise with covariance R(t) = 104ft2.Both �lters were implemented in discrete time and observations were taken once per second.However, considering the nonlinearities of the process model and the high velocity (initially20,000fts�1), numerical integration of Equations 52 to 54 produced reasonable predictions ofthe state variables only for extremely small time steps. In accordance with [1], a fourth orderRunge-Kutta scheme was employed with 64 steps between each observation. This additionalcomplication did not greatly a�ect the implementation of the new �lter. The numerical schemewas applied to predict the position of each sigma point individually and the mean and covariancewere calculated just before an observation was made. Since n = 3 we chose � = 0 to minimisethe maximum error up to the fourth order. With this choice of � there is no possibility ofpredicting a non-positive semide�nite covariance matrix and Equation 47 was used. However,the implementation of the EKF was a rather more involved process. The mean was calculatedusing the numerical scheme. However, since the values of the state variables changed signi�cantlyacross the time interval, Jf exhibited strong time variations as well. This could be compensatedfor by repeatedly linearising the prediction equations and using Equation 14. Let � be theduration of each time step, � 4= tk+1 � tk64 : (56)Then the covariance was propagated from the nth to n+ 1th step usingP(tk + (n+ 1)� j tk) = �(tk + (n+ 1)�; tk + n�)P(tk + n� j tk)��T (tk + (n+ 1)�; tk + n�) (57)15



where �(tk + (n+ 1)�; tk + n�) � I+ �Jf + �22 (Jf )2 (58)and Jf was evaluated about tk + n�. The �nal predicted covariance, P(k + 1 j k), was given byP(tk + 64� j tk).The initial true state of the system isx1(0) = 300; 000ft;x2(0) = 20; 000fts�1;x3(0) = 10�3ft�1: 9>=>; (59)and the initial estimates of these states arex̂1(0 j 0) = 300; 000ft;x̂2(0 j 0) = 20; 000fts�1;x̂3(0 j 0) = 3� 10�5ft�1 9>=>; (60)with covariance P(0 j 0) = 264 106 0 00 4� 106 00 0 10�4 375 (61)Thus the initial estimate of altitude and velocity is correct, while the initial estimate of theballistic parameter x̂3(0 j 0) is very bad. Physically, this corresponds to assuming that the bodyis \heavy" whereas in reality the body is \light." We wish to see how quickly the �lters convergeto the true state of the system and, to this end, no process noises are injected into the system.Further, we set Q(k) = 0 for each �lter. These conditions are in accordance with those forthe original test [1]. Referring to the earlier analysis we expect that there will be signi�cantdi�erences in the predictions made by the EKF and the new �lter which will, in turn, lead todi�erences in the magnitudes of the state errors. Note that if both �lters are tuned with non-zeroQ(k)s, better performance will be achieved.In Figure 9 we show the average magnitude of the state errors committed by each �lter acrossa Monte Carlo simulation consisting of 50 runs. As can be seen, there is initially very littledi�erence between the two �lters since, at high altitude, air density is low and x3(k) has littlee�ect on body motion. However, after about 10s the body has fallen su�ciently far and the e�ectsof drag become signi�cant. Here the performance for the two �lters di�ers quite dramatically.Figure 10 shows the performance for the velocity estimates. As can be seen, there are largeerror spikes for both �lters. These are related to the fact that, at 10s, the altitude of the bodyis the same as that of the radar. Range information provides less data about body motion andso leads to increasing errors. Even so it can be seen that the EKF has a larger error spike inthis region and only slowly converges at lower altitudes. Finally Figure 11 shows the errors inpredicting x3(�). As can be seen, the error in the EKF estimate is converging to be an order ofmagnitude larger than that for the new �lter.
16
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Fig. 13: NF mean position error.Therefore we conclude that in this example the new �lter has substantial advantages bothin implementation and performance. The value of the �lter has been demonstrated in otherapplications including high-speed road vehicle navigation [4{6], map based localisation [15] andsatellite navigation [12]. 17



7 ConclusionsIn this article we have shown that a recently proposed alternative to the extended Kalman �lteris preferable in terms of performance and ease of implementation. More speci�cally, we haveshown:1. The new �lter is provably superior to the EKF in terms of expected error for all absolutelycontinuous nonlinear transformations. The new �lter can be applied with non-di�erentiablefunctions in which the EKF is unde�ned.2. The new �lter avoids the derivation of Jacobian matrices for linearising nonlinear kinematicand observation models. This makes the new �lter conducive to the creation of e�cient,general purpose \black box" code libraries.3. Our exposition of the �lter clearly demonstrates that the new �lter is a more direct gen-eralisation of the linear Kalman �lter than is the EKF. In particular, we suggest that thenew approach is a true extension of the Kalman paradigm, whereas the so-called EKF ismore of a recipe for pounding nonlinear models into linear holes.4. Empirical results for a highly nonlinear problem arising in vehicle control[4], satellite nav-igation and fault detection[12] suggest that the new �lter yields results which are at leastas good as those obtained from a well-tuned EKF. Moreover, the performance of the new�lter is more robust than the EKF when stressed.The fact that the new �lter is provably superior to the EKF in every important performancerespect is su�cient evidence to conclude that the EKF is an obsolete methodology. The implic-ations of the new �lter, however, go far beyond simply improving performance. The fact thatthe new �lter does not require the derivation of Jacobians eliminates the major obstacle to thedevelopment of high �delity kinematic models in practical applications. Real world engineeringexperience with the EKF has led most implementors to conclude that the modelling of subtledynamic e�ects usually entails a large e�ort (deriving Jacobians, tuning the many fudge factorsnecessitated by the EKF, etc.) that is usually defeated by linearisation errors. The new �lter,on the other hand, permits highly complex models to be implemented and tested quickly.In summary we should emphasize that the important result in this paper is a new methodfor applying nonlinear transformations to multivariate Gaussian distributions. This result istherefore not limited to nonlinear extensions of the Kalman �lter. It can be applied to almostany �lter that employs linearisation approximations to nonlinear functions (e.g., information�lters, H1 controllers, etc.).A Theoretical Analysis of PerformanceIn this section we compare the performance of the new prediction algorithm against that oflinearisation in terms of predicting the mean and covariance of the posterior random variable.In the next section we lay out the basic framework of the analysis, which is the Taylor Series.In the subsequent sections we examine the prediction of the mean and the covariance. Finallywe conclude with some loose comments about discontinuous functions.
18



A.1 The Multi-Dimensional Taylor SeriesFor the purpose of this analysis we assume that all nonlinear transformations are analytic acrossthe domain of all possible values of x. This condition means that the process model can beexpressed as a multidimensional Taylor series consisting of an arbitrary number of terms. Asthe number of terms tends to in�nity, the residual in the series always tends to zero and sothe series always converges to the true value of the function. Note that these assumptions aremore restrictive than those required for both of the algorithms. To apply linearisation it mustbe necessary to di�erentiate the function to form the Jacobian matrix. The new algorithm doesnot even place this restriction.If we now consider the prior variable x as a mean �x plus a zero-mean disturbance �x withcovariance P, then the Taylor series expansion for the non-linear transformation g[x] about �x isg[�x+�x] = g[�x] +D�xg+ D2�xg2! + D3�xg3! + D4�xg4! + � � � (62)The D�xg operator evaluates the total di�erential of g[�] when perturbed around a nominalvalue �x by �x, D�xg 4=  ��xTr�g[x]T!T ������x=�x (63)This operator can be arranged in two ways. First, the D operator can be expressed as Jg�x,where Jg is the Jacobian matrix of g[�] evaluated about �x. Second, the operator can be writtenas the scalar operator D�x = nXi=1�xi @@xi (64)which acts on g[�] on a component-by-component basis. The ith term in the Taylor series forg[�] is given by Di�xgi! = 1i! 0@ nXj=1�xj @@xj1Ai g[x]�������x=�x (65)This can be expressed as a sum of components, each of which is an ith order di�erential of g[�]with respect to x and an ith order product of�x. If�x is a random variable then the expectedvalue of the ith term in the Taylor series for g[�x+�x] isE "Di�xgi! # = 1i!E2640@ nXj=1�xj @@xj1Ai g[x]375�������x=�x= 1i! E2640@ nXj=1�xj @@xj1Ai375 g[x]�������x=�x (66)It is expressed in terms of the ith moments of the distribution of �x and the ith order partialderivatives of g[�]. To illustrate this, we consider a simple case where g[�] is the mapping froma two dimensional space to another two-dimensional space. Letting x = [x1; x2]T , y = [y1; y2]Tand g[x] = [g1(x); g2(x)]T thenD�xg = �x1 @g@x1 +�x2 @g@x2 (67)D2�xg2! = �x12 @2g@x12 +�x1�x2 @2g@x1@x2 +�x22 @2g@x22 (68)19



When we compare the accuracy of the di�erent �lters, we shall employ the same nonlinearequation g[�] and mean �x but with di�erent distributions (which are not necessarily probabilitydistributions) of �x. Using the above form, we can compare the performance of each �ltersimply by comparing the moments of �x without knowledge of the value or behaviour of thestate transition equations.A.2 Performance in predicting the mean of a continuous functionThe predicted state estimate is found by taking expectations of Equation 62,�y = E hg[�x+�x]i = g[�x] + E "D�xg + D2�xg2! + D3�xg3! + D4�xg4! + � � �# (69)For the true mean, denoted by the subscript T , �x is a zero-mean, Gaussian process withcovariance P. By symmetry, all odd ordered moments in this distribution are zero. Thereforethe expected value of all odd terms in this series are zero and�yT = g[�x] + E "D2�xg2! + D4�xg4! + � � �# (70)The second order even terms can be written asD2�xg2! = D�x (D�xg)2! =  �xTr�xTr2! !g =  rT�x�xTr2! !g: (71)Using the second interpretation of the D operator and noting that E h�x�xT i = Pxx, thesecond term in the Taylor series can be written asE "D2�xg2! # =  rTPxxr2! !g: (72)Equation 70 can now be written as�yT = g[�x] +  rTPxxr2! !g + E "D4�xg4! + � � �# : (73)Linearisation however, truncates this series at the �rst order and predicts the conditional meanas �yLIN = g[�x]: (74)This estimate is independent of the covariance and higher moments of the distribution of �x.However, comparing this with Equation 73 reveals that this is accurate only if the expectedvalue of the second and higher order terms in the series are zero. This is always true for a linearsystem since the second and higher derivatives of the transformation are zero. However, for ageneral nonlinear system these terms are non-zero and this condition does not hold. Thereforeerrors are introduced at the second order.The new �lter predicts the mean from the projected set of points using Equation 24. Considerthe Taylor series for the transition of each point Xi. This can be expressed as the Taylor seriesabout �x, Yi = g[Xi] = g[�x] +D�ig + D2�ig2! + D3�ig3! + D4�g f4! + � � � (75)20



where �i(k) = Xikk � �x. Applying Equation 24, the predicted estimate is�y = 1n+ � (�g[�x] + 12 2nXi=1 g[�x] +D�ig + D2�ig2! + D3�ig3! + D4�ig4! + � � �!)= g[�x] + 12(n+ �) 2nXi=1 D�ig + D2�ig2! + D3�ig3! + D4�ig4! + � � �! : (76)Comparing this series with the true series, we see that di�erent values for the predicted meanoccur only if the moments of�x and �i(k) are di�erent4. The distribution of �i(k) is symmetric.All odd moments are zero and hence all odd terms sum to zero. Recalling that the sigma pointsare found from the column (or row) vectors of the matrix square root of p(n+ �)�x, the secondorder even term is D2�i2! =  rT�i(k)�Ti (k)r2! !g: (77)Therefore the predicted mean is�y = f [�x] +  rTPxxr2! !g+ 12(n+ �) 2nXi=1 D4�ig4! + � � �! : (78)Comparing this series with Equation 73 we see that the mean predicted by the new �lter agreeswith the true mean up to the third order and that errors are introduced in the fourth and higherorder terms. This does not necessarily guarantee that the estimate is more accurate since wehave not examined the behaviour of the higher order terms in the series. We now consider thisproblem.To examine the higher order errors we observe that the random vector �x with covariance Pxxcan be stochastically decoupled - it can be expressed in terms of an uncorrelated random vector�x0 with covariance I (where I is the identity matrix). This decoupling is achieved by meansof the linear transformation �x = A(k)�x0; (79)where A(k) is a matrix square root of Pxx. If aij is the ith element in the jth column vector ofA(k) then the D operator can be expressed asD�x = nXi=1�x0i0@ nXj=1aij @@xj1A : (80)Similarly, we can identify a set of sigma points �0i(k) which capture the mean and covarianceof a normal distribution with covariance identity. This set of points is related to �i(k) by�i(k) = A(k)�0i(k); (81)where A(k) is, again, any matrix square root of Pxx5 Rather than handle a correlated randomvector we now only need to consider the uncorrelated random vectors �x0 and �0i(k). For theGaussian case it can be shown that the fourth order moments (or kurtosis) are [11]E h�x0i4i = 3 8i;E h�x0i2�x0j2i = 1 8i6=j:4Our terminology here is somewhat lax. We can only talk about moments of the sigma points if they area probability distribution - that is, when � � 0: When � < 0 then we are referring to a weighted average ofcomponents raised to a particular power.5This result leads to an alternative insight into the sigma points - namely that the sigma points capture themean and covariance of a distribution with mean zero and covariance the identity. This distribution is scaled bythe square root of the covariance matrix and translated by the mean.21



All other fourth order moments are zero. For the sigma points, the kurtosis of the jth componentsare 12(n+ �) 2nXi=1 �0ij4(k) = n+ � 8j (82)and all other fourth order products are zero.This analysis shows the e�ect of �: Although the �rst three moments are unaltered, it a�ectsthe scaling of the fourth and higher order moments of the distribution of �i(k). If informationis known about the predicted distribution then this can be incorporated into the choice of � sothat the error in the predicted mean is minimised. However if there is no information aboutthe higher order terms of g[�], the best choice of � is motivated by ensuring that the errorscommitted by the new algorithm are smaller than those committed using linearisation.Comparing the kurtosis of the true distribution against that for the sigma points, we observe twodi�erences. First, the kurtosis of a single state has a value of 3 for the Gaussian distribution butn+ � for the sigma distribution. Therefore there is a di�erence in the scaling of the moments.Second, the sigma point distribution has a zero cross kurtosis (and indeed they are zero forall higher order moments as well) but the Gaussian distribution has nonzero cross kurtoses.Therefore, except for the one dimensional case (when cross-kurtoses do not exist), the \shape" ofthe moments are di�erent. If � is chosen such that n+� = 3 then the kurtosis of the single statesfor both distributions are the same. For a one dimensional state space, the errors are introducedin the sixth and higher order moments. However, when the space is multidimensional fourthorder errors are introduced through the cross-kurtoses terms. Linearisation, by comparison,assumes that all fourth order moments are zero. Therefore since the error in the kurtosis issmaller for the new algorithm than that assumed by linearisation, the absolute errors in thefourth order errors in predicting the conditional mean using the new algorithm are smaller thanthose using linearisation.To consider the sixth and higher order moments we consider how the values of the higherorder moments grow. For a Gaussian distribution these moments grow factorially. However,the moments for the sigma point distribution grow geometrically with common factor n + �.Therefore for any choice of � it is possible to select a su�ciently large order such that themoments of the true series exceeds those for the sigma points. When n + � = 3 the momentscoincide at the fourth moment. For all higher terms, the Gaussian moments are larger inmagnitude than the sigma point moments. However the linearisation enforces the conditionthat all of these higher order terms are zero. Therefore, on a term-by-term basis the errors inthe terms of the new algorithm are smaller than those for linearisation.We observe that as n + � tends to zero, the kurtosis and higher order moments for the sigmapoints tend to zero. The predicted mean converges tolim(n+�)!0 �y = g[�x] +  rTPxxr2! !g; (83)which is accurate to the second order. This prediction approximation is equivalent to thatemployed in the well-known [10] truncated second order �lter : the Taylor series expansion istruncated after the second term in the series. Note, however, that this result is achieved withoutthe need to computer Jacobians and Hessians.We conclude that the new algorithm can predict the mean more accurately than linearisationfor all continuous nonlinear transformations. Performance is determined by the choice of � sincethis factor scales the fourth and higher order moments of the distribution. If information about22



the true conditional mean (from, for example Monte Carlo simulations) then � can be adjustedto minimise the error. If 0 < n+ � � 3 then the absolute error in the predicted mean is smallerthan that with linearisation. We note that in many �ltering applications the �rst and secondterms are dominant and � has a minimal e�ect on estimation performance.A.3 Performance in predicting the covariance of a continuous functionThe true (Pyy)T is given by (Pyy)T = E h[y � �yT ][y � �yT ]T i (84)where the expectation is taken over the distribution of y. The realisation of the state error isy� �yT = g[�x+�x]� �yT (85)= D�xg + D2�xg2! + D3�xg3! + D4�xg4! � E "D2�xf2! + D4�xg4! + � � �#with substitutions from Equations 62 and 70. The true covariance is found by post multiplyingthe state error by the transpose of itself and taking expectations. Recalling the symmetry of�x, the expected value of all odd order terms of �x evaluate to zero and the true covariance is(Pyy)T = E "D�xg(D�xg)T + D�xg(D3�xg)T3! + D2�xg(D2�xg)T2� 2! + D3�xg(D�xg)T3! #� E "D2�xg2! #E "D2�xg2! #T + � � � : (86)Recalling the identity D�xg = Jg�x (87)and using the expected given in Equation 72, we rewrite the above equation as(Pyy)T = JgPxxJ Tg + E "D�xg(D3�xg)T3! + D2�xg(D2�xg)T2� 2! + D3�xg(D�xg)T3! #� " rTPxxr2! !g# " rTPxxr2! !g#T + � � � (88)The linearisation algorithm predicts the covariance using(Pyy)LIN = JgPxxJ Tg ; (89)which is the true series truncated after the �rst term. Therefore the errors in the predictedcovariance are in the fourth and higher orders. In general it is not possible to determine whetherthe predicted covariance is conservative since this depends upon the higher order di�erentials ofg[�].The new algorithm predicts the covariance using Equation 25 which requires the values of Yi��yand Y0 � �y. These values are given byYi � �y = D�xg + D2�xg2! + D3�xg3! + D4�xg4! + � � �23



� 12(n+ �) 2nXi=1 D2�ig2! + D4�ig4! + � � �! : (90)Y0 � �y = � 12(n+ �) 2nXi=1 D2�ig2! + D4�ig4! + � � �! : (91)Noting that 12(n+ �) 2nXi=1D�ig(D�ig)T = 12(n+ �) 2nXi=1Jg�i(k)�Ti (k)J Tg= JgPxxJ Tg ; (92)the predicted covariance isPyy = JgPxxJ Tg (93)+ 12(n+ �) 2nXi=1 D�ig(D3�ig)T3! + D2�ig(D2�ig)T2� 2! + D3�ig(D�ig)T3! !� " rTPxxr2! !g# " rTPxxr2! !g#T + � � �Comparing this with the true series we see that the predicted covariance agrees with the truecovariance up to the second order terms in the series. Since the kurtoses of the true andsigma point distributions are di�erent, errors are introduced at the fourth and higher orders.By employing similar arguments as used with the conditional mean, we argue that the absoluteerrors in the prediction of the covariance are smaller using this formulation than that used by theEKF. However because we are attempting to faithfully approximate the covariance matrix, wedo not ensure that this approximation is positive semide�nite if � is negative. Similar problemsare experienced with other sophisticated schemes which approximate higher order moments orprobability density distributions [3, 10]. The situation in which this arises can be illustrated byconsidering the limit as n+ � tends to zero,lim(n+�)!0 Pyy = JgPxxJ Tg � " rTPxxr2! !g# " rTPxxr2! !g#T : (94)The last term is of the order of covariance squared (and hence of the kurtosis of �x) but doesnot scale with �. We can ensure positive semi-de�niteness at the cost of a more conservativecovariance prediction by calculating the \covariance" about �y.(Pyy)MOD = 12(n+ �)  2nXi=1[Yi � �y][Yi � �y]T! : (95)Positive semi-de�niteness is guaranteed by the fact that the covariance matrix is evaluated asthe sum of outer products of vectors.To quantify the errors committed by this new method of predicting the covariance, we examinethe Taylor expansion of Yi � �y which isYi � �y = D�xg + D2�xg2! + D3�xg3! + D4�xg4! + � � � (96)24



Predicting the covariance using Equation 95 yields(Pyy)MOD = JgPxxJ Tg (97)+ 12 2nXi=1 D�ig(D3�ig)T3! + D2�ig(D2�ig)T2� 2! + D3�ig(D�ig)T3! !+ � � �which does not include the subtractive terms. Therefore, in general, the covariance will be largerusing this form than that initially guided by our intuition. This form also has the useful propertythat, in the limit as n+ � tends to zero, the predicted covariance islim(n+�)!0 (Pyy)MOD = JgPxxJ Tg ; (98)which is the same as that estimated through linearisation, but without the use of JacobiansIn conclusion this analysis shows that the covariance predicted by the new �lter is at leastas accurate as that predicted by the EKF. Although both approaches predict the covariancecorrectly up to the second order, the absolute errors in the fourth and higher order terms for thenew �lter are smaller. However, the analysis also shows that the original method of calculatingthe covariance may lead to a matrix which is not positive semide�nite. An alternative method forcalculating the covariance has been presented. This method ensures positive semi-de�nitenessand is still more accurate than the EKF. The performance of all three methods of covarianceprediction only converge with a linear system.A.4 Predicting the mean and covariance of discontinuous functionsThe preceding analysis is valid only if the state transition equations are continuous across therange of all possible values of the state estimates and predictions. However, in many practicalsituations it is possible to conceive of discontinuous process models, which we now brie
y discuss.
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Fig.8: A discontinuous statetransition equation.

Since the state transition equation has a �nite expected value, alldiscontinuities must involve �nite discontinuities in behaviourof the function. Further, suppose that f [�] is piecewise approx-imated by a number of continuous functions, as illustrated inFigure 8. Each continuous function has its own Taylor seriesand when evaluating the function about a point the appropriateTaylor series must be used. The EKF can exhibit two typesof behaviour. First, if the state estimate x̂(k j k) does not lieat a discontinuity then the projected state estimate and cov-ariance will not re
ect the presence of the discontinuity at all.Second, if the discontinuity lies at the state estimate, there aredi�culties in applying the EKF. Speci�cally, if the function isnon-di�erentiable at that point then it is not possible to predictthe covariance using the conventional EKF covariance predictionequations.The new �lter does not require that the state transition equation be di�erentiable and can beused with any valid process model. However if the function is discontinuous then performancewill be worse than that for a continuous function. If a discontinuity does not lie within thecovariance ellipse formed by the sigma points then the state and covariance predictions do notacknowledge the existence of it. However, if the discontinuity lies outside the sigma points thenit is unlikely that it a�ects a signi�cant proportion of the distribution. If the discontinuity25



lies at a sigma point it is not possible, in general, to make any comments about performance.However, if a discontinuity lies within the sigma points then �rst order errors are introducedinto the mean and covariance predictions. When the mean and covariance are calculated forthe new �lter, the relevant Taylor series for each sigma point must be employed. Odd terms donot, in general, cancel out in these summations and an error is introduced into the �rst termin the series. Although the �rst moment is correctly represented using the sigma points, it isscaled by 1=pn+ �. The size of this error can be reduced by reducing the value of � at thecost of distorting the higher order terms in the series. Further, as n+ � tends to zero the sigmapoints converge towards one another and there is the possibility that the sigma points will missthe discontinuity. This error is signi�cant only if a substantial proportion of the distribution isa�ected by the discontinuity.A.5 SummaryWe have considered the performance of the EKF and the new �lter prediction equations for bothcontinuous and discontinuous state transition equations. In general, when the process model iscontinuous the errors in the EKF prediction are second order. The new �lter, however, is accurateas far as the third order, and errors are only introduced at the fourth order. In many practicalapplications the lower terms are signi�cant and the new �lter can be signi�cantly more accurate.When the function is discontinuous the EKF only incorporates this fact in its estimates if thediscontinuity lies on the current state estimate. If the function is not di�erentiable at that pointthe covariance cannot be calculated. The new �lter uses a distribution of points and capturesthe e�ects of the discontinuity if it in
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