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1 Introduction and Motivation

Due to the enormous increasing in the demand for power supply, in the last
decades the scientific and industrial communities have put a huge effort in
research and development of efficient techniques to produce, store and dis-
tribute energy. Due to the shift from a fully centralized scenario, in which
there are a few large power plants which supply in a fixed way residential and
industrial areas, to the so called smart grids, a growing interest is put in en-
ergy market control algorithms (see also 1st IEEE International Conference
on Smart Grid Communications (October 2010, Gaithersburg, MD)).

Such a type of algorithms, in which each producer and consumer is
thought as an autonomous agent able to take decisions, aims to solve several
problems which are typical of the centralized policy. A first goal is to reduce
the annual summer demand peak, which is mainly due to the large use for
air conditioning. The huge demand sets a maximum required capacity for
the system, and entails the maintenance of expensive and polluting mega
power plants, which are used just a few days or hours per year.
A second rationale for a dynamic control of the energy market is related
to the increasing amount of energy produced on the basis of renewable re-
sources, such as wind–power and solar energy. These are affected by a high
degree of uncontrolled and sometimes hardly predictable stochastic uncer-
tainty, since weather forecast could be erroneous in timing as well as in
“quantity” of wind or sun, and thus on the produced energy. Moreover,
the market has been recently flowed by relatively cheap small solar plants
for buildings’ roofs, so that we have a plethora of small producers whose
role cannot be controlled in a centralized way. Rather, again, a dynamic
control algorithm allows all the agents to autonomously and actively par-
ticipate in the energy market, providing the system operators a mechanism
for matching supply and demand by choosing the price of the energy. Such
a mechanism must, however, by cleverly designed in order to guarantee the
stability and reliability of the network despite stochastic uncertainties on the
amount of supply or demand, and, more generally, to steer the amount of
consumed energy to a value which is “optimal”. Optimality, in this research
field, is usually defined as the maximization of the sum of the benefit for all
the users. Clearly, in a realistic scenario, the agents could be weighted dif-
ferently for some reasons, but, as it will be clear in what follows, the model
we use does not allow to go in such a detail in the distribution of the energy
among the users, so that we won’t address this problem.

Theoretical consequences of dynamic pricing have been investigated by
several authors. In Borenstein at al. [6] a comparison is done among dif-
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ferent dynamic pricing strategies. The authors conclude in favour of real–
time pricing, which is characterized by electric rates that reflect the actual
wholesale market prices to the customers. In other words, the idea is that
of minimizing the gap between energy production cost for the suppliers and
retail prices of the market, in order to get as close as possible to the energy
consumption that maximize the total benefit for the users.

The dynamic pricing has already been tested on the market by sev-
eral companies, such as ComEd (which is an energy delivery subsidiary
of Exelon Corporation); in most commercial applications, the energy price
changes every hour, and the electric rate is calculated by applying different
prices depending on the actual cost of the energy at every time step. It has
been proved [1] that if the real–time retail prices are communicated to the
customers, who will then myopically adjust their consumption of energy in
function of their own advantage, the direct linking between the consumer
prices and the wholesale market prices may cause an unstable close–loop
feedback situation. In a later paper [2], a stabilizing pricing algorithm has
been presented for a simple market model, under opportune assumptions on
the behavior of the market participants. Such a procedure steers the price
to a value which is optimal in the sense presented above.

This last paper is the basis of our analysis. We reduced the algorithm
the authors present, which holds for a network of agents, performing a well–
known consumer and producer aggregation in order to deal with a simple
network of only three agents, an aggregate consumer, an aggregate producer,
and a system operator, the ISO, charged of modifying the prices according
to some pre–designed policy. Once this is done, we provided a bound on the
algorithm parameter which guarantees local stability, offering some simula-
tion to show that the algorithm is also globally stable. Given such bound,
we improved the algorithm by introducing a clever choice of the parame-
ter which ensures the maximization of the convergence rate to the optimal
value. The choice is done according to different interpolation curves which
estimate the real characteristics of the consumers, and which are computed
using the past available data on the consumers’ behavior.
A further problem which has been addressed is to balance the budget of the
system operator which provides the control algorithm to the market par-
ticipants. This is, in fact, a non–for–profit agent which should not overall
gain or loose money for its service. Unfortunately, this is something intrin-
sically unavoidable during the transient of the algorithm, so that it develops
a total income, or loss. We proposed a sort of Integral control algorithm to
gradually control to zero this income or loss, and we provided a sufficient
condition, based on Lyapunov Linearization criterion, on the parameters of
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the algorithm to ensure stability.
The last problem faced has been introducing a dynamic evolution of the
customer’s behavior, which should reflect, for the particular case consid-
ered, the different activity during a day. This was done in order to test the
performance of our algorithm while chasing a time–variant optimal equi-
librium point. Numerical simulation are also given for the case in which
the consumers are supposed not to know exactly their value function. This
situation has been modeled by adding a stochastic disturb to the available
data from the market model.

1.1 Summary

The paper is organized as follows:

• In Section 2 we present the model, the market participants and the
assumptions on their behavior. We introduce the market dynamics
and we mention some theoretical result from [2], which will be used in
the following section.

• In Section 3 we analyze the stability bounds for the algorithm pro-
posed in [2], and provide the proof of local stability (in both linear and
non–linear expression of the customers’ value function). Moreover, we
use several functions to interpolate the available data, in order to max-
imize the convergence rate. Numerical results are also shown.

• In Section 4 we address the problem of balancing the total revenues
of the system operator, and propose a control algorithm, giving also
theoretical bounds to the parameters.

• In Section 5 we add a stochastic disturb to the customer’s value
function in order to simulate the uncertainties that may affect the
consumers’ behavior.

• In Section 6 we propose a simplified model for the dynamic evolution
of the system. We suppose the customers’ value functions to change
four times a day, and show the simulative results of the algorithm,
trying to chase the equilibrium.

• In Section 7 we sum up the main results of the article and show
possible directions for future work.
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2 Preliminaries

2.1 Market participants

The aim of this section is to give some details on the model we consider, de-
scribing how the various agents act in the energy market according to their
own, different goals. As we will see, the model of the electricity market we
consider in this work is a simple one made up of three groups of participants:
the suppliers, or producers, the consumers and an independent system op-
erator (ISO). The goal of the participating consumers and suppliers is to
maximize their own benefit - i.e. the value they can draw from their engage-
ment in the market. On the other hand, the ISO is a non–for–profit player
which aims to maximize the total social welfare (the aggregate surplus of
consumers and producers, which descend from the notion of optimality we
consider) under the constraint of matching supply and demand. The ISO
obviously has also to take into account the physical constraints of the net-
work, since it is charged also of the distribution of the electricity. Now we
describe in detail the characteristics of these market participants.

1. The Consumers and the Producers: Let’s assume we have two index
sets S := {1, . . . , ns} and D := {1, . . . , nd} which represent the suppli-
ers and consumers respectively. A value function vj(x) is associated
to each customer j ∈ D, and it represents the economical value de-
riving from the consumption of x units of electricity. Similarly, a cost
function ci(x) represents the cost for each producer i ∈ S to supply x
energy units.
We assume the cost function ci(·) ∈ C2[0,∞), is strictly increasing
and strictly convex, ∀i ∈ S. Analogously, ∀j ∈ D, the value function
vj(·) ∈ C2[0,∞) is supposed to be strictly increasing and strictly con-
cave.
It is assumed that the utility function of supplier i ∈ S is given by
ui(λ, x) := λx − ci(x), where λ is the clearing prize. Equivalently,
the utility function of the consumer j ∈ D is given by uj(λ, x) :=
vj(x)−λx, therefore the utility functions are quasi-linear. In this con-
text, the utility functions represent the net benefit that an agent can
draw from the engagement in the market, i.e. from producing or con-
suming x units of electricity when λ is the market price per unit. Let
dj : R+→ R+, j ∈ D, and si : R+→ R+, i ∈ S, denote C1 functions
mapping price to consumption and production respectively. According
to the framework of utility maximizing agents, we assume that each
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agent maximizes the net benefit that can be achieved from the market.
Consequently:

dj(λ) = arg max
x∈R+

vj(x)− λx, j ∈ D (1)

si(λ) = arg max
x∈R+

λx− ci(x), i ∈ S (2)

When λ ∈ [0,∞), the maximization problems defined in (1) e (2) have
a unique solution in R+ and the functions dj(·) and si(·) are well-
defined, thanks to the hypothesis we made on vj(·) and ci(·). Hence:

dj(λ) = max{0, arg{v̇j(x) = λ}} = max{0, v̇−1
j (λ)}

si(λ) = max{0, arg{ċi(x) = λ}} = max{0, ċ−1
i (λ)}

In the interest of simplicity we assume that dj(λ) = v̇−1
j (λ) and si(λ) =

ċ−1
i (λ). This is mathematically justified by adding the assumptions

ċi(0) = 0 and v̇j(0) = ∞, or by assuming that λ ∈ [min ċi(0),max v̇j(0)],
or even extending the inverse functions to define v̇−1

j (λ) = 0,∀λ >

v̇j(0), and ċ−1
i (λ) = 0,∀λ < ċi(0).

Definition The social welfare is defined as the aggregate benefit of
the producers and the customers:

S =
∑
j∈D

uj(λ, dj) +
∑
i∈S

ui(λ, si). (3)

When the system is at the equilibrium, i.e. the total supply equals
the total demand and there is a unique clearing prize λ for the entire
system, then:

S =
∑
j∈D

vj(dj)−
∑
i∈S

ci(si). (4)

2. The Independent System Operator : The system operator is an inde-
pendent non-for-profit organization, whose primary function is to op-
timally match supply and demand, subject to network constraints. In
particular, real-time market balancing involves solving a constrained
optimization problem, with the goal of maximizing the social wel-
fare as shown in (4). The network constraints are referred to power
flow, transmission lines, generators’ capacity and local and system-
wide reserve capacity requirements. A set of the Locational Marginal
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Prices (LMPs), corresponding to the nodal power balance constraints,
emerge. When the transmission lines are congested, the prices may
vary from location to location as they represent the marginal cost of
supplying electricity at each particular node. When there is sufficient
capacity in the network, then no transmission line will be congested,
and therefore the entire network will have a unique price per unit of
energy.
In order to develop simple mathematical models, we make the follow-
ing simplifying assumptions:

• Resistive losses in transmission/distribution lines are negligible.

• The line capacities are high enough, so that no congestion will
occur.

• There are no capacity constraints on the generators.

• There are no reserve capacity requirements.

The ISO’s optimization problem can be written as:

max
∑
j∈D

vj(dj)−
∑
i∈S

ci(si)

s.t.
∑
j∈D

dj =
∑
i∈S

si

(5)

The following Lemma is taken from [1], adopted from [8].

Lemma 2.1 Let d∗ = [d∗1, . . . , d
∗
nd

], and s∗ = [s∗1, . . . , s
∗
ns

] where d∗j ,
j ∈ D and s∗i , i ∈ S, solve (5). There exists a price λ∗ ∈ [0,∞),
such that (d∗, s∗) solves (1) e (2). Furthermore, λ∗ is the Lagrangian
multiplier corresponding to the balance constraint.

Proof The proof, based on Lagrangian duality, in [8] would be appli-
cable here with some minor adjustments.

The implication of Lemma 2.1 is that by setting the market price to
λ∗, the Lagrangian multiplier corresponding to (5), the ISO creates
an environment in which the collective selfish behavior of the partici-
pants results in a system-wide optimal condition. In other words, the
aggregate surplus is maximized while each agent maximizes his own
profit.
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3. Representative Agent Model : We now develop an abstraction of the
model in (5), with only one producer agent and one consumer agent,
representing the whole group of producers and customers respectively.
In fact, when the price is uniform all over the system, the ISO is not
interested into the individual consumer/producer reaction to real-time
prices, as the quantity of interest is the aggregate response. In multi-
agent systems, especially in the economics context, a representative
agent is an abstract agent whose decisions and responses to signals
and events are mathematically equivalent to the aggregate decision of
a group of agents. This result is a well studied subject in economics
[9].

Lemma 2.2 Let functions vj, j ∈ D, and ci, i ∈ S, satisfying our
hypothesis, and v̇j(0) = ∞, ∀j, and ċi(0) = 0, ∀i. Suppose that there
exists functions v̄ and c̄ satisfying the assumptions of concavity and
convexity respectively, such that:

λ = ˙̄v

(
nd∑
i=1

v̇−1
i (λ)

)
, ∀λ ∈ R+ (6)

and

λ = ˙̄c

(
ns∑
i=1

ċ−1
i (λ)

)
, ∀λ ∈ R+ (7)

Then:

• If (d∗, s∗) solves (5), then d̄∗ :=
∑

d̄∗j and s̄∗ :=
∑

s̄∗i satisfy:

d̄∗ = s̄∗ = x∗

where x∗ solves:
max

x
v̄(x)− c̄(x) (8)

• If λ∗ and λ̄∗ are the optimal clearing prices corresponding to (5)
and (8) respectively, then λ∗ = λ̄∗ = ˙̄v(x∗) = ˙̄c(x∗).

Lemma 2.2 presents a construction for the representative agent model
applicable to the development in this article.

Remark Consider the case where vi(x) := αi log(1 + x), and define
v̄(x) := ᾱ log(nd +x), where ᾱ =

∑
αi. Then v̄ satisfies (6). However,
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since v̇i(0) = αi < ∞, the response to a price λ of the representative
agent with value function ᾱ log(nd + x) is equal to the sum of the
responses of the individual agents only when λ ≤ mini αi. So if αi are
sufficient big, then there will be no problems in pratical applications.

2.2 Dynamic Supply-Demand Model

In this section we review the a dynamical system model proposed to simulate
the interaction of wholesale supply and retail demand in electricity markets,
under the assumption of modeling all customers as a single representative
agent, as well as we will do for all producers. The cost and value functions
c(·) and v(·) represent supply and demand respectively. In a power grid, the
aggregate supply has to match exactly the aggregate demand at each time
step. Therefore, in real-time pricing, supply must follow the demand. In
other words, the exact amount of power requested by the consumers needs
to be supplied at each instant of time.
At discrete time intervals, the ISO computes and announces the price for the
next time interval, according to a mechanism which is called exanté pricing.

Remark A different price assignment is also possible, in the sense that
the price announced at time t = k could correspond to the time interval
[k − 1, k]. In this case, we have the so–called expost pricing, and of course
the demand is affected by some uncertainty, as the actual price per unit of
energy will be revealed only at the end of the period of consumption. On
the contrary, in exanté pricing, it is up to the ISO to face the economic risk
deriving from the gap between the predicted and real price at each time
interval, as the suppliers are supposed to get payed according to the actual
marginal cost of production. Anyway, it can be proved (see [1]) that this
second possible choice leads to the same dynamics as the previous one, i.e.
the exanté pricing.

Let λr
t be the exanté retail price per unit of electricity announced by the ISO

at time t for the time interval [t, t+1], and let dt be the actual consumption
that will occur during this time interval. As a consequence of the myopic
autonomy given to the consumers, the aggregate demand is set to

dt = arg max
x∈R+

v(x)− λr
tx.

It is reasonable to assume that the ISO does not know the value function,
hence the utility function, of the consumers. Moreover, even the consumers
could not have complete information about the exact form of their value
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function (see Section 5). Under these conditions, an exact model of the
consumers’ response to the announced price is not available, and the ISO
can only estimate the demand, and consequently calculate the retail price.
During the time interval [t, t+1], the producers supply an amount of energy
which is exactly the total demand dt for this time period, and get paid by
the ISO according to their actual marginal cost of production λw

t . At time
t + 1 the ISO needs to announce λr

t+1. The following equations describe the
dynamics of the market:

dt = arg max v(x)− λr
tx = v̇−1(λr

t )
st = dt = xt

λw
t = ċ(xt)

λr
t+1 = Π(λr

t , λ
w
t )

(9)

where Π : R2
+ → R+ is the pricing function.

This algorithm is depicted in the block diagram in Figure 1.



st = dt
λwt = ċ(st) = ċ(dt)
λrt+1 = Π(λrt , λ

w
t )

z−1

dt = arg maxx∈R+{v(x)− λrtx}
= v̇−1(λrt )

dt

λrt

Figure 1: Block diagram describing the prices’ dynamic control algorithm.

2.3 ISO’s risk

The ISO commits to a price λr
t = Π(λr

t−1, λ
w
t−1) for the consumers, while it

has to pay the generators λw
t = ċ(xt). The ISO’s risk or revenue differential

is therefore given by:
i(t) = (λr

t − λw
t ) xt. (10)
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3 Stability Analysis

The goal of this section is to present a simple stabilizing algorithm, based on
the main outcome proposed in [2], which leads to the same value both the
retail and wholesale prices, value which is exactly the optimal value in the
sense of the global benefit. The steady assumption is that the consumers’
behavior is static, namely the value function is time–independent. The
proof is very simple and is based on the linearization method for discrete
time systems of the Lyapunov Stability Analysis.

Theorem 3.1 Suppose that there exist a maximum value of the demand
dmax > 0, and for each trajectory satisfying the model equations 9 consider
the demand dt ∈ [0, dmax]. Let the pricing function Π be defined as:

Π(λr, λw) = λr + γ(λw − λr) = γλw + (1− γ)λr (11)

where γ > 0. Then for sufficiently small γ, the pricing function Π stabilizes
the price’s dynamic:

λr
t+1 = Π(λr

t , λ
w
t ) = λr

t + γ(λw
t − λr

t ) (12)

in the sense that λr
t and λw

t converge to the same value λr∗ = λw∗ = λ∗,
and the corresponding supply and demand converge also to equilibrium: s∗ =
d∗ = x∗.
Let’s assume that the equations for the dynamic of the retail and wholesale
prices are given by:

λw = ċ(x) = c · x, (13)
λr = v̇(x) = a(x), (14)

where c > 0, because the cost function is strictly convex, while a(x) > 0 and
its derivative ȧ(x) < 0, because the value function is strictly concave and so
its derivative is monotonically decreasing. In such a context the interval of
admissible values for the equilibrium’s stability is γ ∈ [0, γ∗), where:

γ∗ =
2 ȧ(x∗)

ȧ(x∗)− c
. (15)

Proof Let’s start giving an expression of the dynamics of the retail price
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as function of the same variable λr
t only. In particular we have:

λr
t+1 = λr

t + γ(λw
t − λr

t )
= λr

t (1− γ) + γλw
t

= λr
t (1− γ) + γ c x(t)

= λr
t (1− γ) + γ c a−1(λr

t )
= f(λr

t ). (16)

We note that f(·) is not a linear function of the variable λr
t , which is contin-

uous with its derivatives, and λ∗ is the point of equilibrium. We calculate
now the derivative of f(·) w.r.t. λr, (the Jacobian matrix in a multivariable
case), writing for simplicity λ in place of λr:

∂f

∂λ

∣∣∣∣
λ∗

= 1− γ + γ c
1

ȧ(a−1(λ))

∣∣∣∣
λ∗

= 1− γ + γ c
1

ȧ(x∗)
. (17)

To apply the linearization method for discrete time systems of Lyapunov
Analysis ([3] Chap.4 pg. 179), we now have to check if the modulus of the
eigenvalues of the Jacobian Matrix, which is in this case given only by the
value in (17), is smaller than 1. So we impose:

|1− γ + γ c
1

ȧ(x∗)
| < 1

which is equivalent to:

−1 < 1− γ + γ c
1

ȧ(x∗)
< 1

−2 < −γ + γ c
1

ȧ(x∗)
< 0

−2 < γ (−1 + c
1

ȧ(x∗)
) < 0. (18)

The second bound in (18) is always verified, because the term within brackets
is negative by assumption.
On the other side, considering the first bound in (18), we find:

γ <
2 ȧ(x∗)

ȧ(x∗)− c
(19)

which is exactly the equation (15) of the Theorem. �
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

st = dt
λwt = ċ(st) = ċ(dt)
λrt+1 = Π(λrt , λ

w
t ) = λrt + γ(λwt − λrt )

z−1

dt = arg maxx∈R+{v(x)− λrtx}
= v̇−1(λrt )

dt

λrt

Figure 2: Block diagram describing the stabilizing pricing algorithm.

The dynamic of prices, subject to the presented stabilizing algorithm, can
be represented with the scheme in Figure 2.

Remark We have found an interesting upper bound for the control param-
eter γ in the dynamics of prices that ensures the stability of the system. In
the limiting case of choosing γ = γ∗, which corresponds to an eigenvalue on
the unit circle, one should check the value of the higher order derivatives of
the function f(·) of equation (16), to have some other information about the
stability of the equilibrium. There are in fact some criteria for first order
discrete time systems, that allow to verify the asymptotic stability of the
equilibrium in the case of an eigenvalue with modulus equal to 1 ([3] chap.4
pg. 181). A special remark has to be made regarding the application of this
analytic result. In fact, as already mentioned, in real applications we do not
suppose to know the behaviour of the costumers, and so the value function
is not available. So the exact value of the admissible bound for γ is not com-
putable, but anyway the theory demonstrates that an exact bound exists.
The result could anyway taken into account if at least a rough approxima-
tion of the value function is known. Clearly, the rougher the information of
the value function, the more conservative the bound on γ will be.

The dynamics of the system has been simulated in Matlab, assuming that
the cost and value functions of producers and consumers are:

c(x) = 0.5 x2, (20)
v(x) = 20 log(5x + 1), (21)
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whose derivatives are:

ċ(x) = x,

v̇(x) = 100 (5x + 1)−1.

Therefore the functions respect the hypothesis of the theorem and we can
calculate analytically the superior bound for the control parameter γ, which
is equal to γ∗ = 0.9776.
First of all we simulated the dynamics of the system with two different
values of the parameter, first with γ = 0.1 and then with γ = 0.8. The
stable dynamics of the retail prices are represented in Figures 3 and 4. The
increasing line is the function ċ(x), which gives the wholesale prices w.r.t.
the energy units consumption. Analogously, the decreasing curve is the v̇(x),
which gives the retail prices. The red line represents the trajectory of the
retail prices, which are, at every step, a convex combination of the wholesale
and retail prices at the previous time step.
In Figures 5 and 6 the trend of the difference between the retail and wholesale
prices, in both cases, is represented. We notice that, for a small value of
the parameter, γ the price difference smoothly converges to zero, while, for
a value which is next to the superior bound of the parameter γ∗, the trend
begins to oscillate, before settling to the equilibrium.
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Figure 3: Dynamics of prices with γ = 0.1
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Figure 4: Dynamics of prices with γ = 0.8
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Figure 5: Discrepancies between retail and wholesale prices, with γ = 0.1
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Figure 6: Discrepancies between retail and wholesale prices, with γ = 0.8

In Figures 7 and 8 it is depicted respectivly the dynamics of the prices
when the parameter γ is chosen slightly smaller or bigger than the critical
value. As it is expected, in the first case the system is stable, but exhibits
big oscillations, while in the second it exits from the linear region, namely
the equilibrium point is unstable.

3.1 Estimation of the value function and convergence rate
maximization

In the previous section we provided a control algorithm which forces the
retail price to converge to the equilibrium, i.e. the value corresponding to
the consumption of x∗ units of energy, such that v̇(x∗) = ċ(x∗). The goal
of this section is to provide a design algorithm to maximize the rate of
convergence by a clever choice of γ. Recalling that the derivative of the cost
function for the suppliers ċ(x) is supposed to be known, it is trivial that,
under the usual hypothesis on the concavity of the value function, there
exists an optimal value of γ. Moreover, if we knew the exact expression of
the v̇(x) function, we would also be able to compute the intersection of the
functions and therefore to reach the equilibrium point in one step. In other
words, there always exists a γ̄ such that the ISO controls the system to the
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Figure 7: Dynamics of prices with γ = 0.98 γ∗
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Figure 8: Dynamics of prices with γ = 1.02 γ∗
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optimal price in a single time step using the proposed algorithm.
In fact:

λr(t + 1) = λr(t) + γ (λw(t)− λr(t))

∃γ̄ : γ̄ =
λr,ott − λr(t)
λw(t)− λr(t)

;

and 0 < γ̄ < 1.
Unfortunately, in most practical applications the function v̇(x) is unknown,
so it is not possible to find the optimal γ̄ without an a priori knowledge. Still,
given partial information about the customers’ response to the previously
proposed prices on earlier steps, it is possible to get an estimate of the real
curve by interpolation with a parameterized curve.
At the first step, only one point of the v̇ function is known. In this case
there is no other way to proceed than running the algorithm with a sufficient
small value of γ. At the second step, it is possible to interpolate the two
points with a line - which is unique - and take ċ(x̄) as the next retail price,
where x̄ is such that v̇(x̄) = ċ(x̄). At this stage, three points of the value
function derivative can be used, and therefore sthere are several possible
fitting curves, such as: 1) a line, 2) a parabola and 3) an hyperbola, all
achieved with Ordinary Least Squares (OLS).

1. Line: as a first attempt, we approximated the v̇ function with a de-
creasing line (f(x) = −ax + b with a > 0, b > 0). The resulting fit
is quite different from the original curve, except for a limited region
around the equilibrium point. Moreover, if all of the previous data
are used at every step, it takes a very long time to converge to the
equilibrium. The effect of taking into account all the previous points
without considering a suitable forgetting factor is to slow down the
algorithm, as it is equivalent to weighting too much the initial data.
Therefore it is expedient to fit the latest points only. In this case the
convergence rate to the equilibrium point is much higher.

2. Parabola: there is a basic problem when the v̇ function is approximated
with a convex parabola, namely f(x) = ax2 + x + c with a > 0. The
curve, for x → ∞, diverges, while v̇(∞) = 0. It is easy to notice that
this fact can lead to two different scenarios. If there are two different
intersections between ċ and v̇, it is sufficient to take that corresponding
to the smaller amount of energy, which is the left one. Otherwise, there
can be no intersection at all, in which case the algorithm stops.
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3. Hyperbola: the approximation throught an equilateral hyperbola (f(x) =
a/x with a > 0) is the most performant among the presented func-
tions. The hyperbola shares many characteristics with the original
v̇ function, as it is strictly positive, monotonically decresing, convex,
with f(0) � 0 and f(∞) = 0.

Remark As in this case all the available points belong exactly to the origi-
nal v̇ function, a spline interpolation could have been used. Nevertheless, in
most pratical applications the data are affected by some kind of noise, and
because of this the spline interpolation could lead to a completely different
function.

3.2 Numerical results

We now present the simulation results with the proposed interpolation func-
tions. We set c(x) = 0.5 x2 as the cost function, and v(x) = 40 log(5x + 1)
as the value function. This yields to ċ(x) = x and v̇(x) = 200 (5x + 1)−1

respectively. At the first step we do not have any a priori information or
bound for γ, therefore the best we can do is to choose a sufficiently small
value for the parameter (in this case, γ = 0.1).
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Figure 9: Line interpolation
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Figure 10: Line interpolation (last points only)
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Figure 11: Parabola interpolation

The starting price for the simulations is the one that let the customers con-
sume exactly x(0) = 10 units of energy. As we can see in Figure 9, the
presence of the first point prevents the line from converging to the equilib-
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Figure 12: Hyperbola interpolation

rium. The convergence rate is much higher when only the last four points
are used for interpolation (as shown in Figure 10, as the algorithm is al-
lowed not to take into permanent account the initial values. The parabola
interpolation (Figure 11) is quite fast, but it is not possible to guarantee
the convergence for every initial value. As we can see from Figure 12, the
hyperbolic interpolation is the most accurate, as it provides both high per-
formance and convergence guarantee.
In Table 1 we show how many steps are needed to reach a retail price within
a range of 5% (or 2%) to the optimal retail price. The starting point is the
price that let the customers consume exactly x(0) = 10 units of energy.

5% 2%
Line 3 4

Line (only with the last points) 3 4
Parabola 3 3
Hyperbola 3 3

No interpolation (fixed γ) 9 13

Table 1: Number of steps to reach 5% and 2% to the equilibrium (x(0) = 10).

In Table 2 are shown the results obtained from a starting price that let the
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customers consume exactly x(0) = 2 units of energy.

5% 2%
Line 4 7

Line (only with the last points) 4 6
Parabola ∞ ∞
Hyperbola 3 4

No interpolation (fixed γ) 16 20

Table 2: Number of steps to reach 5% and 2% to the equilibrium (x(0) = 2).

Similar results can be obtained using a different value function, for example
v(x) = 40 log(5x + 1), as shown in Table 3 (where the initial energy con-
sumption is guaranteed to be x(0) = 10 units) and Table 4 (initial energy
consumption set to x(0) = 2 units).

5% 2%
Line 3 34

Line (only with the last points) 3 3
Parabola 3 3
Hyperbola 3 3

No interpolation (fixed γ) 8 12

Table 3: Number of steps to reach 5% and 2% to the equilibrium (x(0) = 10).

5% 2%
Line 10 34

Line (only with the last points) 6 7
Parabola ∞ ∞
Hyperbola 3 10

No interpolation (fixed γ) 20 24

Table 4: Number of steps to reach 5% and 2% to the equilibrium (x(0) = 2).

4 ISO budget balancing

In the previous sections we addressed the problem of stabilizing the whole-
sale and retail prices to a common value which guarantees the maximization
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of social welfare. In the proposed solution, the ISO only decides the next
retail price for the consumers according to the energy request during the
previous period. Due to the difference between this prediction and the ac-
tual consume, at each time step there exists a gap between the amount of
money to be paid to the producers and the amount of money received from
the consumers. This means that the ISO is forced to fill this gap either
by adding money or keeping it, which yields to a non–zero total income or
loss, in contrast with the non–for–profit nature of the ISO. The goal of this
section is to provide an effective algorithm to solve this problem, namely,
denoting by It, t ≥ 0 the total revenue of the ISO, to steer it asymptotically
to zero.
Recalling that λr

t , λw
t and xt denote respectively the retail price, the whole-

sale price and the amount of energy flowing in the network in the period
[t, t + 1), we define the interval revenue:

it
4
= xt(λr

t − λw
t )

which is positive if the amount of money received from the consumers exceeds
that to be paid to the producer, and negative otherwise. The total revenue
of the ISO is thus simply:

It
4
=

t∑
k=1

ik =
t∑

k=1

xk(λr
k − λw

k ).

The update law for the retail price proposed in the previous sections was:

λr
t+1 = Π(λr

t , λw
t ) = λr

t + γ(λw
t − λr

t )

which is now modified to:

λr
t+1 = Π(λr

t , λw
t , It) = λr

t + γ(λw
t − λr

t )− ρIt

where ρ > 0 is a real constant whose value is to be decided during the design
of the algorithm. Formally, this is equivalent to an integral control over
the difference of the prices weighted according to the energy consumption.
Intuitively, what happens is that the larger is the total income of the ISO,
the less will be the retail price in the following periods, since the ISO has a
positive amount of money which is to be given back to the consumers. On
the contrary, if the ISO paid in the past to the producers more than what
it received by the consumers, then the retail price will be increased in order
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to gain more money and fill the cash deficit.
The equations of the algorithm in the time period [t, t + 1) are thus:

st = dt

λw
t+1 = ċ(st)

λr
t+1 = Π(λr

t , λw
t , It) = λr

t + γ(λw
t+1 − λr

t )− ρIt

dt+1 = v̇−1(λr
t+1)

It+1 = It + it+1 = It + dt+1(λr
t+1 − λw

t+1)

(22)

with initialization I(0) = 0.
The following result gives a local criterion for the stability of the system.

Theorem 4.1 Assume that, around the equilibrium point for the algorithm
λ∗, it holds:

v̇(x) = −ax + b

ċ(x) = cx + d.

Then the equilibrium point is asymptotically stable if:{
γ < 2a

c+a
ρ
2 > γ c+a

b−d −
2a

b−d

(23)

while a couple of conditions which are only sufficient is:{
γ < 2a

c+a

ρ < γ c+a
b−d

. (24)

Proof For simplicity, set ut = λr
t . By exploiting the assumptions on v̇ and

ċ, we can rewrite the equations of the system as:{
ut+1 = ut + γ(cxt + d− ut)− ρIt

It = It−1 + (ut − cxt − d)xt

whence, since xt = −ut−b
a ,{

ut+1 = ut + γ(− c
a(ut − b) + d− ut))− ρIt

It = It−1 − (ut + c
a(ut − b)− d)ut−b

a

.
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The first equation can be rewritten as:

ut+1 = ut − γ
c

a
(ut − b) + γd− γut − ρIt

= ut − γ
c

a
ut + γ

cb

a
+ γd− γut − ρIt

= ut(1− γ
c

a
− γ) + γ(

bc

a
+ d)− ρIt

= f1(ut, It),

while the second equation yields:

It+1 =
(

ut +
c

a
ut −

bc

a
− d

)
b− ut

a
+ It

=
[
ut

(
1 +

c

a

)
−
(

bc

a
+ d

)]
b− ut

a
+ It

= −1
a

(
1 +

c

a

)
u2

t +
b

a

(
1 +

c

a

)
ut +

1
a

(
bc

a
+ d

)
ut −

b

a

(
bc

a
+ d

)
+ It

= −1
a

(
1 +

c

a

)
u2

t +
(

b

a

(
1 +

c

a

)
+

1
a

(
bc

a
+ d

))
ut −

b

a

(
bc

a
+ d

)
+ It

= f2(ut, It).

The equilibrium point of this system is given, in terms of amount of energy
and total revenue of the ISO, by:

(x∗, I∗) =
(

b− d

c + a
, 0
)

so that we have:

u∗ = λr∗ = −a
b− d

c + a
+ b =

ad + bc

c + a
.

The next step in the proof is to use the Lyapunov’s Linearization Theorem
[3] to prove the claim. In order to do this, we consider the Jacobian of the
system near (u∗, I∗), which is given by:

J(u∗, I∗) =

 ∂f1

∂u
∂f1

∂I

∂f2

∂u
∂f2

∂I

 =
[

1− γ c
a − γ −ρ

− 2
a(1 + c

a)u +
(

b
a(1 + c

a) + 1
a( bc

a + d)
)

1

]
|(u∗, I∗).
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Since:

− 2
a

(
1 +

c

a

)
u +

(
b

a

(
1 +

c

a

)
+

1
a

(
bc

a
+ d

))
|u∗ =

= −2
a

c + a

a

ad + bc

c + a
+
(

b

a

(
1 +

c

a

)
+

1
a

(
bc

a
+ d

))
= −2

ad + bc

a2
+

b(c + a)
a2

+
bc + dc

a2

=
b(c + a)

a2
− bc + da

a2
=

1
a2

(bc + ba− bc− da)

=
b− d

a

we obtain:

J(u∗, I∗) =
[
1− γ

a (c + a) −ρ
b−d
a 1

]
.

To conclude for the local stability of the algorithm using Lyapunov’s Lin-
earization Theorem we must provide conditions so that the two eigenvalues
of J(u∗, I∗) are strictly stable, namely inside the unit circle. The charac-
teristic polynomial of the matrix is:

PJ(z) = z2 + z
(
−1− 1 +

γ

a
(c + a)

)
︸ ︷︷ ︸

=a1

+1− γ

a
(c + a)− ρ

d− b

a︸ ︷︷ ︸
=a0

,

and it is known that in order PJ(z) to have strictly stable roots it is necessary
that:

|a0| < 1

(1 + a0)2 − a2
1 > 0.

Concerning the first condition, it must be true that a0 < 1, so:

1− γ

a
(c + a) + ρ

b− d

a
< 1 ⇒ −γ

a
(c + a) + ρ

b− d

a
< 0

⇒ ρ(b− d) < γ(c + a) ⇒ ρ < γ
c + a

b− d

and a0 > −1, which is:

1− γ

a
(c + a) + ρ

b− d

a
> −1 ⇒ ρ

b− d

a
> −2 +

γ

a
(c + a)

⇒ ρ > γ
c + a

b− d
− 2a

b− d
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where for both the inequalities we have used a > 0 and b − d > 0, which
is needed in order the equilibrium point to be positive, namely physically
feasible. The first condition implies thus:

ρ < γ
c + a

b− d
(25)

ρ > γ
c + a

b− d
− 2a

b− d
(26)

The second condition implies instead:(
2− γ

a
(c + a) +

ρ

a
(b− d)

)2
−
(
−2 +

γ

a
(c + a)

)2
> 0

⇒
(
2− γ

a
(c + a)

)2
+
(ρ

a
(b− d)

)2
+
(
2− γ

a
(c + a)

)(ρ

a
(b− d)

)
−
(
−2 +

γ

a
(c + a)

)2
> 0

⇒ ρ2(b− d)2

a2
+

2
a2

(2a− γ(c + a)) ρ(b− d) > 0

thus, since, again, b > d and a > 0,

ρ

2
> γ

c + a

b− d
− 2a

b− d
. (27)

Notice that this last equation implies, since ρ > 0, the second in Equation
(25), which can be thus discarded. The two remaining conditions are thus
equivalent to the stability of the system. We can moreover notice that if
γ < 2a

c+a , then the Right Hand Side of Equation (27) is negative, thus the
condition is always satisfied. Referring to Fig. 13, this means taking γ < 2a

c+a .
A couple of conditions which are only sufficient is thus:{

γ < 2a
c+a

ρ < γ c+a
b−d

, (28)

and the Theorem is proved.

4.1 A numerical example

To give an example of application of the previous theorem, we can consider
the following example. We set c(x) = 1

2x2 and v(x) = 20 log(5x) for simplic-
ity, which yield ċ(x) = x and v̇(x) = 20

x . The equilibrium point is x∗ =
√

20,

28



ρ

γ

ρ
2 = γ c+ab−d −

2a
b−d

ρ = γ c+ab−d

2a
c+a

Figure 13: Conditions for the asymptotic stability of the equilibrium point
in terms of ρ and γ. In grey the stability region. The point ( 2a

c+a , 0) is
relative to the sufficient condition.

for which we have a = 1, c =
√

20, b = 1 and d = 0. If we set γ = 0.2
and ρ = 0.01 it can be seen that the conditions are satisfied, and in fact
the system is stable and converges to the equilibrium point, as it can be
seen in Fig. 15. In Fig. 16 it is depicted the same trajectory zoomed around
the equilibrium point, while in Fig. 14 we present the behavior of the ISO
revenue in time. As it can be seen, at first, due to the small value of ρ,
the influence of the ISO revenue is negligible, and the algorithm works in
the usual way just trying to steer the retail price and the wholesale price to
the same value. Since the initial energy consumption is on the right with
respect to the equilibrium point, the retail price chosen by the ISO is too
small, and it has to pay to the producers more than what it receives from
the consumers, making up a shortfall. This grows fast, and despite the fact
that the region around the equilibrium for the prices is reached in a few
steps, the ISO maintains the retail prices higher than what it should in or-
der to repay its deficit. This policy is kept for more than what it should (the
integral control is slow), so that the ISO accrues a profit, which is slowly
given back to the consumers. This explains the “overshoot” in Fig. 14 and
the fact that, in Fig. 16, we can notice that the price is at first higher than
the equilibrium and than slightly lower.
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Figure 14: Trajectory of the total income/shortfall of the ISO.

5 Stabilization with noise

In the previous sections we carried on the analysis of the behavior of the
Price Market Mechanism under the strong assumption that the cost func-
tion c(x) for the producers and the utility function v(x) for the consumers
are both known by the two aggregate agents and constant in time. This
assumption is fairly reasonable in the case of large power plants such as a
nuclear power plant, in which not only the production should be kept as
uniform as possible, but moreover there is no reason to assume that the cost
function changes. Something similar, on the side of the consumers, happens
for large factories, in which the demand never drops (at least on a large
time horizon) and the value function relates in a known and fixed way the
amount of energy with the amount of goods produced. However, in many
other cases this time–invariance is a too strong assumption. In particular,
and this is the case we are going to analyze in this section, the consumer
could be unable to perfectly estimate the value of the energy unit at each in-
stant, or could be forced by external reasons to change its value function. In
other words, there exists a nominal value function for the consumer, which
he would follow in the ideal case. However, this is not the actual case, and,
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Figure 15: Trajectory of the energy request vs the retail price.

given the price λr
t decided by the ISO, the customer chooses to consume

an amount of energy which is a corrupted version of the nominal v̇−1(λr
t ).

This corruption could be, of course, of any type. For sake of simplicity, we
consider the easy case in which the corruption is modeled by an additive
noise

dt = v̇−1(λr
t ) + nt

where the additive noise process {nt}t≥0 is a i.i.d. process with zero mean
and variance q < ∞. By reducing to the essential the equations, it is easy
to see that the system is governed by{

λr
t+1 = λr

t + γ(cv̇−1(λr
t ) + cnt − λr

t )− ρIt

It+1 = It + (v̇−1(λr
t ) + nt)(λr

t − cv̇−1(λr
t ) + cnt)

. (29)

A second order analysis to prove mean–square convergence is in this case
quite difficult even in the case ċ(x) = cx, since in the equation for It+1

appear both a term λtnt and n2
t , which pose quite difficult problems for

the computation of the variance of the process. We limit to a simulative
example which illustrates a typical trajectory of the system.
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Figure 16: Trajectory of the energy request vs the retail price. Zoom around
the equilibrium point.

A numerical example

The simulation has been carried on taking c(x) = 0.5x2 and v(x) = 20 log(5x+
1), γ = 0.6, ρ = 0.03 and q = 0.05. In Figure 17 it is depicted a typical
trajectory of the energy vs the prices, while Figure 18 presents the trend of
the total ISO revenue. A remark which arises from this and several other
simulations is that the nonlinearity has a nontrivial influence on the behav-
ior of the price and the ISO revenue. If we consider, in fact, the sample
expectation of the tail of both the processes {λr

t}t≥0 and {It}t≥0 (in order
to “forget” the initial conditions), one sees that they are both slightly lower
then the nominal equilibrium points λ∗ and 0. However, this shift seems to
be small and the algorithm is able to maintain the system in a neighborhood
of the nominal equilibria.
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Figure 17: Trajectory of the energy request vs the retail price in the case
with noise.

6 Customer’s Dynamic Behaviour

In this section we want to address the problem of uncertainty or time–varying
of customers’ behaviour. We model this feature by considering different
value functions taken within the same family, characterized by a gradual
variation of a certain parameter. In particular, we want to test if the algo-
rithms for price stabilization, presented in Section 3 of this article, are able
to follow the consumers’ behaviour evolution, by simply taking into account
the available past data, and control the dynamics of prices with the goal to
stabilize them. We have studied two different approaches to this problem,
obtaining some nontrivial results.
Let’s start with describing the dynamics of the problem: we have considered
four different value functions vi(x), i ∈ [1, 2, 3, 4], corresponding to four dif-
ferent consumers’ behaviours during different hours of the day. We divided
one day (24 hours) in four periods, each made up of six hours, corresponding
to early morning (4.00:10.00), midday (10.00:16.00), evening (16.00:22.00)
and night (22.00:4.00). Consumers are in fact supposed to make different
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Figure 18: Trajectory of the total income/shortfall of the ISO with noise.

use of energy (electricity), with respect to different moments of the day.
The first approach employs the main result proposed in Section 3, i.e. the
algorithm that calculates the retail price for the next time interval (hour)
using a fixed parameter (γ) in order to stabilize the prices. From simulations
we have obtained the algorithm convergence, both when starting far from
each equilibrium point and when starting close to one of the four points of
equilibrium. After each value function switch, the algorithm quickly settles
on the new equilibrium point, until the next switch. This behaviour is shown
in Figure 19. The evolution starts from the curve number 1. The arrows
show the algorithm chasing the dynamics of the consumers after each slot
switch. The trajectory of the retail prices is not shown here, as it emerges
quite clearly from Fig. 19.
The second approach uses weighted least squares interpolation of the data

recorded during the previous 24 hours, weighting them according to the time
slots they belong to. The first problem we encountered was that we were
considering points taken from four different curves, and the results were not
satisfactory until we introduced a weighting scheme that matched current
and past data belonging to the same time slots. Observations made dur-
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Figure 19: Behaviour of the algorithm while chasing v̇(x) with fixed γ.

ing the current time slot and during the same period of the previous day
are preferred to the data corresponding to different slots. This approach
is justified by the fact that we modeled the customers’ behaviour evolution
with a periodic function, which is a reasonable choice, as the energy request
is similar at the same time during different days. A good weighting factor
can be obtained by sampling the function f(x) = cos10 x, suitably scaled in
frequency (see Figure 20).
When starting close to one of the four equilibrium points (corresponding to
the four different value functions), we interpolated the past 24 hours data
(pairs of [energy, retail price]) with an hyperbola, which is a good approxi-
mation of the derivative of the chosen value functions. At first iteration, we
used 24 data –from an execution of the previous algorithm– as a fictitious
data history. The trajectory of the retail prices is shown in Figure 21. After
each switch, the algorithm gradually moves towards the next equilibrium
point, rather then reaching it in just one or two steps. This behaviour is
due to the symmetric form of the weighting factor, which provides to the
algorithm some information about the “future” evolution of the target. In
other words, the algorithm is able to predict the customers’ behaviour, and
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thanks to this feature it starts moving towards the next equilibrium point
even before the switching takes place. Such a trend could result very useful
in a practical application, as we can assume that, in a real energy market,
the value function varies in a continuous way.
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Figure 20: Weighting factor.

7 Conclusions and future work

In this article we presented an algorithm for the stabilization of retail and
wholesale prices in the energy market, based on the main result provided in
[2]. In particular, we obtained a superior bound to the control parameter
(γ) which ensures local convergence.
In order to maximize the convergence rate, we tried some fitting functions
to estimate the unknown v̇(x), and we compared them through numerical
simulations. Afterwards, we modified the previous algorithm in order to
steer to zero the ISO total revenue, according to the non–for–profit nature
of the operator.
Adding some noise to the consumer behaviour, we noticed from simulations
that the stability of the algorithm still holds.
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Figure 21: Trajectory of the retail prices while chasing v̇(x) with weighting
factor.

Finally, in the last section, we tested the first algorithm varying the con-
sumers’ value functions, in accordance with the different moments of the
day, and then introduced a weighting factor, to simulate a periodic demand.
Future developments to the presented framework may involve effects of pro-
duction uncertainties and more realistic models that take into account physi-
cal constraints, possibly testing different classes of cost and value functions.
Other extending directions may include a more realistic variation of the
consumers’ value functions, and, in this context, the development of an al-
gorithm to steer to zero the ISO revenue.
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