## PSC: Progettazione di sistemi di controllo

a.a. 2010-2011

Lezione 20 — 30 Novembre 2010

Docente: Luca Schenato

Stesori: Maran F., Marcon R., Marcassa A., Zanella F.

## 20.1 Tipologie di comunicazione

Dalla lezione precedente, si è visto come l'evoluzione dello stato di una rete tempo-variante rispetti l'equazione di aggiornamento

$$x(t+1) = P(t)x(t)$$

con P(0), P(1),...i.i.d.,  $P(t) \in \mathcal{P}$ ,  $\mathbb{P}[P(t) = P_i] = p_i$ ; la randomizzazione viene usata per modellare l'imprecisione dovuta all'ambiente. x(t) è una sequenza aleatoria, essendolo le P(t), e il probabilistic consensus corrisponde a  $x(t) \to \alpha \mathbb{1}$  c.p.1 con  $\alpha$  vettore aleatorio,  $\alpha = \rho(\omega)^T x(0)$ .

Teorema 20.1. Se le P(t) hanno diagonale positiva c.p.1 e il grafo relativo a  $\bar{P} = \mathbb{E}[P(t)], \mathcal{G}_{\bar{P}}, \hat{e}$  fortemente connesso, allora si ha probabilistic consensus.

#### Esempi di applicazione del teorema su algoritmi randomizzati

Se  $w_{ij}$  è la probabilità che si accenda l'edge da j a i, si può dimostrare che  $\mathcal{G}_W = \mathcal{G}_{\bar{P}}$  (a parte la diagonale).

1. Asymmetric Gossip: supposto

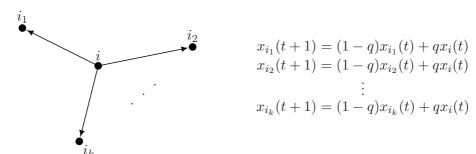


l'algoritmo è del tipo

$$x_i(t+1) = (1-q)x_i(t) + qx_j(t)$$
  
 $x_l(t+1) = x_l(t)$ 

e non mantiene la media. P(t) ha sempre la diagonale positiva, e questo verifica la prima condizione; per la seconda, è sufficiente che W porti a un grafo fortemente connesso.

2. Broadcast: si considera un grafo orientato in cui ad ogni istante si accende un nodo (non un edge) e trasmette a tutti i suoi vicini; tutti quelli che sentono prendono l'informazione e ne fanno la media.



Anche in questo caso la media non viene mantenuta. P(t) ha sempre diagonale positiva (prima condizione verificata); inoltre, se  $w_i > 0 \, \forall i$  allora tutti i nodi hanno probabilità di accendersi e si può dimostrare che  $\mathcal{G}_{\bar{P}} = \mathcal{G}$  grafo di partenza (seconda condizione verificata).

In entrambi gli algoritmi non c'è parallelismo nell'accensione degli edge (se ne attiva sempre uno alla volta).

# 20.2 Analisi delle prestazioni

Si vuole analizzare la velocità di convergenza al consensus: questo viene comunemente fatto sulla base di due metriche, l'analisi a regime e in transitorio.

### 20.2.1 Analisi a regime

Idealmente, si dovrebbe convergere al baricentro delle condizioni iniziali: ci si chiede quanto il valore asintotico sia lontano. Definiamo il baricentro al tempo t come

$$x_A(t) \triangleq \frac{1}{N} \sum_i x_i(t) = \frac{1}{N} \mathbb{1}^T x(t)$$

(nel symettric gossip  $x_A(t)$  è costante). Il parametro di interesse è  $\beta(t) = |x_A(t) - x_A(0)|^2$ , la prestazione a regime è determinata da  $\beta(\infty)$ :

$$\beta(\infty) = |x_A(t) - x_A(0)|^2$$

$$= \left| \frac{1}{N} \mathbb{1}^T x(\infty) - \frac{1}{N} \mathbb{1}^T x(0) \right|^2$$

$$x(\infty) = \mathbb{1} \rho^T x(0) \to = \left| \underbrace{\left( \rho^T - \frac{1}{N} \mathbb{1}^T \right)}_{\triangleq v^T} x(0) \right|^2$$

$$v^T x(0) \text{ è scalare} \to = x(0)^T \underbrace{vv^T}_{\triangleq B(\omega)} x(0)$$

$$= x(0)^T B(\omega) x(0)$$

che è una forma quadratica, essendo  $B(\omega) = \left(\rho(\omega) - \frac{1}{N}\mathbb{1}\right) \left(\rho(\omega) - \frac{1}{N}\mathbb{1}\right)^T$  semi-definita positiva di rango 1; la dipendenza da  $\omega$  indica che c'è ancora aleatorietà.

#### 20.2.2 Analisi in transitorio

Per vedere la velocità di convergenza, la metrica da considerare è

$$d'(t) = \frac{1}{N} ||x(t) - x(\infty)||^2;$$

ovviamente  $d'(t) \to 0$ . Nel caso deterministico la convergenza è esponenziale, ma in condizioni di stocasticità la d'(t) dipende anche dal parametro  $\omega$ . Può essere riscritta come

$$d'(t) = \frac{1}{N} \sum_{i} |x_i(t) - x_i(\infty)|^2;$$

che mette in evidenza come ad ogni t sia la media della distanza di ogni singolo agente dal suo valore finale.

Un'altra metrica da considerare è

$$d(t) = \frac{1}{N} ||x(t) - \mathbb{1}x_A(t)||^2,$$

distanza dello stato rispetto al baricentro istantaneo; anche  $d(t) \to 0$ . Vale il seguente

**Lemma 20.1.**  $d(t) \le d'(t) \le (1 + \sqrt{N})^2 d(t)$ , quindi se  $d(t) \to 0$  esponenzialmente anche  $d'(t) \to 0$  esponenzialmente (teorema dei carabinieri).

Alla luce di questo risultato, è preferibile studiare d(t) (più semplice).

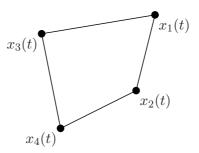
Teorema 20.2. Nelle condizioni di probabilistic consensus,

$$\lim_{t \to \infty} d(t)^{\frac{1}{t}} = \lambda \in \mathbb{R}$$

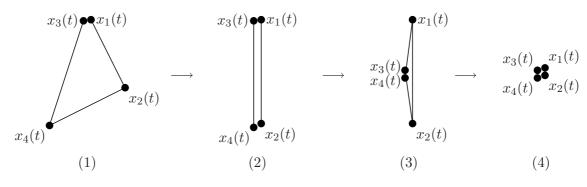
dove  $d(t)^{\frac{1}{t}}$  (aleatorio) è il rate di convergenza.

 $\lambda$  è detto secondo esponente di Lyapunov per d(t) (il primo è 1). È un valore difficile da calcolare, e pone inoltre un secondo problema. Si consideri l'algoritmo di symmetric gossip con grafo completo,  $q = \frac{1}{2}$ , in cui tutti gli edge hanno la stessa probabilità di accendersi  $w_{ij} = \frac{1}{N}$ : prendiamo  $N = 2^{\nu}$ . Da esperimenti numerici si ottiene, per N = 16, una decrescenza esponenziale con  $\lambda \simeq 0.93$ .

La teoria di Lyapunov mostra invece che  $\lambda=0$  (dead-beat: dopo un numero finito di passi si arriva al consenso). Prendiamo infatti N=4, e supponiamo che dopo t passi i vari  $x_i(t)$  siano così disposti



una possibile evoluzione è



e quindi in quattro azioni successive si giunge al consensus, ovvero d(t) = 0 da un certo punto in poi. Ciò significa che

$$\underbrace{P(0)P(1)\cdots P(t-1)}_{x_1,x_2,x_3,x_4 \text{ di partenza}} \cdot \underbrace{P(t)P(t+1)P(t+2)P(t+3)}_{\text{con prob. piccola questa sequenza arriva}}^{\text{consenso}}.$$

Per N=4 il sistema in effetti è dead-beat; lo è anche per N=16, ma il tempo in cui d(t)=0 è molto più grande.

Ci si può dunque chiedere cosa sia lo 0.93 ricavato empiricamente: esso emerge dall'analisi della varianza d'errore (analisi in media). La risposta si può ricercare facendo l'analisi dei momenti a regime.

Si suppone  $\beta(\infty) = x(0)^T B(\omega) x(0)$  dove  $B(\omega) = (\rho - \frac{1}{N} \mathbf{1}) (\rho - \frac{1}{N} \mathbf{1})^T$  in questo modo si riesce a calcolare il valore atteso:  $\mathbb{E}[\beta(\infty)] = x(0)^T \bar{B}x(0)$  dove:

$$\begin{split} \bar{B} &= \mathbb{E}[B] \\ &= \mathbb{E}[\rho \rho^T] - \frac{1}{N} \mathbb{E}[\rho] \mathbf{1}^T - \frac{1}{N} \mathbf{1} \mathbb{E}[\rho]^T + \frac{1}{N^2} \mathbf{1} \mathbf{1}^T \end{split}$$

 $\mathbb{E}[\rho]$  è l'autovettore sinistro di  $\bar{P}$  cioè  $\mathbb{E}[\rho]^T\bar{P}=\mathbb{E}[\rho]^Td$  Anche se l'algoritmo non mantiene la media la  $\bar{P}$  è comunque doppiamente stocastica. In tal caso  $\mathbb{E}[\rho]=\frac{1}{N}\mathbf{1}$  e la risultante  $\bar{B}=\mathbb{E}[\rho\rho^T]-\frac{1}{N^2}\mathbf{1}\mathbf{1}^T$ 

Per quanto riguarda il transitorio si vuole capire quanto velocemente tende a zero l'aspettazione:  $\mathbb{E}[d(t)] \to 0$ . La velocità di convergenza è di tipo esponenziale; si può notare questo da come è fatta la funzione d(t):

$$d(t) = \frac{1}{N} ||x(t) - x_A(t)\mathbf{1}||^2$$

$$= \frac{1}{N} ||x(t) - \frac{\mathbf{1}\mathbf{1}^T}{N} x(t)||^2$$

$$= \frac{1}{N} ||(I - \frac{\mathbf{1}\mathbf{1}^T}{N}) x(t)||^2$$

$$= \frac{1}{N} ||\Omega x(t)||^2$$

Quindi, tenendo conto delle proprità di  $\Omega$ :

- 1.  $\Omega$  è simmetrico
- 2.  $\Omega$  è una proiezione  $\Omega = \Omega \cdot \Omega$

e del fatto che x(t) = Q(t)x(0), si può calcolare l'aspettazione  $\mathbb{E}[d(t)]$ :

$$\begin{split} \mathbb{E}[d(t)] &= \frac{1}{N} \mathbb{E}[x(t)^T \Omega^T \Omega x(t)] \\ &= \frac{1}{N} \mathbb{E}[x(t)^T \Omega x(t)] \\ &= \frac{1}{N} x(0)^T \mathbb{E}[Q(t)^T \Omega Q(t)] x(0) \\ &= x(0)^T \Delta(t) x(0) \end{split}$$

dove  $\Delta(t) = \frac{1}{N} \mathbb{E}[Q(t)^T \Omega Q(t)].$ 

 $\Delta(t)$  evolve come un sistema lineare tempo discreto e tende a zero in maniera esponenziale.

$$\Delta(t+1) = \mathbb{E} [P(0)^T P(1)^T \cdots P(t)^T \Omega P(t) \cdots P(0)] =$$

$$= \mathbb{E} [P(0)^T P(1)^T \cdots P(t)^T \Omega P(t) \cdots P(0) | P(0)] =$$

$$= \mathbb{E} [P(0)^T \mathbb{E} [P(1)^T \cdots P(t)^T \Omega P(t) \cdots P(1) | P(0)] | P(0)] =$$

$$= \mathbb{E} [P(0)^T \Delta(t) P(0)]$$

avendo sfruttato la proprietà della probabilità condizionata  $\mathbb{E}[z] = \mathbb{E}\left[\mathbb{E}[z|x]\right]$ . Si definisce quindi  $L: \Re^{N \times N} \to \Re^{N \times N}$ :

$$\Delta \to \mathbb{E}\left[P(0)^T \Delta P(0)\right] \to \begin{cases} \Delta(t+1) &= L(\Delta(t)) \\ \Delta(0) &= \Omega \end{cases}$$

Si prenda ora lo spazio vettoriale  $R = <\Omega, \alpha(\Omega), \alpha^2(\Omega), \dots > \to L_R$ , e

$$L(\Delta) = \mathbb{E}\left[P(0)^T \Delta P(0)\right] = \sum_i p_i P_i^T \Delta P_i$$

dove  $P(0) = P_i$  con probabilità  $p_i$ ; L è un operatore lineare anche se mappa matrici in matrici. Si definisce ora  $\delta(t) = \text{vect}(\Delta(t))$ , dove l'operatore vect è dato da

$$\operatorname{vect}(E|M) = \mathbb{E}\left[\operatorname{vect}M\right]$$

L'aggiornamento di  $\delta$  si ottiene come:

$$\delta(t+1) = \operatorname{vect}\left(\mathbb{E}\left[P(0)^T \Delta(t) P(0)\right]\right) = \mathbb{E}\left[\operatorname{vect}\left(P(0)^T \Delta(t) P(0)\right)\right]$$
(20.1)

Esiste inoltre una relazione tale per cui, date tre matrici  $A, B, C \in \mathbb{R}^{n \times n}$ ,

$$\operatorname{vect}(ABC) = (C^T \otimes A)\operatorname{vect}(B)$$

Applicando questa proprietà alla relazione riportata in (20.1) si trova che

$$\delta(t+1) = \mathbb{E}\left[P(0)^T \otimes P(0)\right] \delta(t)$$

con  $E\left[P(0)^T\otimes P(0)\right]=L$  matrice  $\in\Re^{N^2\times N^2}$  che rappresenta la media di tutti i prodotti di Kroenecker.

Si può dimostrare che  $L^T$  è stocastica, visto che valgono le due proprietà circa le matrici stocastiche:

- 1. se L ha diagonale > 0 con probabilità 1
- 2.  $G_L$  è fortemente connesso

con queste due proprietà si arriva al consensus: si ha un autovalore pari a 1, mentre tutti gli altri sono contenuti nel cerchio unitario.