Derivation of Kalman Filtering and Smoothing Equations

Byron M. Yu
Department of Electrical Engineering
Stanford University
Stanford, CA 94305, USA
byronyu@stanford.edu
Krishna V. Shenoy
Department of Electrical Engineering
Neurosciences Program
Stanford University
Stanford, CA 94305, USA
shenoy@stanford.edu
Maneesh Sahani
Gatsby Computational Neuroscience Unit
University College London
17 Queen Square, London WC1N 3AR, UK
maneesh@gatsby.ucl.ac.uk

October 19, 2004

Abstract

The Kalman filtering and smoothing problems can be solved by a series of forward and backward recursions, as presented in [1]-[3]. Here, we show how to derive these relationships from first principles.

1 Introduction

We consider linear time-invariant dynamical systems (LDS) of the following form:

$$
\begin{align*}
\mathbf{x}_{t+1} & =A \mathbf{x}_{t}+\mathbf{w}_{t} \tag{1}\\
\mathbf{y}_{t} & =C \mathbf{x}_{t}+\mathbf{v}_{t} \tag{2}
\end{align*}
$$

where \mathbf{x}_{t} and \mathbf{y}_{t} are the state and output, respectively, at time t. The noise terms, \mathbf{w}_{t} and \mathbf{v}_{t}, are zero-mean normally-distributed random variables with covariance matrices Q and R, respectively. The initial state, \mathbf{x}_{1}, is normally-distributed with mean $\boldsymbol{\pi}_{1}$ and variance V_{1}.

In this work, we assume that the parameters of the linear dynamical system, namely A, C, Q, $R, \boldsymbol{\pi}_{1}$, and V_{1} are known. Whereas the outputs are observed, the state and noise variables are hidden.

The goal is to determine $P\left(\mathbf{x}_{t} \mid\{\mathbf{y}\}_{1}^{t}\right)$ and $P\left(\mathbf{x}_{t} \mid\{\mathbf{y}\}_{1}^{T}\right)$ for $t=1, \ldots, T$. These are the solutions to the filtering and smoothing problems, respectively. Both distributions are normally-distributed for the system described by (1) and (2), so it suffices to find the mean and variance of each distribution.

We will use the same notation as in [1]. $E\left(\mathbf{x}_{t} \mid\{\mathbf{y}\}_{1}^{\tau}\right)$ is denoted by \mathbf{x}_{t}^{τ} and $\operatorname{Var}\left(\mathbf{x}_{t} \mid\{\mathbf{y}\}_{1}^{\tau}\right)$ is denoted by V_{t}^{τ}. The sequence of T outputs $\left(\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{T}\right)$ is denoted by $\{\mathbf{y}\}$. A subsequence of outputs $\left(\mathbf{y}_{t_{0}}, \mathbf{y}_{t_{0}+1}, \ldots, \mathbf{y}_{t_{1}}\right)$ is denoted by $\{\mathbf{y}\}_{t_{0}}^{t_{1}}$.

2 Forward Recursions: Filtering

By the assumptions of the LDS described by (1) and (2), $P\left(\mathbf{x}_{t} \mid\{\mathbf{y}\}_{1}^{t}\right)$ is a normal distribution. We seek its mean \mathbf{x}_{t}^{t} and variance V_{t}^{t}.

$$
\begin{align*}
\log P\left(\mathbf{x}_{t} \mid\{\mathbf{y}\}_{1}^{t}\right) & =\log P\left(\mathbf{x}_{t} \mid\{\mathbf{y}\}_{1}^{t-1}, \mathbf{y}_{t}\right) \\
& =\log P\left(\mathbf{y}_{t} \mid \mathbf{x}_{t},\{\mathbf{y}\}_{1}^{t-1}\right)+\log P\left(\mathbf{x}_{t} \mid\{\mathbf{y}\}_{1}^{t-1}\right)+\ldots \\
& =\log P\left(\mathbf{y}_{t} \mid \mathbf{x}_{t}\right)+\log P\left(\mathbf{x}_{t} \mid\{\mathbf{y}\}_{1}^{t-1}\right)+\ldots \\
& =-\frac{1}{2}\left(\mathbf{y}_{t}-C \mathbf{x}_{t}\right)^{\prime} R^{-1}\left(\mathbf{y}_{t}-C \mathbf{x}_{t}\right)-\frac{1}{2}\left(\mathbf{x}_{t}-\mathbf{x}_{t}^{t-1}\right)^{\prime}\left(V_{t}^{t-1}\right)^{-1}\left(\mathbf{x}_{t}-\mathbf{x}_{t}^{t-1}\right)+\ldots \\
& =-\frac{1}{2} \mathbf{x}_{t}^{\prime}\left(C^{\prime} R^{-1} C+\left(V_{t}^{t-1}\right)^{-1}\right) \mathbf{x}_{t}+\mathbf{x}_{t}^{\prime}\left(C^{\prime} R^{-1} \mathbf{y}_{t}+\left(V_{t}^{t-1}\right)^{-1} \mathbf{x}_{t}^{t-1}\right)+\ldots \tag{3}
\end{align*}
$$

Note that, in general, if \mathbf{z} is normally-distributed with mean $\boldsymbol{\mu}$ and variance Σ,

$$
\begin{align*}
\log P(\mathbf{z}) & =-\frac{1}{2}(\mathbf{z}-\boldsymbol{\mu})^{\prime} \Sigma^{-1}(\mathbf{z}-\boldsymbol{\mu})+\ldots \\
& =-\frac{1}{2} \mathbf{z}^{\prime} \Sigma^{-1} \mathbf{z}+\mathbf{z}^{\prime}\left(\Sigma^{-1} \boldsymbol{\mu}\right)+\ldots \tag{4}
\end{align*}
$$

Comparing the first terms in (3) and (4) and using the Matrix Inversion Lemma,

$$
\begin{align*}
V_{t}^{t} & =\left(C^{\prime} R^{-1} C+\left(V_{t}^{t-1}\right)^{-1}\right)^{-1} \\
& =V_{t}^{t-1}-K_{t} C V_{t}^{t-1} \tag{5}
\end{align*}
$$

where

$$
\begin{equation*}
K_{t}=V_{t}^{t-1} C^{\prime}\left(R+C V_{t}^{t-1} C^{\prime}\right)^{-1} \tag{6}
\end{equation*}
$$

To find the time update for the variance, we use the fact that $A \mathbf{x}_{t-1}$ and \mathbf{w}_{t-1} are independent

$$
\begin{align*}
V_{t}^{t-1} & =\operatorname{Var}\left(A \mathbf{x}_{t-1} \mid\{\mathbf{y}\}_{1}^{t-1}\right)+\operatorname{Var}\left(\mathbf{w}_{t-1} \mid\{\mathbf{y}\}_{1}^{t-1}\right) \\
& =A V_{t-1}^{t-1} A^{\prime}+Q \tag{7}
\end{align*}
$$

Before finding the mean of the normal distribution, we derive the following matrix identity

$$
\begin{align*}
(A+B)^{-1}(A+B) & =I \\
I-(A+B)^{-1} A & =(A+B)^{-1} B \\
\left(I-(A+B)^{-1} A\right) B^{-1} & =(A+B)^{-1} . \tag{8}
\end{align*}
$$

Comparing the second terms in (3) and (4) and applying the matrix identity (8),

$$
\begin{align*}
\mathbf{x}_{t}^{t} & =V_{t}^{t}\left(C^{\prime} R^{-1} \mathbf{y}_{t}+\left(V_{t}^{t-1}\right)^{-1} \mathbf{x}_{t}^{t-1}\right) \\
& =V_{t}^{t-1} C^{\prime}\left(I-\left(R+C V_{t}^{t-1} C^{\prime}\right)^{-1} C V_{t}^{t-1} C^{\prime}\right) R^{-1} \mathbf{y}_{t}+\left(I-K_{t} C\right) \mathbf{x}_{t}^{t-1} \\
& =V_{t}^{t-1} C^{\prime}\left(R+C V_{t}^{t-1} C^{\prime}\right)^{-1} \mathbf{y}_{t}+\left(I-K_{t} C\right) \mathbf{x}_{t}^{t-1} \\
& =K_{t} \mathbf{y}_{t}+\left(I-K_{t} C\right) \mathbf{x}_{t}^{t-1} \\
& =\mathbf{x}_{t}^{t-1}+K_{t}\left(\mathbf{y}_{t}-C \mathbf{x}_{t}^{t-1}\right) . \tag{9}
\end{align*}
$$

The time update for the mean can be found by conditioning on \mathbf{x}_{t-1}

$$
\begin{align*}
\mathbf{x}_{t}^{t-1} & =E_{\mathbf{x}_{t-1}}\left(E\left(\mathbf{x}_{t} \mid \mathbf{x}_{t-1},\{\mathbf{y}\}_{1}^{t-1}\right) \mid\{\mathbf{y}\}_{1}^{t-1}\right) \\
& =E_{\mathbf{x}_{t-1}}\left(A \mathbf{x}_{t-1} \mid\{\mathbf{y}\}_{1}^{t-1}\right) \\
& =A \mathbf{x}_{t-1}^{t-1} \tag{10}
\end{align*}
$$

The recursions start with $\mathbf{x}_{1}^{0}=\boldsymbol{\pi}_{1}$ and $V_{1}^{0}=V_{1}$. Equations (5), (6), (7), (9), and (10) together form the Kalman filter forward recursions, as shown in [1].

3 Backward Recursions: Smoothing

Like the filtered posterior distribution $P\left(\mathbf{x}_{t} \mid\{\mathbf{y}\}_{1}^{t}\right)$, the smoothed posterior distribution $P\left(\mathbf{x}_{t} \mid\{\mathbf{y}\}_{1}^{T}\right)$ is also normal. We seek its mean \mathbf{x}_{t}^{T} and variance V_{t}^{T}. We are also interested in the covariance of the joint posterior distribution $P\left(\mathbf{x}_{t+1}, \mathbf{x}_{t} \mid\{\mathbf{y}\}_{1}^{T}\right)$, denoted $V_{t+1, t}^{T}$.

$$
\begin{align*}
\log P\left(\mathbf{x}_{t+1}, \mathbf{x}_{t} \mid\{\mathbf{y}\}_{1}^{T}\right)= & \log P\left(\mathbf{x}_{t} \mid \mathbf{x}_{t+1},\{\mathbf{y}\}_{1}^{T}\right)+\log P\left(\mathbf{x}_{t+1} \mid\{\mathbf{y}\}_{1}^{T}\right) \\
= & \log P\left(\mathbf{x}_{t} \mid \mathbf{x}_{t+1},\{\mathbf{y}\}_{1}^{t}\right)+\log P\left(\mathbf{x}_{t+1} \mid\{\mathbf{y}\}_{1}^{T}\right) \\
= & \log P\left(\mathbf{x}_{t+1} \mid \mathbf{x}_{t}\right)+\log P\left(\mathbf{x}_{t} \mid\{\mathbf{y}\}_{1}^{t}\right)-\log P\left(\mathbf{x}_{t+1} \mid\{\mathbf{y}\}_{1}^{t}\right)+\log P\left(\mathbf{x}_{t+1} \mid\{\mathbf{y}\}_{1}^{T}\right) \\
= & -\frac{1}{2}\left(\mathbf{x}_{t+1}-A \mathbf{x}_{t}\right)^{\prime} Q^{-1}\left(\mathbf{x}_{t+1}-A \mathbf{x}_{t}\right)-\frac{1}{2}\left(\mathbf{x}_{t}-\mathbf{x}_{t}^{t}\right)^{\prime}\left(V_{t}^{t}\right)^{-1}\left(\mathbf{x}_{t}-\mathbf{x}_{t}^{t}\right) \\
& +\frac{1}{2}\left(\mathbf{x}_{t+1}-\mathbf{x}_{t+1}^{t}\right)^{\prime}\left(V_{t+1}^{t}\right)^{-1}\left(\mathbf{x}_{t+1}-\mathbf{x}_{t+1}^{t}\right) \\
& -\frac{1}{2}\left(\mathbf{x}_{t+1}-\mathbf{x}_{t+1}^{T}\right)^{\prime}\left(V_{t+1}^{T}\right)^{-1}\left(\mathbf{x}_{t+1}-\mathbf{x}_{t+1}^{T}\right)+\ldots \\
= & -\frac{1}{2} \mathbf{x}_{t+1}^{\prime}\left(Q^{-1}-\left(V_{t+1}^{t}\right)^{-1}+\left(V_{t+1}^{T}\right)^{-1}\right) \mathbf{x}_{t+1} \\
& -\frac{1}{2} \mathbf{x}_{t+1}^{\prime}\left(-Q^{-1} A\right) \mathbf{x}_{t}-\frac{1}{2} \mathbf{x}_{t}^{\prime}\left(-A^{\prime} Q^{-1}\right) \mathbf{x}_{t+1} \\
& -\frac{1}{2} \mathbf{x}_{t}^{\prime}\left(A^{\prime} Q^{-1} A+\left(V_{t}^{t}\right)^{-1}\right) \mathbf{x}_{t}+\mathbf{x}_{t}^{\prime}\left(\left(V_{t}^{t}\right)^{-1} \mathbf{x}_{t}^{t}\right)+\ldots \tag{11}
\end{align*}
$$

Note that, in general, if $\left[\begin{array}{ll}\mathbf{z}_{1}^{\prime} & \mathbf{z}_{2}^{\prime}\end{array}\right]^{\prime}$ is normally-distributed with mean $\left[\boldsymbol{\mu}_{1}^{\prime} \boldsymbol{\mu}_{2}^{\prime}\right]^{\prime}$, then the \log density can be expressed in the form

$$
\begin{align*}
\log P\left(\mathbf{z}_{1}, \mathbf{z}_{2}\right) & =-\frac{1}{2}\left[\begin{array}{l}
\mathbf{z}_{1}-\boldsymbol{\mu}_{1} \\
\mathbf{z}_{2}-\boldsymbol{\mu}_{2}
\end{array}\right]^{\prime}\left[\begin{array}{cc}
S_{11} & S_{12} \\
S_{21} & S_{22}
\end{array}\right]\left[\begin{array}{l}
\mathbf{z}_{1}-\boldsymbol{\mu}_{1} \\
\mathbf{z}_{2}-\boldsymbol{\mu}_{2}
\end{array}\right]+\ldots \\
& =-\frac{1}{2} \mathbf{z}_{1}^{\prime} S_{11} \mathbf{z}_{1}-\frac{1}{2} \mathbf{z}_{1}^{\prime} S_{12} \mathbf{z}_{2}-\frac{1}{2} \mathbf{z}_{2}^{\prime} S_{21} \mathbf{z}_{1}-\frac{1}{2} \mathbf{z}_{2}^{\prime} S_{22} \mathbf{z}_{2}+\mathbf{z}_{2}^{\prime}\left(S_{21} \boldsymbol{\mu}_{1}+S_{22} \boldsymbol{\mu}_{2}\right)+\ldots \tag{12}
\end{align*}
$$

The covariance of $\left[\begin{array}{ll}\mathbf{z}_{1}^{\prime} & \mathbf{z}_{2}^{\prime}\end{array}\right]^{\prime}$ is

$$
\begin{align*}
{\left[\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right] } & =\left[\begin{array}{cc}
S_{11} & S_{12} \\
S_{21} & S_{22}
\end{array}\right]^{-1} \\
& =\left[\begin{array}{cc}
F_{11}^{-1} & -F_{11}^{-1} S_{12} S_{22}^{-1} \\
-S_{22}^{-1} S_{21} F_{11}^{-1} & F_{22}^{-1}
\end{array}\right] \tag{13}\\
& =\left[\begin{array}{cc}
S_{11}^{-1}+S_{11}^{-1} S_{12} F_{22}^{-1} S_{21} S_{11}^{-1} & -F_{11}^{-1} S_{12} S_{22}^{-1} \\
-S_{22}^{-1} S_{21} F_{11}^{-1} & S_{22}^{-1}+S_{22}^{-1} S_{21} F_{11}^{-1} S_{12} S_{22}^{-1}
\end{array}\right] \tag{14}
\end{align*}
$$

where

$$
\begin{aligned}
& F_{11}=S_{11}-S_{12} S_{22}^{-1} S_{21} \\
& F_{22}=S_{22}-S_{21} S_{11}^{-1} S_{12} .
\end{aligned}
$$

Comparing the first four terms in (11) and (12), we can write

$$
\left[\begin{array}{cc}
V_{t+1}^{T} & V_{t+1, t}^{T} \tag{15}\\
V_{t, t+1}^{T} & V_{t}^{T}
\end{array}\right]=\left[\begin{array}{cc}
Q^{-1}-\left(V_{t+1}^{t}\right)^{-1}+\left(V_{t+1}^{T}\right)^{-1} & -Q^{-1} A \\
-A^{\prime} Q^{-1} & A^{\prime} Q^{-1} A+\left(V_{t}^{t}\right)^{-1}
\end{array}\right]^{-1}
$$

We first simplify two expressions that will appear when inverting the block matrix in (15). First, using the Matrix Inversion Lemma,

$$
\begin{align*}
S_{22}^{-1} & =\left(A^{\prime} Q^{-1} A+\left(V_{t}^{t}\right)^{-1}\right)^{-1} \\
& =V_{t}^{t}-V_{t}^{t} A^{\prime}\left(V_{t+1}^{t}\right)^{-1} A V_{t}^{t} \\
& =V_{t}^{t}-J_{t} V_{t+1}^{t} J_{t}^{\prime}, \tag{16}
\end{align*}
$$

where we define

$$
\begin{equation*}
J_{t}=V_{t}^{t} A^{\prime}\left(V_{t+1}^{t}\right)^{-1} . \tag{17}
\end{equation*}
$$

Second, applying the matrix identity (8),

$$
\begin{align*}
S_{22}^{-1} S_{21} & =-\left(V_{t}^{t}-J_{t} V_{t+1}^{t} J_{t}^{\prime}\right) A^{\prime} Q^{-1} \\
& =-V_{t}^{t} A^{\prime}\left(I-\left(Q+A V_{t}^{t} A^{\prime}\right)^{-1} A V_{t}^{t} A^{\prime}\right) Q^{-1} \\
& =-V_{t}^{t} A^{\prime}\left(Q+A V_{t}^{t} A^{\prime}\right)^{-1} \\
& =-J_{t} . \tag{18}
\end{align*}
$$

Now, we invert the block matrix in (15). Using (16),(18), and the fact that $F_{11}^{-1}=V_{t+1}^{T}$ from (13),

$$
\begin{align*}
V_{t}^{T} & =S_{22}^{-1}+S_{22}^{-1} S_{21} F_{11}^{-1} S_{12} S_{22}^{-1} \\
& =\left(V_{t}^{t}-J_{t} V_{t+1}^{t} J_{t}^{\prime}\right)+\left(-J_{t}\right) V_{t+1}^{T}\left(-J_{t}^{\prime}\right) \\
& =V_{t}^{t}+J_{t}\left(V_{t+1}^{T}-V_{t+1}^{t}\right) J_{t}^{\prime} \tag{19}
\end{align*}
$$

and

$$
\begin{align*}
V_{t+1, t}^{T} & =-F_{11}^{-1} S_{12} S_{22}^{-1} \\
& =V_{t+1}^{T} J_{t}^{\prime} . \tag{20}
\end{align*}
$$

Using (17), (19), and (20), we can also derive a recursive formulation for the covariance

$$
\begin{align*}
V_{t, t-1}^{T} & =V_{t}^{T} J_{t-1}^{\prime} \\
& =\left(V_{t}^{t}+J_{t}\left(V_{t+1}^{T}-V_{t+1}^{t}\right) J_{t}^{\prime}\right) J_{t-1}^{\prime} \\
& =\left(V_{t}^{t}+J_{t}\left(V_{t+1, t}^{T}-A V_{t}^{t}\right)\right) J_{t-1}^{\prime} \\
& =V_{t}^{t} J_{t-1}^{\prime}+J_{t}\left(V_{t+1, t}^{T}-A V_{t}^{t}\right) J_{t-1}^{\prime} . \tag{21}
\end{align*}
$$

Using (5), (17), and (20), this recursion is initialized with

$$
\begin{align*}
V_{T, T-1}^{T} & =V_{T}^{T} J_{T-1}^{\prime} \\
& =\left(I-K_{T} C\right) V_{T}^{T-1} J_{T-1}^{\prime} \\
& =\left(I-K_{T} C\right) A V_{T-1}^{T-1} . \tag{22}
\end{align*}
$$

To find the mean, we compare the last terms in (11) and (12). Using (16), (17), and (18),

$$
\begin{align*}
S_{21} \mathbf{x}_{t+1}^{T}+S_{22} \mathbf{x}_{t}^{T} & =\left(V_{t}^{t}\right)^{-1} \mathbf{x}_{t}^{t} \\
\mathbf{x}_{t}^{T} & =-S_{22}^{-1} S_{21} \mathbf{x}_{t+1}^{T}+S_{22}^{-1}\left(V_{t}^{t}\right)^{-1} \mathbf{x}_{t}^{t} \\
& =J_{t} \mathbf{x}_{t+1}^{T}+\left(I-J_{t} A\right) \mathbf{x}_{t}^{t} \\
& =\mathbf{x}_{t}^{t}+J_{t}\left(\mathbf{x}_{t+1}^{T}-A \mathbf{x}_{t}^{t}\right) . \tag{23}
\end{align*}
$$

Equations (17), (19), (21), (22), and (23) together form the Kalman smoother backward recursions, as shown in [1]. Equivalently, (20) can be used in the place of (21) and (22) to reduce the computation required to find the covariance.

References

[1] Z. Ghahramani and G.E. Hinton. Parameter estimation for linear dynamical systems. Technical Report CRG-TR-96-2, University of Toronto, 1996.
[2] R.H. Shumway and D.S. Stoffer. An approach to time series smoothing and forecasting using the EM algorithm. Journal of Time Series Analysis, 3(4):253-264, 1982.
[3] B.D.O. Anderson and J.B. Moore. Optimal Filtering. Prentice-Hall, Englewood Cliffs, NJ, 1979.

