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Abstract

The Kalman filtering and smoothing problems can be solved by a series of forward and
backward recursions, as presented in [1]–[3]. Here, we show how to derive these relationships
from first principles.

1 Introduction

We consider linear time-invariant dynamical systems (LDS) of the following form:

xt+1 = Axt + wt (1)

yt = Cxt + vt (2)

where xt and yt are the state and output, respectively, at time t. The noise terms, wt and vt, are
zero-mean normally-distributed random variables with covariance matrices Q and R, respectively.
The initial state, x1, is normally-distributed with mean π1 and variance V1.

In this work, we assume that the parameters of the linear dynamical system, namely A, C, Q,
R, π1, and V1 are known. Whereas the outputs are observed, the state and noise variables are
hidden.

The goal is to determine P (xt|{y}t
1) and P (xt|{y}T

1 ) for t = 1, . . . , T . These are the solutions to
the filtering and smoothing problems, respectively. Both distributions are normally-distributed for
the system described by (1) and (2), so it suffices to find the mean and variance of each distribution.
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We will use the same notation as in [1]. E(xt|{y}τ
1) is denoted by xτ

t and Var(xt|{y}τ
1) is

denoted by V τ
t . The sequence of T outputs (y1,y2, . . . ,yT ) is denoted by {y}. A subsequence of

outputs (yt0 ,yt0+1, . . . ,yt1) is denoted by {y}t1
t0

.

2 Forward Recursions: Filtering

By the assumptions of the LDS described by (1) and (2), P (xt|{y}t
1) is a normal distribution. We

seek its mean xt
t and variance V t

t .

log P (xt|{y}
t
1) = log P (xt|{y}

t−1
1 ,yt)

= log P (yt|xt, {y}
t−1
1 ) + log P (xt|{y}

t−1
1 ) + . . .

= log P (yt|xt) + log P (xt|{y}
t−1
1 ) + . . .

= −
1

2
(yt − Cxt)

′R−1(yt − Cxt) −
1

2
(xt − xt−1

t )′(V t−1
t )−1(xt − xt−1

t ) + . . .

= −
1

2
x′

t

(

C ′R−1C + (V t−1
t )−1

)

xt + x′

t

(

C ′R−1yt + (V t−1
t )−1xt−1

t

)

+ . . . (3)

Note that, in general, if z is normally-distributed with mean µ and variance Σ,

log P (z) = −
1

2
(z − µ)′Σ−1(z − µ) + . . .

= −
1

2
z′Σ−1z + z′(Σ−1

µ) + . . . (4)

Comparing the first terms in (3) and (4) and using the Matrix Inversion Lemma,

V t
t =

(

C ′R−1C + (V t−1
t )−1

)−1

= V t−1
t − KtCV t−1

t (5)

where
Kt = V t−1

t C ′
(

R + CV t−1
t C ′

)−1
. (6)

To find the time update for the variance, we use the fact that Axt−1 and wt−1 are independent

V t−1
t = Var(Axt−1|{y}

t−1
1 ) + Var(wt−1|{y}

t−1
1 )

= AV t−1
t−1 A′ + Q. (7)

Before finding the mean of the normal distribution, we derive the following matrix identity

(A + B)−1(A + B) = I

I − (A + B)−1A = (A + B)−1B

(I − (A + B)−1A)B−1 = (A + B)−1. (8)

Comparing the second terms in (3) and (4) and applying the matrix identity (8),

xt
t = V t

t

(

C ′R−1yt + (V t−1
t )−1xt−1

t

)

= V t−1
t C ′

(

I −
(

R + CV t−1
t C ′

)−1
CV t−1

t C ′

)

R−1yt + (I − KtC)xt−1
t

= V t−1
t C ′

(

R + CV t−1
t C ′

)−1
yt + (I − KtC)xt−1

t

= Ktyt + (I − KtC)xt−1
t

= xt−1
t + Kt(yt − Cxt−1

t ). (9)
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The time update for the mean can be found by conditioning on xt−1

xt−1
t = Ext−1

(

E(xt|xt−1, {y}
t−1
1 )

∣

∣{y}t−1
1

)

= Ext−1

(

Axt−1

∣

∣{y}t−1
1

)

= Axt−1
t−1. (10)

The recursions start with x0
1 = π1 and V 0

1 = V1. Equations (5), (6), (7), (9), and (10) together
form the Kalman filter forward recursions, as shown in [1].

3 Backward Recursions: Smoothing

Like the filtered posterior distribution P (xt|{y}t
1), the smoothed posterior distribution P (xt|{y}T

1 )
is also normal. We seek its mean xT

t and variance V T
t . We are also interested in the covariance of

the joint posterior distribution P (xt+1,xt|{y}T
1 ), denoted V T

t+1,t.

log P (xt+1,xt|{y}
T
1 ) = log P (xt|xt+1, {y}

T
1 ) + log P (xt+1|{y}

T
1 )

= log P (xt|xt+1, {y}
t
1) + log P (xt+1|{y}

T
1 )

= log P (xt+1|xt) + log P (xt|{y}
t
1) − log P (xt+1|{y}

t
1) + log P (xt+1|{y}

T
1 )

= −
1

2
(xt+1 − Axt)

′Q−1(xt+1 − Axt) −
1

2
(xt − xt

t)
′(V t

t )−1(xt − xt
t)

+
1

2
(xt+1 − xt

t+1)
′(V t

t+1)
−1(xt+1 − xt

t+1)

−
1

2
(xt+1 − xT

t+1)
′(V T

t+1)
−1(xt+1 − xT

t+1) + . . .

= −
1

2
x′

t+1

(

Q−1 − (V t
t+1)

−1 + (V T
t+1)

−1
)

xt+1

−
1

2
x′

t+1(−Q−1A)xt −
1

2
x′

t(−A′Q−1)xt+1

−
1

2
x′

t

(

A′Q−1A + (V t
t )−1

)

xt + x′

t

(

(V t
t )−1xt

t

)

+ . . . (11)

Note that, in general, if [z′1 z′2]
′ is normally-distributed with mean [µ′

1 µ
′

2]
′, then the log density

can be expressed in the form

log P (z1, z2) = −
1

2

[

z1 − µ1

z2 − µ2

]′ [

S11 S12

S21 S22

] [

z1 − µ1

z2 − µ2

]

+ . . .

= −
1

2
z′1S11z1 −

1

2
z′1S12z2 −

1

2
z′2S21z1 −

1

2
z′2S22z2 + z′2 (S21µ1 + S22µ2) + . . . (12)

The covariance of [z′1 z′2]
′ is

[

Σ11 Σ12

Σ21 Σ22

]

=

[

S11 S12

S21 S22

]−1

=

[

F−1
11 −F−1

11 S12S
−1
22

−S−1
22 S21F

−1
11 F−1

22

]

(13)

=

[

S−1
11 + S−1

11 S12F
−1
22 S21S

−1
11 −F−1

11 S12S
−1
22

−S−1
22 S21F

−1
11 S−1

22 + S−1
22 S21F

−1
11 S12S

−1
22

]

, (14)
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where

F11 = S11 − S12S
−1
22 S21

F22 = S22 − S21S
−1
11 S12.

Comparing the first four terms in (11) and (12), we can write
[

V T
t+1 V T

t+1,t

V T
t,t+1 V T

t

]

=

[

Q−1 − (V t
t+1)

−1 + (V T
t+1)

−1 −Q−1A

−A′Q−1 A′Q−1A + (V t
t )−1

]−1

(15)

We first simplify two expressions that will appear when inverting the block matrix in (15). First,
using the Matrix Inversion Lemma,

S−1
22 =

(

A′Q−1A + (V t
t )−1

)−1

= V t
t − V t

t A′(V t
t+1)

−1AV t
t

= V t
t − JtV

t
t+1J

′

t, (16)

where we define
Jt = V t

t A′(V t
t+1)

−1. (17)

Second, applying the matrix identity (8),

S−1
22 S21 = −(V t

t − JtV
t
t+1J

′

t)A
′Q−1

= −V t
t A′

(

I − (Q + AV t
t A′)−1AV t

t A′
)

Q−1

= −V t
t A′(Q + AV t

t A′)−1

= −Jt. (18)

Now, we invert the block matrix in (15). Using (16),(18), and the fact that F −1
11 = V T

t+1 from (13),

V T
t = S−1

22 + S−1
22 S21F

−1
11 S12S

−1
22

= (V t
t − JtV

t
t+1J

′

t) + (−Jt)V
T
t+1(−J ′

t)

= V t
t + Jt(V

T
t+1 − V t

t+1)J
′

t (19)

and

V T
t+1,t = −F−1

11 S12S
−1
22

= V T
t+1J

′

t. (20)

Using (17), (19), and (20), we can also derive a recursive formulation for the covariance

V T
t,t−1 = V T

t J ′

t−1

=
(

V t
t + Jt(V

T
t+1 − V t

t+1)J
′

t

)

J ′

t−1

=
(

V t
t + Jt(V

T
t+1,t − AV t

t )
)

J ′

t−1

= V t
t J ′

t−1 + Jt(V
T
t+1,t − AV t

t )J ′

t−1. (21)

Using (5), (17), and (20), this recursion is initialized with

V T
T,T−1 = V T

T J ′

T−1

= (I − KT C)V T−1
T J ′

T−1

= (I − KT C)AV T−1
T−1

. (22)
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To find the mean, we compare the last terms in (11) and (12). Using (16), (17), and (18),

S21x
T
t+1 + S22x

T
t = (V t

t )−1xt
t

xT
t = −S−1

22 S21x
T
t+1 + S−1

22 (V t
t )−1xt

t

= Jtx
T
t+1 + (I − JtA)xt

t

= xt
t + Jt(x

T
t+1 − Axt

t). (23)

Equations (17), (19), (21), (22), and (23) together form the Kalman smoother backward recur-
sions, as shown in [1]. Equivalently, (20) can be used in the place of (21) and (22) to reduce the
computation required to find the covariance.
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